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Abstract: Time series analysis of Sentinel-1 SAR imagery made available by the Google Earth
Engine (GEE) is described. Advantage is taken of a recent modification of a sequential complex
Wishart-based algorithm which is applicable to the dual polarization intensity data archived on
the GEE. Both the algorithm and a software interface to the GEE Python API for convenient data
exploration and analysis are presented; the latter can be run from a platform independent Docker
container and the source code is available on GitHub. Application examples are given involving
the monitoring of anthropogenic activity (shipping, uranium mining, deforestation) and disaster
assessment (flash floods). These highlight the advantages of the good temporal resolution resulting
from cloud cover independence, short revisit times and near real time data availability.
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1. Introduction

The Sentinel-1a and -1b Synthetic Aperture Radar (SAR) satellite platforms, with spatial
resolutions as low as 20 meters depending on acquisition mode, combined revisit times of the
order of six days and complete independence from solar illumination and cloud cover, provide
an attractive source of Earth observation data for change detection tasks. The Google Earth Engine
(GEE) [1,2] includes, in its extensive and up-to-date archive, Sentinel-1 data in dual polarization
(vertical transmission and vertical and horizontal reception over land surfaces) multi-look intensity
format. The GEE makes available not only near real time data access but also a very powerful
application programming interface (API) for processing and visualizing the data. The GEE API is
presently written in JavaScript for direct interaction with the web-based GEE Code Editor and in Python
for data analysis outside the GEE web environment. Relatively little work [3] has been published
till now involving the use of the GEE’s Sentinel-1 archive for change detection. Since single look
complex (SLC) data are not included in the archive for technical reasons, commonly used iterferometric
coherence methods are unavailable. Change detection with GEE Sentinel-1 imagery in forest land cover
based on Otsu thresholding [4] and K -means clustering is investigated in [5]. The use of multitemporal
SAR for automated monitoring of coastal structures with the COSMOS-SkyMed platform is described
in [6], and in [7] long-term flood monitoring in Greece is investigated with time series involving a
combination of COSMO-SkyMed, Sentinel-1 and Landsat 8 imagery.

In their original publication on polarimetric SAR data analysis, Conradsen et al. [8] introduced
a change detection procedure for multi-look SAR data involving a test statistic for the equality of
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polarimetric covariance matrices assumed to follow a complex Wishart distribution. The procedure
is capable of determining, on a per-pixel basis, if a change at any prescribed significance level has
occurred in two SAR images. Single polarization (power data, dimensionality p = 1), dual polarization
(for example vertically polarized transmission, vertical and horizontal reception, p = 2) and full or quad
polarimetric data (all four combinations of vertical and horizontal transmission/reception, p = 3) can be
analyzed with this method. More recently [9,10] the procedure was extended significantly to deal with
multi-temporal polarimetric SAR data in order to determine the points in time at which change occurs
by applying omnibus tests and their factorizations. These latter publications describe test statistics
and their distributions for time series of full (2 × 2 or 3 × 3) covariance matrices. For alternative
approaches to polarimetric SAR change detection, see [11,12].

The GEE Sentinel-1 intensity data can only be cast into 2 × 2 covariance matrix format without
the complex off diagonal elements, as these are not available in the archive. Since the diagonal
form is not Wishart distributed, the originally developed algorithms are not immediately applicable.
This restriction was removed in [13] where the theory was extended to include covariance matrices in
block diagonal form, the GEE data being a special case. In addition, an interpretation of direction of
change based on the so-called Loewner order was recently added to the method [14,15].

In this contribution we first describe briefly, in Section 2 below, the relevant aspects of the
multi-temporal Wishart-based change detection algorithm, with emphasis on the dual polarization,
diagonal only covariance matrices. In Section 3, details of the analysis software (available on GitHub)
are given, including a platform independent graphical interface for convenient data exploration and
generation of change maps. Then in Section 4 we present some examples intended to demonstrate the
advantages of the algorithm’s application to long time series of SAR imagery extracted from the GEE
archive. Some conclusions are drawn in Section 5 and a critical discussion is given in Section 6.

