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Abstract: The resolution of current satellite surface soil moisture (SM) estimates is very low, of tens
of kilometers, which proves to be insufficient for various agricultural and hydrological applications.
Amongst the existing downscaling approaches of remotely sensed SM, DISPATCH (DISaggregation
based on a Physical And Theoretical scale CHange) improves the resolution of SMOS (Soil Moisture
and Ocean Salinity) soil moisture data using soil evaporative efficiency (SEE) estimates at high
resolution (HR) and a SEE(SM) model implemented at low resolution (LR). Defined as the ratio
of actual to potential soil evaporation, SEE can be derived from the remotely sensed land surface
temperature (LST) and normalized difference vegetation index (NDVI). The current version of
DISPATCH uses a linear SEE(SM) model. This study aims at improving the SEE(SM) model and
testing different calibration strategies, to ultimately have more robust and better downscaled SM
products. A nonlinear SEE(SM) model is introduced and its influence on the derived HR SM
products is studied over a range of conditions. Each model, linear and nonlinear, is calibrated from
remote sensing data on a daily and a multi-date basis. The approaches were tested over two mixed
dry and irrigated areas in Catalonia, Spain, and over one dry area in Morocco. When using the
linear model, better statistical results were generally obtained using a daily calibration (current
version of DISPATCH), most notably over one Spanish site. However, the best results were
systematically obtained for an annually calibrated nonlinear model, in terms of all metrics considered:
correlation coefficient, slope of the linear regression, bias, unbiased root mean square error.
In particular, when using the annually calibrated nonlinear SEE (SM) model, the temporal slope of
the linear regression between disaggregated and in situ soil moisture increased to 1.16 and 0.75 for
one Spanish site and for the Moroccan site (as opposed to 0.44 and 0.58, respectively, when using the
linear model with a daily calibration). The temporal correlation coefficient increased to 0.47 and 0.54
over the Spanish sites (as opposed to 0.18 and 0.27, respectively, when using the linear model with a
daily calibration). Those contrasted results indicate compensation effects between the model type
and the calibration strategy. Taking into account studies that report the strong nonlinear behavior
of the SEE with respect to SM, the introduction of the nonlinear SEE(SM) model in DISPATCH,
combined with a multi-date calibration, is proven to perform significantly better under various
conditions, leading to more robust disaggregated SM products. The SEE modeling based on the
nonlinear SM model, with a multi-date calibration, could be integrated into the CATDS—Centre Aval
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de Traitement des Données SMOS as a future product, as well as into existing evapotranspiration
models, which are based on a combination of thermal and microwave data.

Keywords: soil moisture; downscaling; disaggregation; SMOS; evaporation; MODIS

1. Introduction

Soil moisture (SM) is an essential hydrologic variable that impacts evaporation, infiltration and
runoff, playing an important role in energy and carbon exchanges [1]. Its influence is assessed over a
range of different scales: crop scale [2], hydrological scale [3], meteorological scale [4] and climatic
scale [5]. Hence, the majority of hydrological and agricultural applications require high, at least at
1 km, resolution SM data [6–8]. Surface SM observations are nowadays provided on a global basis using
remote sensing data. Among all existing satellites, passive L-band microwave sensors are widely used
to derive SM thanks to the strong physical link between the brightness temperature and the 0–5 cm SM
profile [9,10]. The downside to the operational retrieval of SM from microwave observations is given
by the low resolution (LR) of the products, which ranges from 40 to 60 km [11,12], a resolution that is
too coarse for most hydrological and agricultural applications [13,14]. Alternatively, optical/thermal
sensors have the advantage of providing data at medium and high resolutions. In particular,
Landsat and ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) have
resolutions of several tens of meters, while MODIS (MODerate Resolution Imaging Spectroradiometer)
has a resolution ranging from 250 to 500 m and to 1 km, depending on what band is used. Even though
optical data could be used to derive SM, the main drawback in deriving a retrieval methodology is
given by the sensors’ sensitivity to meteorological conditions (including cloud presence) [15–17] and
vegetation cover [15,18]. More recently, the potential of Synthetic Aperture Radar (SAR) satellite
data has also been investigated in deriving SM products. In particular, [19–21] have investigated the
potential sensitivity of C-band and L-band SAR data with respect to SM, with results showing the
higher potential of L-band over C-band, due to its higher penetration depth. The main advantage of
using SAR data is the high resolution it provides (several tens of meters). However, the main drawback
is that it is difficult to account for the soil roughness and the vegetation backscattering effect in the soil
moisture retrieval modeling [20–22].

However, a synergy between the LR microwave and high resolution (HR) optical/thermal
data [23] can be used in order to derive SM at various spatial scales. This is achieved by using the
optical-derived land surface temperature (LST), which is linked to the soil water content and vegetation
cover [24,25]. Most of the methods based on the synergy between microwave and optical data generally
use the triangle [24] or trapezoid approach [26], in which the variations in LST are linked to variations
in soil water content and vegetation cover [27,28]. The main hypotheses behind the triangle and
trapezoid approaches are: (i) the only variability factors of the LST are the vegetation cover, surface SM
and vegetation water stress, (ii) uniform meteorological conditions are met over the study area and (iii)
the extreme temperatures can be correctly interpolated from the LST–NDVI (Normalized Difference
Vegetation Index) space, which implies a heterogeneity of the surface conditions at the observation
resolution [29,30]. As classified in [16] and in [17,31], there are various methodologies based on
the synergy between microwave and optical data: polynomial fitting methods, evaporation-based
methods, the UCLA method [32], the Peng method [33], thermal inertia-based methods [25,34,35].
The polynomial fitting methods [23,36], considered as purely empirical algorithms, use a polynomial
function of LST, NDVI and surface albedo to express SM. Studies like [37–40] also take into account
the brightness temperature in the polynomial fitting model in order to derive SM at 10 and 1 km
resolutions from SMOS observations.

The evaporation-based methods are more theoretically and physically based than the
polynomial fitting approach [16,17]. In these models, the evaporative fraction (EF) and/or the soil
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evaporative efficiency (SEE) are used as SM proxies, due to (i) keeping a constant value during the
day [41,42], and (ii) their direct link to SM, while being independent on incoming radiation, as opposed
to evapotranspiration or LST [43]. The SEE, defined as the ratio of actual to potential evaporation,
can be derived either using microwave SM data or using optical data. Through its link with SEE,
evaporation is the physical process that allows a link at multiple resolutions between the microwave
SM and optical data. In particular, these models represent the spatial link between optical-derived
SEE and surface SM. Their main advantages over the polynomial fitting methods are that (i) they
are self-calibrated for each SMOS pixel individually, which fosters the validity of the hypothesis of
meteorological uniformity even compared to methods implementing adaptive windows [40,44] and (ii)
the average of the estimated HR SM is equal to the LR observed SM (meaning that the error residual
as termed in [44] is zero).

