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Abstract: Accurately mapping burned areas is crucial for the analysis of carbon emissions and wildfire
risk as well as understanding the effects of climate change on forest structure. Burned areas have
predominantly been mapped using optical remote sensing images. However, the structural changes
due to fire also offer opportunities for mapping burned areas using three-dimensional (3D) datasets
such as Light detection and ranging (LiDAR). This study focuses on the feasibility of using photon
counting LiDAR data from National Aeronautics and Space Administration’s (NASA) Ice, Cloud,
and land Elevation Satellite-2 (ICESat−2) mission to differentiate vegetation structure in burned and
unburned areas and ultimately classify burned areas along mapped ground tracks. The ICESat−2
mission (launched in September 2018) provides datasets such as geolocated photon data (ATL03),
which comprises precise latitude, longitude and elevation of each point where a photon interacts with
land surface, and derivative products such as the Land Water Vegetation Elevation product (ATL08),
which comprises estimated terrain and canopy height information. For analysis, 24 metrics such as
the average, median and standard deviation of canopy height were derived from ATL08 data over
forests burned by recent fires in 2018 in northern California and western New Mexico. A reference
burn map was derived from Sentinel−2 images based on the differenced Normalized Burn Ratio
(dNBR) index. A landcover map based on Sentinel−2 images was employed to remove non-forest
classes. Landsat 8 based dNBR image and landcover map were also used for comparison. Next,
ICESat−2 data of forest samples were classified into burned and unburned ATL08 100-m segments by
both Random Forest classification and logistic regression. Both Sentinel−2 derived and Landsat 8
derived ATL08 samples got high classification accuracy, 83% versus 76%. Moreover, the resulting
classification accuracy by Random Forest and logistic regression reached 83% and 74%, respectively.
Among the 24 ICESat−2 metrics, apparent surface reflectance and the number of canopy photons
were the most important. Furthermore, burn severity of each ATL08 segment was also estimated with
Random Forest regression. R2 of predicted burn severity to observed dNBR is 0.61 with significant
linear relationship and moderate correlation (r = 0.78). Overall, the reasonably high accuracies
achieved in this study demonstrate the feasibility of employing ICESat−2 data in burned forest
classification, opening avenues for improved estimation of burned biomass and carbon emissions
from a 3D perspective.
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1. Introduction

Wildfire related risk and damage have increased over the past three decades [1], causing threats
to ecosystem function and human society. Currently, global warming and extreme droughts are
contributing to increased wildfire activities [2]. Increased wildfires in return cause more warming
effects through quick release of carbon sequestered in terrestrial ecosystems [3]. Wildfires play
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important roles in ecosystem succession, biogeochemical cycles and climate change. Thus, accurately
mapping burned areas, serving as the basic step for wildfire management, is crucial for the analysis of
carbon emissions and fire risk as well as understanding the effects of climate change on ecosystems.

Remotely sensed images have been used for mapping burned areas for decades [4,5]. Fire-induced
changes such as vegetation removal, structure alteration and charcoal deposition all cause spectral shift
that enable multispectral remote sensing techniques to be applied. To be specific, notable responses
are observed in Near infrared (NIR) (decrease) and shortwave infrared (SWIR) bands (increase) [6].
Classification techniques like logistic regression [7] and object-based classification [8] have been proven
to be effective in capturing spectral features of burned regions. Spectral indices like Normalized Burn
Ratio (NBR) index [9] and differenced Normalized Burn Ratio (dNBR) index [10] are also commonly
used to create burned maps. With improved availability of multitemporal remote sensing imagery,
burned areas have also been mapped using time series analysis. Hawbaker et al. [11] produced long
term burn area products in the conterminous United States with Landsat images. Roteta et al. [12] also
used time series of Sentinel−2 A images to map burned areas in sub-Saharan Africa and the accuracy
was claimed to be higher than that of the MODIS global fire product (MCD64 A1). However, remote
sensing images are limited in capturing the three-dimensional (3D) vegetation structure, which makes
it difficult to obtain under canopy fire information and canopy height measurement [13]. To provide
more accurate estimation of fire severity, terrestrial carbon storage and biomass emissions, methods
based on 3D data are essential to complement existing image-based approaches [14,15].