2. Theory

The observed fully polarimetric SAR signals, when expressed in covariance matrix form and
multiplied by the (equivalent) number of looks, are complex Wishart distributed for fully developed
speckle. This distribution is the multivariate complex analogue of the chi squared distribution and is
completely determined by the dimensionality p, the equivalent number of looks n, and Σ, the complex
variance-covariance matrix. In a time series of k observations Σ̂i of the covariance matrix, the likelihood
ratio test statistic Q for rejecting the null hypothesis that all observations were sampled from the same
distribution (no-change hypothesis) in favour of the alternative that at least one change occurred is
given by [9]

ln Q = n
(

pk ln k +
k

∑
i=1

ln |X i| − k ln
∣∣∣ k

∑
i=1

X i

∣∣∣), (1)

where X i = nΣ̂i. This is referred to as an omnibus test. The expression | · | denotes determinant.
The probability of finding a smaller value of −2ρ ln Q than an observed value z can then be shown to
be approximately

Pr(−2ρ ln Q ≤ z) ' Pr(χ2( f ) ≤ z) + ω2
(
Pr(χ2( f + 4) ≤ z)− Pr(χ2( f ) ≤ z)

)
, (2)

where χ2( f ) is the chi square probability distribution with f degrees of freedom and where the
parameters f , ρ and ω2 are determined by p, n and k. For the GEE Sentinel-1 imagery, the diagonal-only
covariance matrix is not Wishart distributed, however the test statistic Q is still given by Equation (1)
but with special values for the parameters f , ρ and ω2, see [13] for the details.

The omnibus test statistic Q can be factored into a sequence of test statistics Rj for null hypotheses
of the form H0,j : Σ1 = Σ2 = · · · = Σj−1 = Σj against the alternative H1,j : Σ1 = Σ2 = · · · = Σj−1 6=
Σj, thus testing whether the first change occurred between the (j− 1)th and jth observations, j = 2 . . . k.
The likelihood ratio test statistic Rj is given by
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ln Rj = n
(

p(j ln j− (j− 1) ln(j− 1)
)
+ (j− 1) ln

∣∣ j−1

∑
i=1

X i
∣∣+ ln |X j| − j ln |

j

∑
i=1

X i|
)

(3)

and Q = ∏k
j=2 Rj. Furthermore the statistics Rj are stochastically independent under the null

hypothesis. Similarly to the omnibus test statistic, the approximate probability distribution of
−2ρj ln Rj is given by

Pr(−2ρj ln Rj ≤ z) ' Pr(χ2( f ) ≤ z) + ω2j
(
Pr(χ2( f + 4) ≤ z)− Pr(χ2( f ) ≤ z)

)
.

The quantities f , ρj and ω2j are functions of p, n and j again with particular values for the GEE
diagonal-only covariance matrices [13].

Rejection of the null hypothesis for a particular time interval signals a change, but says nothing
about the nature of that change. In [14] a characterization of significant change is suggested based on the
Loewner order [16], which calculates the definiteness of the difference between the covariance matrices
at successive times. Changes are thus classified as positive definite, negative definite or indefinite.

3. Materials and Methods

Software for the sequential SAR change detection algorithm described in the preceding section
is provided in Matlab (https://people.compute.dtu.dk/~alan/software.html) and in Python (https:
//mortcanty.github.io/CRC4Docker/), see also [17]. An additional Python implementation written
specifically against the GEE Python API is available on GitHub (https://github.com/mortcanty/
EESARDocker) and runs in a Docker container serving Jupyter notebooks to the user’s local browser.
The pre-built Docker image can be pulled and run directly from Dockerhub and is platform
independent. Since the algorithm runs on the GEE servers, the client-side requirements are light
and a Raspberry Pi Docker image is also available. Installation instructions are given in the Github
ReadMe file.

Let the index ` denote subsequences of the images Imj beginning with the `th image in the time
series and ending with the last, that is,

` = 1 : {Im1, Im2, Im3, . . . Imk}
` = 2 : {Im2, Im3, . . . Imk}

` = k− 1 : {Imk−1, Imk}.

Denote with Q` and R`
j the test statistics associated with the `th subsequence, see Equations (1)

and (3). The evaluation strategy for the GEE API is to pre-calculate, for each realization (observation)
z`j of −2ρj ln R`

j , an array of associated p-values

p`j = 1− Pr(−2ρj ln R`
j ≤ z`j ), j = 2 . . . k− `+ 1, ` = 1 . . . k− 1,

and, for realizations y` of −2ρ ln Q`, the p-value array

p` = 1− Pr(−2ρ ln Q` ≤ y`) ` = 1 . . . k− 1.