Although the hypothesis of meteorological uniformity at large scale is difficult to be met by
the methods based on the triangle or trapezoid models [44], recent studies have tackled that issue
by introducing a self adaptive window in the downscaling methodology, which better meets the
atmospheric forcing hypothesis. [44] have introduced a self-adaptive window in a downscaling
method of SMAP SM and applied it over the Iberian Peninsula. [40] have implemented an adaptive
moving window in the polynomial method developed in [45] and applied it to SMOS data over
the Iberian Peninsula and Australia. The adaptive window in [40] had a radius of 9 SMOS pixels,
while [44] used an adaptive window of different sizes and compared the results obtained with fixed
window sizes from 4 to 7 SMAP pixels. The sizes considered in both studies allowed minimizing the
regression residuals compared to using a larger spatial extent.

The algorithm presented in [46] was improved in [18,47]. DISPATCH (DISaggregation based on a
Physical and Theoretical scale CHange) converts HR MODIS-derived SEE fields into HR SM fields by
expanding a first order Taylor series of a SEE model around the LR SMOS SM. The HR SEE fields are
derived using HR LST and NDVI data and the LR extreme temperatures, which are estimated from the
LST-NDVI feature space [26,47]. Optical data are then linked to SM by using a self-calibrated SEE(SM)
model [15]. DISPATCH also meets the meteorological forcing hypothesis, as it is self-calibrated at the
SMOS pixel scale, where uniform atmospheric conditions are generally fulfilled, and can therefore be
applied at large scales [15,48,49].

The current SEE(SM) model used in DISPATCH is linear; however, multiple studies have
noted a strong nonlinear relationship between the microwave-derived SM and the optical-derived
SEE [50–52]. The model provided in [51] has previously been implemented over the Australian
landscape by [46,53], by testing the DISPATCH approach at 10 and 4 km resolutions, respectively.
They both used the nonlinear model in a second order disaggregation scheme of the SM data derived
from the National Airborne Field Experiment, with satisfying results being reported. However,
the impact of the nonlinear relationship between SEE and SM needs further investigation, in different
surface conditions and at different resolutions, since this has not been addressed in previous studies.
In particular, the nature of the model used within DISPATCH depends on the calibration strategy,
and to date, there is no study analyzing the SEE(SM) calibration in both time and space.

Most of the thermal-based disaggregation techniques use a daily calibration of their parameters.
In [36], a linkage model calibrated on a daily basis, combined with high resolution NDVI,
surface albedo and LST, is applied to data acquired from the Special Sensor Microwave Imager
(SSM/I) and Advanced Very High Resolution Radiometer (AVHRR) in order to derive high resolution
SM estimates. In [37,45], a linking model is used to relate SMOS SM to MODIS NDVI and LST through
regression coefficients, which are calibrated on a daily basis. The algorithm was also applied to SMOS
and MSG (Meteosat Second generation) SEVIRI (Spinning Enhanced Visible and Infrared Imager)
observations to derive 3 km resolution estimates over Spain and Southern France [38]. The same model
is used by [39], with four different water indices formulations, in order to derive 500 m resolution
soil moisture from SMOS and MODIS observations. A polynomial downscaling methodology is
used in [54], with regression coefficients calibrated for every day over the observed scene, in order
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to derive HR SM estimates from AMSR-E (Advanced Microwave Scanning Radiometer on the Earth
Observing System) and MSG SEVIRI observations. The UCLA method [32] uses a linear relationship to
connect a soil wetness index with SM, index derived on a daily scale. In a similar manner, [33] use the
VTCI (Vegetation Temperature Condition Index) instead of the soil water index in their downscaling
methodology, which is derived on a daily basis by rescaling the LST of each pixel between two extreme
LST values, per NDVI interval. The thermal inertia method is used by [25] to relate daily averaged SM
estimates to diurnal changes in the soil temperature, calibrating their model on a monthly basis in order
to reduce the impact of vegetation biomass on the estimates [17]. In this context, this study aims to
improve the robustness of the SEE(SM) model used within the DISPATCH methodology and hence the
accuracy of the disaggregated dataset. In this respect, this study implements the nonlinear SEE model
developed by [51] in addition to the classic linear model (used in the current DISPATCH version)
to disaggregate SMOS Level-3 SM down to 1 km resolution, over a range of different conditions.
The impact of the calibration of each (linear and nonlinear) model is investigated. In practice, the
linear and nonlinear models are calibrated on a daily and on a multi-date basis, and a comprehensive
assessment is performed.

The approach is validated using in situ SM measurements for three different areas: over a
mixed dry and irrigated area in Urgell, Catalonia, Spain (2011 and 2015), over an irrigated area in
Algerri-Balaguer, Catalonia, Spain (2017–2018) and over a dry area in Morocco (2016–2017). The study
sites along with all the data are presented in Section 2. In Section 3, the DISPATCH algorithm is
briefly presented, along with the two SEE(SM) models. Section 4 offers a comparison between the
disaggregated SM estimates.

2. Data Description

2.1. Validation Sites and In Situ Data

The study is based on data collected over three different sites: two regions (Urgell and the
Algerri-Balaguer irrigation district) in Catalonia, northeast of Spain, and an arid area (hereby referred
to as MOR3) located in the Guelmim-El Semara province in Morocco. Different sites were chosen
to validate the downscaling approach: in irrigated areas, which are well suited for disaggregation
(Urgell, Algerri-Balaguer), and in desert areas, which are not as well suited for disaggregation (MOR3).
In particular, evaporation-based method consists of determining the wet and dry boundaries of
the LST-NDVI feature space, which may or may not be present within the scene at the observation
resolution. Therefore, limitations arise when fully dry and fully wet conditions are not met at the
observation resolution [30]. DISPATCH, being an evaporation-based method, has been proven to
work well for semi-arid areas (which, in our case, are represented by Urgell and Algerri Balaguer),
where these boundaries can be observed. It is less adequate, for example, for homogeneous desert
areas (MOR3 in our case), where the wet boundary can be overestimated when using 1 km resolution
LST and NDVI data.