Light detection and ranging (LiDAR) offers an effective way of producing 3D structures, which has
previously been applied for mapping burned areas and forest fuel types [16,17]. By measuring the time
interval of transmitted and received energy, LiDAR can calculate the distance between LiDAR sensor
and targets, providing information on the three-dimensional structure of vegetated ecosystems [18].
Thus, LiDAR can be used to monitor structure changes of vegetation caused by fires. Wang et al. [19]
mapped burned areas based on height differences of sagebrush derived from pre- and post-fire airborne
LiDAR data and classified the whole region into three levels of severity using height thresholds.
Montealegre et al. [17] applied a logistic regression model to classify burned areas in Spanish forests
based on post-fire airborne LiDAR data. Other studies, e.g., Garcia et al. [16] integrated post-fire
airborne LiDAR data and Landsat images to map burned areas and estimate consumed biomass with
high accuracy. While using airborne LiDAR data provides detailed vegetation structure with high
accuracy, the application of these data over large areas is constrained by the high expense associated
with data acquisition.

At regional and global scales, spaceborne LiDAR has been instrumental in capturing 3D data
globally and efficiently with fixed footprint and revisit time, providing large coverage and repeatable
observations [20,21]. A notable spaceborne LiDAR mission includes National Aeronautics and Space
Administration’s (NASA) first Ice, Cloud, and land Elevation Satellite (ICESat) mission, which carried
the Geoscience Laser Altimeter System (GLAS), which is a waveform LiDAR instrument, launched
in January 2003. GLAS is the first spaceborne LiDAR sensor with the aim of measuring ice sheets
globally [22]. The footprint of GLAS beams is 70 m and the along-track sampling distance is 172 m with
a wavelength of 1064 nm [20]. GLAS records backward energy with waveform LiDAR measurement
for each footprint. This mission stopped collecting data in October 2009, after providing billions of
LiDAR waveform data for the analysis of ice, cloud and vegetation [16,23]. These waveform data were
also employed to evaluate fire disturbance in Alaska forests [24], where structure changes of forests
between burned and unburned areas were found to be significant. Moreover, García et al. [25] used
GLAS data to characterize canopy fuels. However, the ICESat footprint, though unprecedented at the
time, is quite coarse (70 m) which limited the resolution of finer 3D details.

As a follow-up mission to ICESat, ICESat−2 was launched on September 15 2018 with the
Advanced Topographic Laser Altimeter System (ATLAS) [21,26]. ATLAS is a photon counting LiDAR
with a footprint of 14 m and along-track sampling distance of 0.7 m, which presents a tremendous
improvement in sampling compared to its predecessor. The ATLAS instrument measures the time a
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photon takes to travel from ATLAS to Earth and back so as to determine the photon’s geodetic latitude
and longitude. Unlike single waveform beams in GLAS, ATLAS emits three pairs of beams with a
wavelength of 532 nm. Each pair consists of a strong beam and weak beam using a transmit energy
ratio of 4:1. The improved spatial resolution and coverage of ICESat−2 will better assist the mapping
of ice and vegetation. One of ICESat−2’s data products is the Land and Vegetation height product
(ATL08), which provides terrain and canopy height measurement at 100 m segments along the ground
track. The ATL08 product provides various canopy and terrain related metrics such as mean canopy
height, max canopy height, apparent surface reflectance, the number of canopy photons, the number of
terrain photon and canopy openness in each segment. ATL08 also provides cloud masks to help clean
and filter the data. This standard canopy product will facilitate forests assessment at global scales and
promote carbon monitoring. In this study, ATL08 data are used to map burned areas, which, based on
current literature, is the first attempt of using such data for this purpose.

Machine learning has shown great success in classification and discrimination of remote sensing
data [27,28]. With the capability to model complex class signatures without statistical assumptions
on data distribution (non-parametric) and the ability to process high-dimensional data, machine
learning approaches are widely accepted [29]. Moreover, machine learning algorithms are more
robust and produce higher classification accuracy than traditional parametric classifiers such as
maximum likelihood [27,29]. Machine learning methods such as random forest [30], gradient boosted
regression [11] and neural network have found application in various studies. Wu et al. [31] evaluated
support vector machine, Random Forest and decision tree to classify point clouds to obtain canola
canopy structures, concluding that Random Forest provides better results. Krishna Moorthy et al. [32]
classified liana stems from point clouds by Random Forest with an accuracy of 88%. For this study, we
used Random Forest to classify burned 100 m ATL08 photon segments and logistic regression is also
included for comparison.