The arrays are calculated via nested iterations over the subsequences.
In a second iteration step a change map is generated by testing the p-values against the desired

significance level. The p`j-values are only tested within a subsequence if the p-value p` rejects the
null-hypothesis for the entire subsequence (the omnibus test). This guarantees a fixed false positive
probability for all registered changes. If, for a given pixel location, p`j rejects the null hypothesis,
the change map is updated correspondingly and the iteration continues on the subsequence Imj, . . . Imk.
This allows registration of successive changes at a single pixel location, at a spatial resolution of 20 m
for the Sentinel-1 data. In a third and final iteration the average covariance matrix over the no-change

https://people.compute.dtu.dk/~alan/software.html
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observations up to but not including the time of a change is accumulated with the provisional means
method, see e.g., [17]. This average is subtracted from the covariance matrix immediately following
the signaled change and the positive/negative definiteness (or indefiniteness) of the difference is
ascertained to establish the Loewner order. (In [14,15] the opposite convention is adopted: the matrix
following change is subtracted from the average prior to change). A particularly efficient method
involving matrix pivots [15] is applied which avoids determining, in the case of full (2× 2) and (3× 3)
covariance matrices, the eigenvalues of the complex matrix differences.

A Jupyter notebook (https://jupyter.org/) included with the software displays a simple and
convenient graphical interface (Figure 1) allowing easy data exploration of the entire GEE Sentinel-1
archive together with the previewing of change results. Provision is also made for processing the user’s
own image collections that have been uploaded to the GEE, e.g., Radarsat-2 quad pol or Sentinel-1 full
dual pol data. Change maps and selected spatial subsets of the images can be exported to the user’s
assets on the GEE Code Editor or to his or her Google Drive. Detailed instructions are included in a
text cell in the notebook.

Figure 1. Screenshot of the Jupyter notebook graphical interface showing the collection of a time series
of Sentinel-1 images over the town of Jülich, Germany. See text for details.

4. Results

One of the characteristics of the sequential omnibus algorithm when applied to long time series is
its ability to pinpoint regions of high anthropogenic activity. Figure 2 is a color-coded change map of
the total number of significant changes in a sequence of 74 Sentinel-1 images over the NATO Airbase
near Geilenkirchen, Germany, acquired from January 2018 through June 2019. The aircraft movements
to and from their parking positions on the tarmac are emphasized. Similar observations of frequent,

https://jupyter.org/
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localized changes are the subject of the first two examples discussed in the following. The other
examples involve flood monitoring and deforestation. For investigations of wetlands monitoring with
the complex Wishart omnibus method both in full dual polarimteric form as well as with GEE imagery,
see [3,18].

Figure 2. Color coded change frequency map for 74 Sentinel-1 images over the NATO airbase near
Geilenkirchen, Germany. Dark blue indicates few changes, orange many changes. Map data: c©2019
GeoBasis-DE/BKG.

4.1. Libyan Maritime Port Activity

In part due to the refugee crisis in the Mediterranean and also because of political instability,
ports along the coast of Libya have been the subject of recent attention, many of them having been
closed periodically to international traffic. Arrivals and departures of large sea vessels are easily
recorded with the algorithm, as can be seen for example from Figure 3 for the port of Tripolis. Positive
definite significant differences (arrivals) are in red, negative definite (departures) in green. The number
of detected events represents a lower bound on the vessel movements; a single vessel arrival/departure
within a six-day interval between consecutive acquisitions will go undetected.

According to marine insurer North P&I Club, (http://www.nepia.com/insights/industry-news/
status-of-libyan-ports-starupdatestar/) the Libyan Ministry of Transport closed the port of Tobruk
from 27 October 2017 until 22 February 2018, although the nearby oil terminal at Marsa Elhariga
remained open. By setting polygons around the two jetty berths at the oil terminal (Figure 4) and
measuring the fraction of changed pixels within them, tanker activity was monitored from January
2017 through June 2019, see Figure 5. Two arrivals were recorded during the closure period, namely in
the intervals ending 12 December 2017 and 29 January 2018.

One further example: The port of Benghazi was closed in the first part of 2017, reopening on
5 October 2017. This is confirmed in the chart of Figure 6.

http://www.nepia.com/insights/industry-news/status-of-libyan-ports-starupdatestar/
http://www.nepia.com/insights/industry-news/status-of-libyan-ports-starupdatestar/
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Figure 3. Port of Tripolis: First four change maps of 68 in all covering the period 7 May 2018 through 7
June 2019 at six-day intervals. The background is a Sentinel-2 image acquired within the time interval.
Changes are shown for a multi-polygon region of interest chosen to exclude noise from water surfaces.
The color indicates the Loewner order: red: positive definite, green negative definite.