The two study areas located in the Urgell region and the Algerri-Balaguer irrigation district
present a dry continental Mediterranean climate, with mild winters and dry and hot summers. A mean
yearly precipitation of 400 mm, 60 days of rain, and a mean yearly temperature of 16 ◦C are registered
over the area. Various irrigated crops (wheat, maize, alfalfa, apple and pear trees) and dryland crops
(barley, olive trees, vineyards and almond trees) are present within the areas.

Two field experiments took place in the Urgell region, one conducted in 2011 and one in 2015.
The experiments focused on a 20 by 20 km area to collect 0–5 cm SM data using the gravimetric
technique. The sampling used in this study spanned a total of seven days in 2011 (days of year (DOY)
98, 146, 165, 196, 228, 229 and 277) and five days in 2015 (DOY 143, 175, 210, 223 and 319). The sampling
days were chosen roughly once per month for each field experiment, in an attempt to capture the
seasonal variability also linked with the irrigation management within the area.
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The sampling covered a total of four areas in 2011, each of 3 by 3 km. Two are situated in a dryland
area and two in an irrigated area, with ten points per sampling area. In 2015, three of these areas
were sampled, the two located in the irrigated area and just one in the dryland area. Three separate
measurements per sampling point were performed, which means that a total of 120 measurements
(for 2011) and 90 measurements (for 2015) were taken within the entire area each sampling day.
As reported in [18], soil particle analysis at each sampling point, with a mean clay fraction of 0.24 and
a mean sand fraction of 0.37, was used to classify soil texture. The approach described in [55] was then
used to convert the gravimetric measurements to volumetric values.

These in situ measurements serve here as a validation dataset for the downscaled SM products.
Each of the 3 by 3 km sampling areas contain 9 pixels of 1 km resolution. Since the measurements
performed are point measurements, they have been aggregated (simple average) to a 1 km resolution
in order to be used in the validation process. A visual representation of the study area, along with
the 1 by 1 km pixels is presented in Figure 1. For Urgell 2011, we have 36 pixels at 1 km resolution,
each pixel being sampled at least 3 times in order to have spatial representativeness within the 1 km
area. In the case of Urgell 2015, we have 27 pixels at 1 km resolution. The total number of data points,
for the entire period, can be up to 252 (36 points/day multiplied by 7 sampling days) for 2011 and 135
(27 points/day multiplied by 5 sampling days). Please note that for the validation, we only select in
situ points corresponding to available DISPATCH data over each 1 km pixel, which can lead to a total
number of data points used in the analysis to be lower.

Two soil moisture stations were installed in the Algerri-Balaguer irrigation district in 2017.
5-TM sensors manufactured by Decagon Devices Inc. (now Meter Group) were installed for
continuously measuring the soil moisture content at time intervals of 30 minutes. The sensors provide
soil moisture measurements at nominal depths of 5 cm (two sensors), 25 cm (one sensor) and 50 cm
(one sensor). In this study, only the data collected by the sensors located at 5 cm were used for
validation purposes, covering the entire period between 17 March 2017 and 31 August 2018.

The reasoning behind choosing two irrigated sites is linked to the data availability.
Urgell possesses a limited dataset acquired during field campaigns, whereas the Algerri-Balaguer
irrigation district possesses continuous data records.

The MOR3 site is representative of a semi-arid climate, with an average temperature of 12 ◦C
in winter and 30 ◦C in summer. The mean precipitation recorded is of 217 mm. The site is equipped
with two Decagon EC-5 surface sensors at a 5 cm depth and one sensor at a 15 cm depth. The sand
percentage is estimated to be between 39% to 57% and clay between 22% to 24% according to ecoclimap
and soilgrids, respectively. The dataset used for validation concerns the 5 cm depth sensors only and
covers the entire period between 2 April 2016 and 1 March 2017.

Table 1 offers a summary concerning information related to the study areas, number of datasets
used, in situ acquisition days/periods, and satellite products used. Note that the number of datasets
used refers to the total number of samples used for the entire time period in the 1 km validation,
detailed in Section 4.2.

Table 1. Summary of in situ areas characteristics, alongside the acquisition days/periods, number of
datasets used and corresponding satellite data used.

Urgell Algerri Balaguer MOR3

Climate Dry continental Mediterranean Dry continental Mediterranean Semi-arid
Yearly precipitation (mm) 400 400 217

Yearly temperature 16 ◦C 16 ◦C 12 ◦C (winter); 30 ◦C (summer)
Land use Irrigated and dryland crops Irrigated and dryland crops Desert

Acquisition dates 2011 DOY 98,146,165,196,228,229 March 2017–August 2018 April 2016–March 2017
2015 DOY 143,175,210,223,319

Number of datasets used 231 (in 2011) 188 256
102 (in 2015)

SMOS products CLF31A/D L3 SM CLF31A/D L3 SM CLF31A/D L3 SM

MODIS products MOD11A1/MYD11A1 LST MOD11A1/MYD11A1 LST MOD11A1/MYD11A1 LST
MOD13A2 NDVI MOD13A2 NDVI MOD13A2 NDVI
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Figure 1. The Urgell and Algerri-Balaguer study areas.

2.2. Remote Sensing Data

The SMOS Level-3 1-day global SM product (MIR CLF31A/D), version 3 (in 300 reprocessing
mode RE04) product is used. SMOS data are extracted over an 80 by 120 km area over Spain and over
a 120 by 80 km area over Morocco. SMOS data are then re-sampled at a grid spacing of 40 km.

The sampling grid of the original SMOS global product (∼25 km) is finer than the SMOS nominal
average resolution (∼40 km). In order to take advantage of this oversampling inherent to SMOS
products, the re-sampling methodology described in [15,56] was used. It consists of obtaining
re-sampled SMOS data, which overlap four times over the study area, by sliding a 40 km resolution
window over the original grid, such that the pixel centers are coincident. The final downscaled SM
product is generated on the intersection of these four SMOS grids.
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The MODIS version-6 LST products onboard Terra (MOD11A1, [57]) and Aqua (MYD11A1, [58])
and NDVI product onboard Terra (MOD13A2, [59]) were downloaded using the NASA Land Processes
Distributed Active Archive Center (LP DAAC). Both the LST and NDVI products are re-sampled on a
1 km grid using the bilinear re-sampling method.