In this study, we investigated the application of ICESat−2 photon counting data for burned area
mapping, which is the first attempt to employ spaceborne LiDAR in fire classification. Innovative
aspects of this research include the use of machine learning methods with photon counting data to
provide three-dimensional structural information along the satellite tracks. Optical images derived
burn maps were used as references. Moreover, land cover maps were used to avoid interference of
different land covers. The main goal was to investigate the feasibility of using ATL08 to map burned
areas of wildfires. Our specific objectives were: (1) to develop a methodology for using ATL08 data for
burned areas classification; (2) to compare the effects of Sentinel−2 and Landsat 8 images when used as
reference images for identifying burned areas; (3) to compare the accuracy of different classification
methods for ATL08 100 m-segments, like Random Forest and logistic regression; (4) to identify the
most significant variables in ATL08 for classification of burned areas.

2. Materials and Methods

2.1. Study Area

Two study areas were chosen for burned area classification (Figures 1 and 2). The first site is
located in northern California. Two major fire events occurred over the study site (Figure 2b). The
Carr Fire happened west of Shasta Lake, starting on July 23, 2018 until it was contained on August 30,
2018. The Delta Fire started on September 5, 2018 and stopped on October 7, 2018 in Shasta-Trinity
National forest. The whole region is dominated by forests including ponderosa pine, canyon live oak
and Douglas-fir with scattered shrubs, grasslands and bare grounds.

The second site is in Catron County, western New Mexico (Figure 1). Burn events on this site are
mainly attributed to the Buzzard Fire, which burned parts of the Gila National Forest (Figure 2f). The
Buzzard Fire occurred from May 22, 2018 until it was completely contained on June 24, 2018, after
burning more than 20,000 hectares. This region is dominated by juniper, pine, aspen and spruce-fir
forest areas of bare grounds.
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Figure 1. Study area map, where the blue box on the upper left is northern California forest and the
red box on the bottom is western New Mexico forest site.

2.2. Data

2.2.1. ATL08

ATL08 land and canopy height product is produced from ICESat−2 global geolocated photon
data (ATL03), which include location (x, y, z) of each bounce point where photon interacts with
land surface. In the following context, we use ‘location of photon’ to paraphrase ‘location of point
where photon interacts with land surface’. Using the Differential, Regressive and Gaussian Adaptive
Nearest Neighbor (DARGANN) algorithm, solar background noises in ATL03 are removed and signal
photons are selected [33]. Then, the signal photons are filtered and classified into ground, canopy
and top of canopy photons. Based on those classified photons, land and canopy structure related
metrics are calculated and stored in ATL08 in h5 format. ATL08 data acquired on December 28,
2018 were downloaded for the northern California site from the National Snow & Ice Data Center
(NSIDC) [34]. The full name of the data file is ‘ATL08_20181228195820_00060202_001_01.h5′. For the
western New Mexico site, ATL08 data were acquired on October 21, 2018, as ATL08 data are only
available from October 14, 2018. The file name is ‘ATL08_20181021221952_03560102_001_01.h5′. There
were many metrics recorded for each 100 m segment and we used only the ones related to canopy
three-dimensional structure (Table 1).

In h5 format, data were stored in several groups. ATL08 contains 10 major groups: metadata,
ancillary_data, gt1 l, gt1 r, gt2 l, gt2 r, gt3 l, gt3 r, orbit_info and quality_assessment, where gt1 l means
the left beam of ground track one, gt1 r means the right beam of ground track one and so forth. Six gtx
groups contained height metrics of 100 m segments for ground tracks and the other four metadata
related groups provided information on instrument, orbit and data quality [34]. The gtx group had
two sub-groups: land_segments and signal_photons, where land_segments provided metrics and
signal_photons provided information on corresponding ATL03 photons. Twenty-one metrics were
obtained directly from ATL08 and three derived metrics were also employed (Table 1). For our analysis,
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only the three strong beams were employed, as they provided more vegetation photons. In ATL08 data,
cloud obstructed segments and empty segments were filled by 3.4028 × 1038, which were discarded in
this study.