Figure 4. The oil terminal at Marsa Elhariga, Libya, with region of interest polygons on the tanker jetty
docks. Map data c©Google Maps, DigitalGlobe.
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Figure 5. Fraction of positive definite changes (vessel arrivals) within the polygons of Figure 4.

Figure 6. Fraction of positive definite changes (vessel arrivals) at the main docks of the port of Benghazi,
January 2017 through June 2019.

4.2. Arms Control and Verification of Non-Proliferation

In the context of international treaties on nuclear non-prolifieration, satellite sensors can be used
to monitor peaceful nuclear fuel cycle activities, especially to detect undeclared activity at sites which,
due to their remoteness, are not easily subject to regular on-site inspection. We first consider an
example of a declared, operational uranium site, the McArthur River Uranium Mine in northern
Saskatchewan, Canada, see Figure 7. A change profile for the core site can be seen in Figure 8. It is
evident that changes are occurring throughout the observation time interval. This is contrasted with
a similar profile for the decommissioned Cluff Lake mining site (Figure 7), also located in northern
Saskatchewan. This mine ceased uranium production at the end of 2002 when the ore reserves were
depleted. Apart from the two spikes in June and early August, much less activity is evident in its
change profile. By observing the spatial distribution of change pixels, the spikes can be attributed to
environmental changes, most probably in ground moisture following precipitation.
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Figure 7. Polygon regions of interest on the Mcarthur River (left) and Cliff Lake (right) Uranium mines.

Figure 8. Fraction of changes at the Mcarthur River (top) and Cluff Lake (bottom) Uranium mines
during the spring/summer months of 2017, see Figure 7.
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4.3. Flood Monitoring

SAR imagery, because of its insensitivity to cloud cover, can often complement rapid response
disaster management procedures, typically in situations involving sudden, large scale flooding.
However many of the water detection methods proposed in the literature using reflected SAR radar
signals require a considerable amount of user intervention. For example [19] gives an overview of
the variety of radar signal/water surface interactions in flooded areas that must be accounted for.
These depend on wavelength, polarization, incidence angle, wind/wave conditions, presence of
partially flooded vegetation or man-made structures, etc. A recent example of the use of Sentinel-1
SAR imagery for flood monitoring and integration of results into rapid response concepts is given
in [20].

In some cases, short-period change detection with polarimetric SAR may offer a simpler alternative
to water detection/classification methods. Sudden wide-spread inundation will generally lead to a
significant change in the polarimteric matrices characterizing the reflected signal. If the observation
interval is short enough, most of the observed changes will be attributable to flooding, and afflicted
areas quickly identified.

Cyclone Idai, recorded as the worst weather-based event to ever occur in the southern hemisphere,
made landfall near the city of Beira, Mozambique on 15 March 2019 causing widespread inundation
in Mozambique and Tanzania and a death toll of more than 1300. Figure 9 shows a sequence of six
change maps generated with a GEE time series of Sentinel-1a and Sentinel-1b images. The reduction of
reflectance from the water surfaces in both the VV and VH bands corresponds to a negative definite
covariance matrix difference (green pixels, center left), the rapid receding of flood waters to a positive
definite change (red pixels, center right).

A similar series of change maps is shown in Figure 10 for Golestan province, Iran, where from
mid-March to April, 2019 widespread flash flooding affected large parts of the province. Here again
one sees the initial flooding (green) followed by receding water (red), clearly delineating the areas
most seriously affected.
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Figure 9. Buzi district, Mozambique: Six change maps of 15 in all for 16 images covering the period
1 January 2019, through 7 June 2019. Each image has an area of approximately 3000 km2. The gray
scale background is the temporal average of the VV band of all 16 images. The maps, read top to
bottom, left to tight, are for the intervals 18 April–2 March, 2–14 March, 14–20 March, 20–26 March,
26 March–1 April and 1–7 April. Positive definite changes are red, negative definite green and
indefinite yellow.
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Figure 10. Golestan province, Iran, over the town of Aq Qala. Four change maps of 15 in all covering
the period 4 January 2019, through 21 June 2019 are shown. From top to bottom, left to right: March 5
to 17, March 17 to 29, March 29 to April 10, April 10 to 22. Each image covers an area of approximately
25× 25 km2. The gray scale background is the temporal average of the VV band of all 16 images.

4.4. Clear Cut Logging

Another common application for satellite Earth observation is deforestation assessment/control,
not only in the Amazon rain forest, but elsewhere. For a multi-sensor and multi-temporal approach to
deforestation monitoring see for example [21].