Elevation data extracted from the GTOPO30 digital elevation model (DEM) are also required.
Figure 1 shows the Urgell and Algerri-Balaguer study areas on which the downscaling algorithm is
applied. A visual assessment of the 1 km resolution Terra 16-day NDVI on doy 161 in 2011 is also
represented, where we can clearly distinguish the irrigated and dryland areas. Figure 2 shows the
MOR3 study area. The 1 km resolution Terra 16-day NDVI on doy 241 in 2016 is also shown.

Figure 2. The MOR3 study area.
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3. Methodology

3.1. DISPATCH

The operational version of the DISPATCH algorithm [18] is fully described in [15]. Only the
essential aspects are reminded herein. Briefly, DISPATCH converts HR MODIS-derived SEE fields into
HR SM fields by expanding a first order Taylor series of a SEE model around the LR SMOS SM value.
Different combinations of SMOS SM (ascending 6 a.m. and descending 6 p.m.) and MODIS (Terra
overpass 10:30 a.m. and Aqua 1:30 p.m. from one day before until one day after the SMOS overpass)
data are used to generate an input ensemble. The DISPATCH product is the average at 1 km resolution
of the disaggregated output ensemble [15,48].

The downscaling relationship is written as:

SMHR = SMLR +
dSMmod

dSEE
(SEELR) ∗ (SEEHR − SEELR) (1)

With SMHR being the 1 km disaggregated SM, SMLR the SMOS observation, dSMmod
dSEE (SEELR) the

partial derivative of SM with respect to SEE, evaluated at the SMOS scale, SEEHR the MODIS-derived
SEE, and SEELR its average within the SMOS pixel.

DISPATCH thus relies on two different SEE models: a temperature-based model, used to derive
SEEHR from MODIS data, and an SM-based model (partial derivative of SM with respect to SEE in
Equation (1)), used to link the temperature-based SEE to SM. The temperature-based SEE is derived as
a function of the retrieved soil temperature and the soil temperature that would occur in completely
dry and completely wet conditions. More details regarding the temperature-based model can be found
in [15,18].

3.2. SM-Based SEE

3.2.1. Linear Model

The current version of DISPATCH links the SM and the SEE using a semi-empirical linear
model [60,61]:

SEEHR =
SMHR
SMp

(2)

With SMp being a parameter estimated at LR as:

SMp =
SMLR
SEELR

(3)

In this study, the calibration of SMp is done both from daily SMLR and SEELR observations,
as well as on a multi-date basis, as the average of the daily SMp values estimated throughout the
corresponding study period.

The performance of this linear model has been successfully assessed within DISPATCH
in [15,18,48]. The linearity assumption was proven to be adequate at the kilometric scale using
the daily calibration approach. Moreover, the reasons behind using a linear model as in Equation (3)
are twofold. One reason is the potential robustness it could provide over a nonlinear model with an
erroneous behavior [52]. The second reason is that the daily calibrated SMp parameter could contribute
to the description of the real behavior of SEE [18].

However, SEE is known to actually have a strongly nonlinear behavior over the full SM
range [52,62–64], which represents a fundamental limitation of the SEE model in Equation (2). In fact,
the derivative of SEE with respect to SM is influenced by the SM range, and generally decreases with
an increase of SM [51].
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3.2.2. Nonlinear Model

Previous versions of the DISPATCH algorithm [46,47,53] have tested a range of nonlinear models
of SEE: [50,51,62]. Regarding nonlinear SEE representations, the model presented in [51] presents a
particular interest compared to the linear approximation, and the reason is twofold: i) it lowers the
derivative ( dSMmod

dSEE ) in Equation (1) in the lower ranges of the SMLR and ii) it increases dSMmod
dSEE in the

higher ranges of the SMLR. On the one hand, it is important not to have large values of the derivative
at SMLR ∼ 0. A large derivative would maximize the variability of the disaggregated SM in situations
where the variability of SM should be very small (SM close to zero on average). On the other hand,
a derivative increasing continuously with SMLR is desired to counter the saturation effect of SEE in
the higher SM ranges [51].

Note that the models presented in [50,62] do not allow a low derivative in the low ranges of the
SMLR, as the simulated SEE slowly increases with SM in the lower ranges of SM. This implies that a
very large derivative is obtained, leading to an unstable behavior of the disaggregation algorithm for
low SMLR values.

For the above-mentioned reasons, the exponential form of [51] (hereby mentioned as K03) is
chosen as a nonlinear SEE model:

SEEsim = 1− exp(− SM
SMc

) (4)

where SMc is a semi-empirical parameter. In our case, SMc is supposed to be constant in space
(within each LR pixel). Two calibrations at LR of the SMc parameter are performed for each SMOS
pixel: on a daily and on a multi-date basis, from SMOS and MODIS data.

For the daily calibration, Equation (4) is inverted and applied at LR:

SMc = −
SM

ln(1− SEEsim)
(5)

For the multi-date calibration, the SMc parameter is retrieved by minimizing the cost function:

||
N

∑
i=1

(SEEsim,i − SEEobs,i)||2 (6)

where N is the number of SMOS/MODIS dates, and the observed SEE is the SEELR (spatial linear
average of SEEHR).

4. Results and Discussion

In this section, the performance of the linear and nonlinear models with the daily and multi-date
calibrations is assessed in terms of disaggregated SM values. Two types of validations are performed:
a spatial validation on a daily time scale and a spatio-temporal validation. More specifically,
the disaggregated SMOS SM using both the linear and nonlinear models, in both calibration modes,
are compared against in situ measurements, for each study area separately. The reasoning behind
doing two types of validation is that on the one hand, the spatial validation is the type of validation
to perform in order to evaluate the disaggregation methodology. On the other hand, this can only be
done for Urgell 2011 and 2015. Since the measurements for Urgell are short in time, we performed a
temporal validation by adding Algerri Balaguer and MOR3, the latter site being added in order to test
DISPATCH in an area that is not suitable for disaggregation (i.e., arid area).
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4.1. Spatial Validation

A spatial validation was performed at the daily time scale for Urgell 2011 and Urgell 2015,
to evaluate the spatial representation of the DISPATCH SM at the sub-SMOS-pixel scale. As mentioned
in [18], this type of validation is particularly useful for disaggregation methodologies, as it allows to
separate the spatial and temporal trends provided by SMOS and by DISPATCH.