Table 1. Twenty-four canopy related Light detection and ranging (LiDAR) metrics, where the three
bold ones are derived based on 21 metrics in ICESat-2 Land and Vegetation Height product (ATL08).

Label Group Long Name Description

canopy_h_metrics:
RH25, RH50, RH60,
RH70, RH75, RH80,
RH85, RH90, RH95,

RH98

gtx/land_segments/canopy Canopy height metrics

Height metrics based on the cumulative distribution of
relative canopy heights above the interpolated ground

surface. The height metrics are calculated at the following
percentiles: 25,50,60,70,75,80,85,90,95, 98%

canopy_openness gtx/land_segments/canopy Canopy openness
Standard Deviation of all photons classified as canopy

photons within the segment to provide inference of canopy
openness

h_canopy_quad gtx/land_segments/canopy Canopy quadratic mean The quadratic mean height of individual classified relative
canopy photon heights above the estimated terrain surface

h_dif_canopy gtx/land_segments/canopy Canopy diff to median
height Difference between RH98 and RH50

h_max_canopy gtx/land_segments/canopy Maximum canopy height Relative maximum of individual canopy heights within
segment

h_mean_canopy gtx/land_segments/canopy Mean canopy height Mean of individual relative canopy heights within segment

h_min_canopy gtx/land_segments/canopy Minimum canopy height The minimum of relative individual canopy heights within
segment

n_ca_photons gtx/land_segments/canopy Number of canopy
photons

The number of photons classified as canopy within the
segment

n_toc_photons gtx/land_segments/canopy Number of top of canopy
photons

The number of photons classified as top of canopy within
the segment

toc_roughness gtx/land_segments/canopy Top of canopy roughness Standard deviation of the relative heights of all photons
classified as top of canopy within the segment

asr gtx/land_segments Apparent surface
reflectance Apparent surface reflectance of the 100 m segment

n_te_photons gtx/land_segments/terrain Number of ground
photons

The number of the photons classified as terrain within the
segment

CV - Coefficient of variation canopy_openness/h_mean_canopy

sd_ratio - Standard deviation ratio toc_roughness/canopy_openness

canopy_relief - Canopy relief ratio (h_mean_canopy-h_min_canopy)/(h_max_canopy-
h_min_canopy)

2.2.2. Sentinel and Landsat Data

Sentinel−2 Multi-Spectral Instrument (MSI) images pre- and post-fire were also downloaded from
the United States Geological Survey (USGS) [35]. For the northern California site, the two images, one
on July 12, 2018 and the other on October 15, 2018 (Figure 1), were atmospherically corrected by Sen2
Cor tool downloaded from the European Space Agency [36]. There are 13 bands in Sentinel−2 data
with three different spatial resolutions: 10 m, 20 m and 60 m. Bands with 10 m resolution (B2, B3,
B4 and B8) were selected (Table 2). The 20 m shortwave near infrared bands B11 and B12 (Table 2)
were resized to 10 m using the nearest neighbor method. Then, these six bands were stacked and
used in further processing. Landsat 8 Operational Land Imager (OLI) Analysis Ready Data (ARD)
for July 10, 2018 (pre-fire) and October 14, 2018 (post-fire) were also downloaded from USGS. ARD
contains surface reflectance of Landsat images from Landsat 4 to Landsat 8 and served for direct use in
monitoring and assessing land cover changes. Similarly, the seven Landsat bands (B1 to B7) (Table 2)
were stacked in the order of wavelength and used for later classification.
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Table 2. Spectral bands of Sentinel−2 and Landsat 8 used in burn mapping, where unit of wavelength
is µm.