Logging, and especially clear cutting, in Canadian boreal and temperate rain forests [22] continues
to be controversial, with the last few percent of remaining old growth under threat. For example in the
Nahmint Valley near Port Alberni, Vancouver Island, centuries-old red cedar and Douglas fir trees
are still being cut down. Figure 11 shows two Sentinel-2 acquisitions from September, 2017 and June,
2018, where three new clear cuts are visible. A corresponding change map in Figure 12 obtained from
a series of 33 Sentinal-1 images from September, 2017 through September, 2018 confirms that the clear
cuts can be easily located, both geographically and temporally, by the sequential omnibus method.
In [23] an investigation of ALOS-PALSAR polarimetric radar reflectance from reference forest stands
and clear cuts in Swedish forests indicates a significant reduction in intensity in the HH and HV bands
after cutting. Although this is for L-band, this might be expected to correspond to similar reductions in
the VV and VH bands for the GEE Sentinel-1 C-band data, or equivalently to a negative definite change
direction. This is confirmed in Figure 13, which also indicates that the bulk of harvesting occurred
within just two consecutive 12-day intervals in December, 2017.
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Figure 11. Color composite Sentinel-2 images (RGB = spectral bands 8, 3 and 2) northeast of Nahmint
Lake, Vancouver Island, acquired 21 September 2017 (left) and 18 June 2018 (right). The long axes of
the three fresh cuts range from 300 m to 600 m in length.

Figure 12. Color-coded change map derived from a time series of 33 Sentinel-1 images from the GEE
archive over the area of Figure 11. The colors indicate the time of the most recent change: early dark
blue, late orange. The series covers the period 7 September 2019 to 26 September 2018. Cutting took
place within a short period early in the time series (blue pixels), see Figure 13. Background map
data c©MapBox.
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Figure 13. Fraction of positive definite change pixels (top) and negative definite change pixels (bottom)
in a multi-polygon enclosing the three clear cuts of Figure 11.

5. Conclusions

We have described the fusion of a statistically sound sequential change detection method with
the power, convenience and vast data resources of the Google Earth Engine platform. Long time series
of pre-processed dual polarization SAR imagery from the GEE archive from all over the globe can
be easily accessed and quickly analyzed in a convenient graphical environment. Several illustrative
examples were discussed. The software, including source code, is documented and freely available to
anyone registered as a GEE user.

6. Discussion

Although we feel that they are outweighed by the advantages mentioned in the preceding
Section, there are some drawbacks in the methodology that should be pointed out, and some possible
suggestions for future work:

• First of all, and most significantly, the sequential omnibus tests on the GEE are carried out at
the nominal scale of the archived Sentinel-1 data (10 m). This is because of the dependence of
the Wishart distribution on the equivalent number of looks (ENL). Confining analysis to a single
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scale precludes leveraging one of the great advantages of the Earth Engine, namely up-scaling
to very large geographical regions. One way to mitigate this in future might be to download
representative images with well-developed speckle statistics at different scales and then estimate
the ENL values off-line, e.g., with the methods given in [24]. Then those values could be hard
wired into the GEE code to allow running the algorithm at coarser scales and on larger scenes.

• The change detection algorithm is purely data driven and unsupervised: The physical cause of
detected changes must be inferred from the context. Here, the Loewner order discussed in the
text can offer additional information.

• It is our experience that very long time series, typically 75 images or more, can lead to stack
overflow on the GEE servers. With typically a 6-day temporal resolution this still allows well over
a year of continuous observation at any given location.

• The diagonal-only dual polarization matrix format necessitates resorting to the block diagonal
version of the algorithm as discussed in the theory section and in [13]. It would be desirable to
have access to the full 2× 2 dual polarization matrix. We understand that the GEE developers
are considering ways to ingest single look complex (SLC) Sentinel-1 imagery, which would solve
this problem: The multi-look dual polarization matrix format could then be constructed from the
SLC data.

• The GEE archive is updated very quickly, the Sentinel-1 images are available within a few days
of acquisition. But for timely disaster assessment this may not be good enough. Thus the tools
described here will be useful only in situations which are not extremely time critical.

Comparison of the performance of our methodology with other approaches cited here, for example
using confusion matrices or ROC curves, presupposes the availability of reliable ground reference
data. Such information is often very hard or even impossible to come by, especially in disaster
assessment situations where remote sensing data are perhaps the only data source available to assess
changes/damages. We have however made considerable effort to provide the computer software tools
in a form (Docker container) which guarantees reproducibility, verifiability and ease of use in any field
of application for which multi-temporal polarimetric SAR change detection is considered to be useful.
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