Table 2 shows the range (considering all days) of the correlation coefficient, slope of linear
regression, bias and uRMSE obtained for Urgell 2011, taking into account both models and calibrations.
For each range interval, the mean value (simple average for all days) of correlation, slope, bias and
uRMSE. Table 3 shows the same statistics obtained for Urgell 2015.

Table 2. Range of correlation coefficient, slope of the linear regression, bias (m3/m3), uRMSE (m3/m3)
between SMOS SM/DISPATCH SM and in situ data. DISPATCH is tested with both linear and nonlinear
modes, and with both daily and yearly calibrations. Note that for each range interval, the mean value
(simple average for all days) of correlation, slope, bias and uRMSE is also mentioned in bold.

SMOS
Daily Calibration Yearly Calibration

Linear Nonlinear Linear Nonlinear

R [−0.65; −0.24; 0.33] [−0.21; 0.12; 0.44] [−0.26; 0.11; 0.49] [−0.64; −0.24; 0.33] [−0.23; 0.17; 0.57]
S [−0.04; −0.02; 0.00] [−0.05; 0.05; 0.14] [−0.05; 0.06; 0.25] [−0.09; −0.03; 0.00] [−0.08; 0.15; 0.42]

Bias [−0.226; −0.097; 0.009] [−0.220; −0.100; −0.007] [−0.222; −0.101; −0.011] [−0.226; −0.098; 0.009] [−0.139; −0.095; −0.037]
uRMSE [0.101; 0.069; 0.004] [0.085; 0.066; 0.006] [0.093; 0.069; 0.008] [0.098; 0.070; 0.004] [0.092; 0.067; 0.016]

Table 3. Same as Table 2, but for Urgell 2015.

SMOS
Daily Calibration Yearly Calibration

Linear Nonlinear Linear Nonlinear

R [−0.31; 0.09; 0.43] [0.40; 0.59; 0.75] [−0.31; 0.09; 0.43] [−0.31; 0.09; 0.43] [0.57; 0.66; 0.81]
S [−0.02; 0.01; 0.06] [0.18; 0.47; 0.84] [−0.21; −0.04; 0.06] [−0.02; 0.02; 0.06] [0.36; 0.45; 0.61]

Bias [−0.160; −0.070; −0.014] [−0.110; −0.027; 0.002] [−0.160; −0.070; −0.014] [−0.16; −0.070; −0.014] [−0.082; −0.023; 0.003]
uRMSE [0.110; 0.077; 0.061] [0.097; 0.068; 0.053] [0.110; 0.077; 0.061] [0.110; 0.077; 0.061] [0.081; 0.060; 0.047]

4.1.1. Daily Calibration

When doing a spatial validation in the daily calibration mode, the results obtained with the
nonlinear model are slightly better than the one obtained with the linear model in the case of Urgell
2011, whereas for Urgell 2015, the linear model performs better.

When comparing at the daily time scale, the linear model gives better correlation values than the
nonlinear model in the case of Urgell 2015, with an average value of 0.59 as opposed to 0.09. In the
case of Urgell 2011, the results are comparable: a mean of 0.12 (linear model) and 0.11 (nonlinear
model), with ranges of [−0.21; 0.44] and [−0.26; 0.49], respectively.

In the case of the slope of linear regression, the results are also similiar over Urgell 2011: a mean
of 0.05 (linear model) and 0.06 (nonlinear model). Nevertheless, the range of the nonlinear model
is slightly better than the range of the linear model: [−0.05; 0.25] as opposed to [−0.05; 0.14]. In the
case of Urgell 2015, the linear model is superior to the nonlinear model, with a mean slope of 0.47 as
opposed to −0.04.

Low values of bias have been obtained using both models. In the case of Urgell 2011, the values of
the mean bias is ∼−0.1 m3/m3 for both models, while for Urgell 2015, a lower mean bias is obtained
with the linear model: −0.027 m3/m3 as opposed to −0.070 m3/m3.

Low values of uRMSE have been registered, which in general are slightly lower when using the
linear model for both sites: a mean value of 0.066 for Urgell 2011 and 0.068 for Urgell 2015.

4.1.2. Yearly Calibration

When looking at the yearly calibration mode, the nonlinear model further improves the correlation
coefficient: a mean value of 0.17 is obtained for Urgell 2011 and 0.66 for Urgell 2015.
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The bias remains roughly the same, with a mean value ∼−0.010 m3/m3 for Urgell 2011 and
−0.023 m3/m3 for Urgell 2015, comparable with the values obtained with the linear model with a
daily calibration.

However, when comparing both models in all calibration modes, the nonlinear model in the yearly
calibration mode systematically improves the results. In the case of Urgell 2011, the range of correlation
coefficients is improved from [−0.26; 0.49] (nonlinear model, daily calibration) to [−0.23; 0.57]. In the
same manner, the higher end of the range of the slope of linear regression is also improved from 0.25
(nonlinear model, daily calibration) to 0.42. In the case of Urgell 2015, the range of the correlation
coefficient improves from [0.40; 0.75] (linear model, daily calibration) to [0.57; 0.81], while the lower
limit of the range of the slope of linear regression increases from 0.18 (linear model, daily calibration)
to 0.36.

In general, better correlations have been found for both the linear and nonlinear models on
sampling dates with larger spatial variability in the SM measurements. One such example is presented
in Figure 3, which shows a visual representation of the SMOS and DISPATCH SM (in linear mode
with daily calibration—current operational version of the algorithm, and in the nonlinear mode with
yearly calibration—the combination that yields the best results over the area). Results are shown
for DOY 196 (year 2011) and DOY 223 (year 2015). One can observe that compared to the SMOS SM,
both DISPATCH products better capture the spatial variability within the area, distinguishing between
the dryland and the irrigated area. Moreover, the variability is higher in the case of the nonlinear
model with a yearly calibration.

Figure 3. The SMOS and DISPATCH SM on DOY 196 (year 2011)—(a) and DOY 223 (year 2015)—(b).
DISPATCH SM is obtained using the linear SEE(SM) model with a daily calibration and the nonlinear
SEE(SM) model with a yearly calibration. The 1 × 1 km pixels within the sampling areas are also
shown (four 3 by 3 km sites for 2011 and three for 2015).