Sentinel−2
Bands

Center
Wavelength Lower-Upper Landsat 8

Bands
Center

Wavelength Lower-Upper

- - 1 0.443 0.435–0.451
2 0.494 0.439–0.535 2 0.482 0.452–0.512
3 0.560 0.537–0.582 3 0.561 0.533–0.590
4 0.665 0.646–0.685 4 0.655 0.636–0.673
8 0.834 0.767–0.908 5 0.865 0.851–0.879
11 1.612 1.539–1.681 6 1.609 1.567–1.651
12 2.194 2.072–2.312 7 2.201 2.107–2.294
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Landsat 8 image on July 10, 2018 and (d) post-fire Landsat 8 image on October 14, 2018 in northern 

Figure 2. Satellite images visualized as false color composites (Near Infrared-Red-Green): (a) pre-fire
Sentinel−2 image on July 12, 2018, (b) post-fire Sentinel−2 image on October 15, 2018, (c) pre-fire
Landsat 8 image on July 10, 2018 and (d) post-fire Landsat 8 image on October 14, 2018 in northern
California site; (e) pre-fire Sentinel−2 image on May 17, 2018, (f) post-fire Sentinel−2 image on June 21,
2018, (g) pre-fire Landsat 8 image on May 17, 2018 and (h) post-fire Landsat 8 image on June 27, 2018 in
western New Mexico site. Burned areas tend to be black after fires.

For the western New Mexico site, Sentinel−2 images on May 17, 2018 (pre-fire) and June 21, 2018
(post-fire) were downloaded. The fire was completely stopped on June 24, 2018 but there are no
subsequent cloud free images after June 24 due to clouds. Therefore, the image on June 21 was used,
which is acceptable, as most fires were contained before that day. Meanwhile, Landsat 8 ARD on May
17, 2018 (pre-fire) and June 27, 2018 (post-fire) were downloaded from USGS for comparison.

2.3. Forest Cover Mapping

To avoid the interference of different land covers, an accurate forest map is necessary. In the
northern California site, normalized difference vegetation index (NDVI) values were calculated based
on the pre-fire Sentinel−2 images. A threshold of 0.3, selected based on Otsu method [37], was used
for northern California forests to mask non-vegetation pixels. Next, vegetation pixels were classified
into 20 classes by the Iterative Self-Organizing Data Analysis Technique (IsoData) (Figure 3) in ENVI
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5.5 (Harris Geospatial Solutions). Then, the 20 classes were merged into forest or non-forest types
(Figure 4) based on Google Maps and visual interpretation. Finally, 200 random samples were created
to assess classification accuracy based on visualization of each sample using Google Earth and pre-fire
Sentinel−2 images, including 100 samples for the forest and another 100 samples for the non-forest
areas. The overall accuracy turned out to be 88% and kappa was 0.76. The Landsat 8 OLI pre-fire image
was also used to produce forest map of northern California with the same routine. The 200 random
samples were employed to assess the accuracy of the OLI classification map. The overall accuracy of
OLI forest map was 86% and kappa was 0.71, which are slightly lower than that of Sentinel−2. Table S1
in Supplemental materials shows that forest regions in Landsat 8 classification map are overestimated
(row sum 126 larger than column sum 108), which is illustrated in Figure 4c.
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Figure 3. Flow chart of ATL08 segments classification procedures, where NDVI, NBR and dNBR are
normalized difference vegetation index, normalized burn ratio index and differenced normalized burn
ratio index.

In the New Mexico site, the Sentinel−2 image pre-fire was classified into 20 classes by IsoData
and then merged into forest and non-forest based on visualization of Google map, pre- and post-fire
images. Then, 200 random samples were used to check the classification accuracy. The same routine
was employed on Landsat 8 data. Overall accuracy of Sentinel−2 forest map is 86.5% and kappa is 0.73.
For Landsat 8 forest map, overall accuracy and kappa are 85% and 0.7035, respectively. Forest regions
are overestimated in Landsat 8 map (Figure 4g) relative to Sentinel−2 map (Figure 4e). Confusion
matrices are shown in Table S1 in Supplemental materials.