In the same manner as for Figure 3, Figure 4 shows the SMOS SM and the DISPATCH output
with respect to in situ measurements for DOY 196 (year 2011), while Figure 5 shows the SMOS SM
and the DISPATCH output with respect to in situ measurements for DOY 223 (year 2015). The error
bars present in the plots represent the standard deviation. It is reminded that the in situ dataset
corresponding to Urgell (collected by gravimetric measurements) was aggregated at a 1 km scale by
simple linear averaging, for the sampling days. The DISPATCH output presented corresponds to the
linear SEE(SM) model with the daily calibration mode, and to the nonlinear SEE(SM) model with the
yearly calibration mode.
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Figure 4. The SMOS and DISPATCH SM are plotted against 1 km aggregated Urgell in situ
measurements for DOY 196 (year 2011). The correlation coefficient (R) and slope of linear regression (S)
are also shown in each case.

Figure 5. The SMOS and DISPATCH SM are plotted against 1 km aggregated Urgell in situ
measurements for DOY 223 (year 2015). The correlation coefficient (R) and slope of linear regression (S)
are also shown in each case.

The correlation coefficient is improved from −0.54 (SMOS) to 0.44 (linear model, daily calibration)
and to 0.57 (nonlinear model, yearly calibration) for DOY 196 (year 2011), while the slope of linear
regression also increases from −0.01 to 0.14 and 0.43, respectively. In the case of DOY 223 (year 2015),
the correlation coefficient increases from −0.31 to 0.40 and 0.57, respectively, while the slope of linear
regression is improved from −0.02 to 0.18 and to 0.36, respectively.

Even though better correlations have been found on sampling dates with larger spatial variability
in the SM measurements, however, if the spatial variability is relatively large (due to the irrigated area),
the linear model is less effective than the nonlinear model, as the nonlinearity effects of the SEE(SM)
relationship become more apparent [65]. In terms of the slope of linear regression, [66] have shown
it is a good indicator of the efficiency of the downscaling technique. In our case, the slope of the
linear regression is systematically increased by the nonlinear model with the multi-date calibration,
indicating it disaggregates the SMOS SM in a more effective way than the other model-calibration
options. Another aspect to be taken into account is that the uncertainty in the downscaled SM when
using a daily calibration might be associated with uncertainty in the daily retrieved parameters.
This coupled with the nonlinear model being able to better capture the nonlinearity effects inherent to
the SEE might explain the better performance of the nonlinear model in the daily calibration mode
over Urgell 2011. In the case of Urgell 2015, the validation is performed over areas containing more
pixels in the irrigated zone, and there seems to be compensation effects in the case of the linear model
with the daily calibration, making it better suited than the nonlinear model with a daily calibration.
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4.2. Spatio-Temporal Validation

As mentioned at the beginning of Section 4, although the spatial validation is best suited to
analyze the performance of the disaggregation methodology, the measurements for Urgell only span
several days. Hence, we perform a temporal validation by adding two new sites: Algerri Balaguer
and MOR3. We also include Urgell 2011 and 2015 in the temporal validation. Statistical results in
terms of correlation coefficient, slope of linear regression, bias and unbiased root mean square error
(uRMSE) between satellite and in situ SM are reported in Tables 4–7 for Urgell 2011, Urgell 2015,
Algerri Balaguer and MOR3, respectively. In each case, DISPATCH is tested with the linear and
nonlinear modes, with both daily and multi-date calibrations. The sample size used in each analysis is
also mentioned.

Table 4. Correlation coefficient, slope of the linear regression, bias, unbiased RMSE (uRMSE) between
SMOS SM/DISPATCH SM and in situ data are reported, alongside the sample size used in the analysis.
DISPATCH is tested with the linear and the nonlinear modes, with the daily and multi-date calibration.

SMOS
Daily Calibration Yearly Calibration

Linear Nonlinear Linear Nonlinear

Sample size 10 231 231 231 231
R −0.29 0.27 0.31 0.02 0.54
S −0.04 0.10 0.13 0.00 0.36

Bias (m3/m3) −0.102 −0.101 −0.101 −0.101 −0.099
uRMSE (m3/m3) 0.102 0.094 0.093 0.100 0.079

Table 5. Same as Table 4, but for Urgell 2015.

SMOS
Daily Calibration Yearly Calibration

Linear Nonlinear Linear Nonlinear

Sample size 13 102 102 102 102
R 0.08 0.44 0.08 0.08 0.57
S 0.05 0.44 0.05 0.05 0.47

Bias (m3/m3) −0.079 −0.041 −0.079 −0.079 −0.031
uRMSE (m3/m3) 0.096 0.092 0.096 0.096 0.073

Table 6. Same as Table 4, but for Algerri-Balaguer.

SMOS
Daily Calibration Yearly Calibration

Linear Nonlinear Linear Nonlinear

Sample size 188 188 188 188 188
R −0.20 0.18 −0.08 −0.08 0.47
S −0.49 0.44 −0.14 −0.14 1.16

Bias (m3/m3) −0.138 −0.114 −0.153 −0.153 −0.063
uRMSE (m3/m3) 0.066 0.061 0.056 0.056 0.054

Table 7. Same as Table 4, but for MOR3.

SMOS
Daily Calibration Yearly Calibration

Linear Nonlinear Linear Nonlinear

Sample size 256 256 256 256 256
R 0.24 0.32 0.30 0.24 0.34
S 0.52 0.58 0.61 0.52 0.75

Bias (m3/m3) 0.005 −0.001 −0.002 0.005 −0.004
uRMSE (m3/m3) 0.032 0.028 0.031 0.032 0.032

Figures 6–9 show the SMOS SM and the DISPATCH output with respect to in situ measurements
for Urgell (2011 and 2015 time periods), Algerri-Balaguer and MOR3. In the same manner as for the
spatial validation, the in situ dataset corresponding to Urgell (collected by gravimetric measurements)
was aggregated at a 1 km scale by simple linear averaging, for the sampling days. The DISPATCH
output presented corresponds to the linear SEE(SM) model with the daily calibration mode, and to the
nonlinear SEE(SM) model with the yearly calibration mode.
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Figure 6. The SMOS and DISPATCH SM are plotted against 1 km aggregated Urgell in situ
measurements (for 2011).

Figure 7. The SMOS and DISPATCH SM are plotted against 1 km aggregated Urgell in situ
measurements (for 2015).

Figure 8. The SMOS and DISPATCH SM are plotted against measurements collected from sensors over
the Algerri-Balaguer region.
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Figure 9. The SMOS and DISPATCH SM are plotted against measurements collected from sensors over
the MOR3 region.

First, results are presented per calibration mode, and then a discussion will be performed.