Then, both pre- and post-fire Sentinel−2 images were employed to produce reference burned areas
map. First, Normalized Burn Ratio (NBR) (Equation (1)) indices were calculated based on pre-fire images
and post-fire images separately. Next, the differenced NBR (dNBR) between pre-fire and post-fire data
were derived. Fire perimeters downloaded from the Cal Fire (https://frap.fire.ca.gov/mapping/gis-data/)
were used to mask out unburned pixels. Based on the suggested value from United States Geological
Survey (USGS) [14,38], as shown in Table 3, a threshold of dNBR = 0.1 was further used to classify
pixels into burned (>0.1) and unburned (<0.1) (Figure 4), removing those unburned islands within the
fire perimeters. Landsat 8 images were also used to derive burned map in the same way. In total, 200
randomly created samples, 100 for burned regions and 100 for unburned regions, were employed to
check the accuracy of burn map. Based on visual interpretation of each sample using Google Maps and
post-fire images, overall accuracy of Sentinel−2 burn map is 85.5% and kappa is 0.71. For the Landsat
8 burn map, overall accuracy and kappa are 88.5% and 0.7676, respectively. Confusion matrices of
burn maps are shown in Table S2 in the Supplemental materials.

https://frap.fire.ca.gov/mapping/gis-data/
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Figure 4. Classification maps: (a) Sentinel−2 forest map, (b) Sentinel−2 burn map, (c) Landsat 8 forest
map, (d) Landsat 8 burn map in northern California site; (e) Sentinel−2 forest map, (f) Sentinel−2 burn
map, (g) Landsat 8 forest map, (h) Landsat 8 burn map in western New Mexico site, where original
ATL08 segments are labeled by the location of the center most photon and black polygons are fire
perimeters. ATL08 data are discontinuous due to removal of segments with fill value.

Table 3. Burn severity based on dNBR from United States Geological Survey (USGS).

dNBR Value Severity Level

−0.5 ≤ dNBR < −0.25 High Regrowth
−0.25 ≤ dNBR < −0.1 Low Regrowth
−0.1 ≤ dNBR < 0.1 Unburned
0.1 ≤ dNBR < 0.27 Low

0.27 ≤ dNBR < 0.44 Moderate-Low
0.44 ≤ dNBR < 0.66 Moderate-High
0.66 ≤ dNBR < 1.33 High

In the western New Mexico site, a fire perimeter was downloaded from USGS (https://www.
geomac.gov/GeoMACKML/getKML.aspx) to mask unburned pixels, and then, dNBR = 0.1 was used to
remove unburned islands within fire perimeters with Sentinel−2 data and Landsat 8 data, respectively.
In total, 200 randomly created samples, 100 for burned regions and 100 for unburned regions, were
used to check accuracy of burn map. Based on visual interpretation of each sample using Google
map and post-fire image, overall accuracy of Sentinel−2 burn map is 87.5% and kappa is 0.75. For
the Landsat 8 burn map, overall accuracy and kappa are 87.5% and 0.7465, respectively. Confusion
matrices of burn maps are shown in Table S2 in Supplemental materials.{

NBR = NIR−SWIR2
NIR+SWIR2

dNBR = NBRpre-fire −NBRpost-fire
(1)

where NIR means near infrared bands (B8 in Sentinel−2 or B5 in Landsat 8), SWIR2 (B12 in Sentinel−2 or
B7 in Landsat 8) means shortwave infrared bands. Dates of pre-fire and post-fire images are described
in Section 2.2.2.

https://www.geomac.gov/GeoMACKML/getKML.aspx
https://www.geomac.gov/GeoMACKML/getKML.aspx
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For the northern California forest region, ATL08 segments locating between 40.480 N and 41.049 N
were selected to cover both burned and unburned forests, as higher latitudes were snow covered. When
overlaying forest map derived from optical images with ATL08 segments, a segment was regarded as
forest segment if over 90% of pixels within it (a pixel will be counted even though only part of it is
within the segment) were forest type. The segment was defined as non-forest type when over 90% of
pixels were non-forest. The same rule was applied to the burned map. In the western New Mexico site,
ATL08 segments within 33.55 N and 33.85 N were selected, as forests are dominant within the region.
Due to the existence of outliers, a range of µ ± 2σwas employed to remove extreme values for each
metric, where µ is the average and σ is the standard deviation. There are 592 forest segments (417 in
northern California and 175 in western New Mexico) in total based on the Sentinel−2 forest map and
burn map and 744 forest segments (551 in northern California and 193 in western New Mexico) using
Landsat 8 data, combining the two study areas.