4.2.1. Daily Calibration Mode

When analyzing the LR and HR SM values over the areas, DISPATCH improves the fine-scale
precision compared to the non-disaggregation case, regardless of the model and calibration.
When comparing the linear and the nonlinear models in the daily calibration mode, the nonlinear
model performs poorly in the case of Urgell 2015 (corroborating the results obtained for the spatial
validation) and Algerri Balaguer.

For Urgell 2011, correlation coefficients equal to 0.27 and to 0.31 (when using the linear and
nonlinear modes, respectively) are obtained, as opposed to −0.29 when comparing SMOS SM with
in situ data. In a similar manner, for Urgell 2015, the correlation increases from 0.08 (SMOS) to 0.44
(DISPATCH linear mode). In the case of the Algerri-Balaguer site, the correlation coefficient increases
from −0.20 (SMOS) to 0.18 (DISPATCH linear mode) and −0.08 (DISPATCH nonlinear mode).

The low correlation values obtained have prompted an analysis (not shown) of the Radio
Frequency Interference (RFI) in the SMOS products. Results have shown strong values of RFI in
the area of Algerri-Balaguer, which can have an impact on the results. Despite the fact that L3 SMOS
SM are RFI filtered [67], our analysis has shown that RFI effects might remain in the filtered products
that we use in our analysis as input to DISPATCH. As for the MOR3 site, the correlation increases from
0.24 (SMOS) to 0.32 and to 0.30 (DISPATCH linear and nonlinear modes, respectively).

The slope of the linear regression is also improved from −0.04 (SMOS) to 0.10 (linear mode) and
to 0.13 (nonlinear mode) for the Urgell region, 2011. For 2015, the slope was even further improved,
from 0.05 (SMOS) to 0.44 (linear mode). As mentioned in Section 2, the study areas in 2015 contain
two regions in the irrigated area and just one in the non-irrigated one, as opposed to two in 2011.
This could possibly explain the better performance in terms of slope obtained, as DISPATCH is well
suited to detect well rainfall or irrigation events. In the case of Algerri-Balaguer, the slope has increased
from −0.49 (SMOS) to 0.44 (linear mode) and −0.14 (nonlinear mode), respectively. As for MOR3,
the slope has increased slightly from 0.52 (SMOS) to 0.58 and 0.61 (linear and nonlinear modes).

In terms of bias, the values remain similar over Urgell, around −0.100 m3/m3 for the 2011 period.
For the 2015 period, the bias slightly decreases from −0.079 m3/m3 (SMOS and DISPATCH nonlinear
mode) to −0.041 m3/m3 (linear mode). In the case of Algerri-Balaguer, the bias was slightly reduced
from −0.138 m3/m3 (SMOS) to −0.114 m3/m3 (linear mode).

As for the Moroccan site, very low bias values have been obtained. This might be explained by the
fact that the in situ SM values are very low, as the location of the sensor is close to a desert area. In this
area, what SMOS might pick up could be mostly the instrument noise, with a low reported value.

The uRMSE for Urgell 2011 and 2015 report roughly the same value: 0.092–0.102 m3/m3. For the
Algerri-Balaguer region, the uRMSE obtained is roughly around 0.060 m3/m3 in all cases. As for
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MOR3, very low values are obtained, around 0.030 m3/m3, for SMOS and DISPATCH linear/nonlinear
modes. The low values are explained by the low values of the in situ measurements and of SMOS SM
registered over the area.

4.2.2. Yearly Calibration Mode

When comparing the linear and nonlinear models in the yearly calibration mode, the nonlinear
model outperforms the linear one. In fact, it gives the best results amongst all model-calibration
mode combinations.

Correlations are improved with the nonlinear model to 0.54 for Urgell 2011 and to 0.57 for Urgell
2015. An improvement is also seen for Algerri-Balaguer, obtaining a 0.47 correlation coefficient,
as opposed to -0.08 obtained in the linear mode. A similar correlation coefficient as the ones obtained
with the daily calibration mode is obtained for MOR3 with the nonlinear model, 0.34.

The highest slope of linear regression, for all sites, is obtained with the nonlinear model:
0.36 (Urgell 2011), 0.47 (Urgell 2015), 1.16 (Algerri-Balaguer) and 0.75 (MOR3), values which are
also better than the ones obtained with the daily calibration mode.

In terms of bias, lower values are obtained with the nonlinear model: −0.031 m3/m3 as opposed
to −0.079 m3/m3 (Urgell 2015), −0.063 m3/m3 as opposed to −0.153 m3/m3 (Algerri-Balaguer).
These values also correspond to the lowest values obtained for the respective sites out of all
registered values.

Lower values of uRMSE are obtained by using the nonlinear model, with values remaining
roughly between 0.030–0.070 m3/m3.

Besides its capability of better capturing the nonlinearity effects inherent to the SEE(SM)
relationship, the nonlinear model with a multi-date calibration performs better than with the daily
calibration mode. This can be attributed to the temporal dynamics of the MODIS-observed SEE
used to calibrate the nonlinear model being better suited to characterize the SMc parameter in
Equation (5). This renders the results more robust, a fact corroborated by the slope of the linear
regression systematically improving. In the case of the linear mode, the uncertainties in the retrieved
daily SMp parameter in Equation (3), which can be partly due to variations in the SEE and/or errors
in the SMOS SM, seem to propagate in the multi-date calibration, as SMp is set to the average of
daily SMp values. Small uncertainties in the model parameterization may have a large impact on
the predictions, which could partly explain the poor results obtained with the linear mode with a
multi-date calibration. This is not as evident when using the linear model on a daily scale, since there
seem to be significant compensation effects between daily SEE and daily SMp variations.

4.3. General Discussion

Two types of validations have been performed: a spatial validation and a spatio-temporal
validation. In terms of spatial validation, DISPATCH clearly captures the spatial variability within
the Urgell study area, distinguishing between the dryland and irrigated areas. The nonlinear model
with a multi-date calibration systematically performs better than any other. In the case of Urgell 2011,
the range of correlation coefficients is improved from [−0.26; 0.49] (nonlinear model, daily calibration)
to [−0.23; 0.57]. In the same manner, the higher end of the range of the slope of linear regression is also
improved from 0.25 (nonlinear model, daily calibration) to 0.42. In the case of Urgell 2015, the range of
the correlation coefficient improves from [0.40; 0.75] (linear model, daily calibration) to [0.57; 0.81].

Looking at the temporal validation, when comparing the daily versus multi-date calibration
methodologies, the linear model performs better with the daily mode in the case of Urgell 2015
(corroborating the results obtained for the spatial validation), while the nonlinear model performs
better with the multi-date mode. This might be explained by the fact that the nonlinear model is
more sensitive to daily changes, while the linear one proves to be more robust. This is consistent with
previous studies that have recommended the use of the linear model for DISPATCH applications at
1 km resolution [15,18,48]. In the multi-date mode however, the nonlinear model outperforms the
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linear model. When comparing the linear and the nonlinear modes, one can conclude that the nonlinear
SEE model, with a multi-date calibration, significantly improves the correlation coefficient and the
slope of the linear regression, as well as improving (even if slightly), or maintaining, the other statistical
parameters. For example, the slope is improved from −0.14 to 1.16 over Algerri-Balaguer, while the
correlation coefficient increases from −0.08 to 0.47. The values of the uRMSE are systematically
lower, regardless of the study area, when using the nonlinear model with a multi-date calibration.
Better results are reported in nonlinear mode with multi-date calibration than in linear mode. In fact,
in the nonlinear mode, the partial derivative of SM with respect to SEE is diminished in the lower SM
ranges and increased in the higher SM ranges. This entails an overall better precision and accuracy of
the corresponding disaggregated products when compared to the in situ measurements. In particular,
a small derivative in the lower SM ranges means that the 1 km SM data is approximately equal to the
LR SM. In [18], a comparison has also been made at HR (∼100 m) resolution between the linear model
and a different nonlinear model (with a daily calibration), and it was concluded that the nonlinear
model is a more adequate choice as it increases the slope of the linear regression between downscaled
products and in situ measurements, thus improving the spatial representativeness of SM. The rationale
is that the range of SM values within an LR pixel generally increases with the target spatial resolution,
and that the nonlinearity effects are more prominent for larger SM spatial variabilities.

An important aspect to mention is the negative values of disaggregated SM when using the
nonlinear SEE(SM) model in the downscaling relationship. If we assume that the disaggregation is
efficient, then this could point out that SMOS underestimates SM in very dry areas (with SM close
to zero). Various calibration and validation studies of SMOS SM products have reported a negative
bias [68–71]. The bias in the retrieved SM is inflicted by biases in the brightness temperatures,
which could be provoked by the RFI for instance. According to [72], a positive bias in the observed
brightness temperature would imply a negative bias in the SM products. Since SMOS SM is used
when calibrating the SMc parameter, the parameter retrieval is also affected by the negative bias.
The downscaled SM data obtained in the nonlinear mode is thus affected by both potential biases in
the retrieved SMc values, as well as the negative bias in SMOS data.

It is satisfying to observe that a nonlinear representation of SEE, which is widely acknowledged
by a number of in situ and modeling studies, provides systematic better results in terms of
SEE-based disaggregation. The key, however, is to develop a calibration strategy adapted to the
multi-sensor/multi-resolution data, to their respective uncertainty and to the nature of the model
used. Note that the multi-date calibration of each model can be applied over any given period of
time, it does not have to be one year only as in our study. However, the multi-date calibration
implies a certain latency in the DISPATCH products. In the case of the linear model with a multi-date
calibration, the SMp parameter is calibrated as the average of daily SMp values (as previously stated).
This implies DISPATCH has to be first run in the daily mode in order to obtain daily SMp values.
Similarly, the nonlinear model is calibrated on a muli-date basis using daily SEELR data. This also
implies DISPATCH has to be first run in daily mode in order to obtain these datasets. Nevertheless,
in the case of the nonlinear model, it has been shown that a multi-date calibration proves to be more
robust than a daily calibration. Future studies can study the impact of the window considered for the
calibration. In fact, choosing a model is also driven by the calibration strategy that can be afforded by
this model using the data available at the application scale.

5. Summary and Conclusions

DISPATCH provides 1 km resolution SM data from 40 km resolution SMOS and 1 km resolution
MODIS data by combining MODIS-derived SEE estimates at HR and a SEE(SM) model implemented
at LR. The SEE model is self-calibrated from MODIS and SMOS data alone. In the current DISPATCH
version, the SEE(SM) model is calibrated at a daily scale from quasi-simultaneous MODIS and SMOS
observations by assuming a linear SEE representation.
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This paper introduces a nonlinear SEE(SM) model in the downscaling relationship.
Two calibrations are tested for each SM-based SEE model: on a daily basis and on a multi-date basis.

The approaches are tested by comparing the disaggregated SM values with in situ measurements
over two mixed dry and irrigated areas in Catalonia (Spain)—spanning 2011 and 2015 (Urgell area)
and 2017–2018 (Algerri-Balaguer), and over a dry area in Morocco (MOR3) in 2016–2017. Two types of
validations are performed: a spatial validation and a spatio-temporal validation.

When comparing the two models in the daily calibration mode (both for the temporal as well as the
spatial validation), the linear model gives better results in the case of Urgell 2015, improving the slope
of linear regression, correlation coefficient and bias values. The correlation coefficient is equal to 0.44
(temporal validation), while the slope of the linear regression is increased to 0.44 (temporal validation).

The integration of a nonlinear SEE(SM) model with a multi-date calibration systematically
improves the statistics over all sites (for both the spatial and the temporal validation). The temporal
correlation is increased to 0.57 and 0.47 for Urgell 2015 and Algerri-Balaguer, while the slope of
linear regression is 0.47 and 1.16, respectively. The introduction of a nonlinear model with multi-date
calibration systematically lowers the values of the uRMSE, regardless of the study area.

The low correlations obtained over all Spanish sites could also partly be explained by some small
RFI (Radio Frequency Interference) sources detected within the area. An analysis of the SMOS products
was performed over the Spanish sites and it has shown high values of RFI. This leads to erroneous
measurements by SMOS, which propagates in the downscaled products, regardless of the SM-based
SEE model and of the calibration used.

Keeping in mind that the calibration strategy is to be adapted to the multi-sensor/multi-resolution
data and to the SEE(SM) model used, the nonlinear SEE(SM) model has proven to perform significantly
better under various conditions, with more robust disaggregated SM products being obtained.

The SEE modeling based on the nonlinear SM model, with a multi-date calibration, could be
integrated into the CATDS—Centre Aval de Traitement des Données SMOS [15] as a future new
product, into existing evapotranspiration models, which are based on a combination of thermal and
microwave data [73,74], as well as into a new stepwise disaggregation approach using DISPATCH at
an intermediate spatial resolution [65].
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