2.4. Fitting Models for Burned Area Mapping

2.4.1. Fitting Random Forest Model

The 24 canopy related LiDAR metrics were used as independent variables in building models for
classifying burned areas. The dependent variable was the burn condition and was modeled as a binary
variable (burned = 1, unburned = 0). Total ATL08 forest segments from both sites were randomly
divided into two groups, 70% for training and the rest, 30%, for testing. In total, 1000 trees were used
in the training process in R package ‘randomForest’. The best number of splits, which means the
best number of predictors in a subset, was determined by the minimum out of bag (OOB) error. In
Sentinel−2 derived samples, 414 ATL08 segments were used for training and 178 segments for testing.
For Landsat 8 derived samples, 521 segments were used for training and 223 segments for testing.

Random Forest model was also used to estimate burn severity (which is approximated by dNBR).
At first, for each ATL08 segment, average dNBR of covered pixels was calculated. In total, 24 metrics
were used as features and the average dNBR value was a response variable. Using 70% samples for
training and 30% for testing, the accuracy of burn severity estimation by the trained model can be
evaluated. Relative differenced NBR index (RdNBR) (=dNBR/sqrt(NBRpre-fire)) [39] was also employed
in burn severity estimation to compare with dNBR.

2.4.2. Fitting Logistic Regression Model

Logistic regression, serving as a classical statistic model, is suitable for categorical variables such
as burned and unburned. Rather than modeling a categorical variable Y directly, logistic regression
models the probability that y belongs to a specific class. For example, for a dichotomous problem
burned (y = 1) and unburned (y = 0), logistic function fits a S-shaped curve with variables x1, x2, ···, xn

(Equation (2)). A default threshold of probability is 0.5. Therefore, when the fitted probability is higher
than 0.5, we get y = 1, otherwise, y = 0. The ‘stats’ package in R was used to conduct a multi-variate
logistic regression. Training samples were employed to estimate the coefficient of each predictor. A
stepwise procedure based on mixed selection was utilized to remove those insignificant metrics. Then,
testing samples were used for accuracy assessment.

p(y = 1|x1, x2, · · ·, xn) =
eα+β1x1+β2x2+···+βnxn

1 + eα+β1x1+β2x2+···+βnxn
(2)

where p(y = 1|x1, x2, ···, xn) means the probability of y = 1 given metrics x1, x2, ···, xn. α is intercept and
β1, β2, ···, βn are coefficients corresponding to metrics.
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3. Results

3.1. Burned Area Mapping by Random Forest

Figure 5 shows correlations of 24 LiDAR metrics of all Sentinel−2 derived samples in the northern
California site and western New Mexico site. Basically, most metrics are significantly correlated
with others, but the correlation coefficients vary greatly, which means metrics such as asr (apparent
surface reflectance) and n_ca_photons (the number of canopy photons) still cannot replace each other.
Moreover, most metrics are positively correlated with other metrics except asr, n_te_photons (the
number of terrain photons), CV (coefficient of variation) and sd_ratio (standard deviation ratio).
Canopy height related metrics such as RH25, RH50, RH60, RH70, RH75, RH80, RH85, RH90, RH95 and
RH98 were highly correlated. However, metrics including dif_canopy (canopy difference to median
height), min (minimum canopy height), n_ca_photons, n_toc_photons (the number of top of canopy
photons), toc_roughness (top of canopy roughness), asr and n_te_photons have less correlation with
other metrics, indicating splitting photon points into different types such as canopy photons, terrain
photons and top of canopy photons provides extra information.
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Figure 5. Correlations of 24 metrics from all ATL08 segments derived with Sentinel−2 forest maps and
landcover maps in two study areas, where an asterisk (*) denotes significance, using Pearson test under
0.05 confidence level.

Figure 6 provides barplots of 24 metrics derived with Sentinel−2 forest maps and landcover maps
from both study sites. Burned segments tend to have lower values than unburned segments except
dif_canopy (canopy difference to median height), min (minimum canopy height) and CV (coefficient
of variation). For example, average of n_ca_photons (the number of canopy photons) is 105 for burned
segments which is lower than 128 of unburned segments. Moreover, the differences of average between
burned segments and unburned segments are significant in most metrics except canopy_openness
(canopy openness), dif_canopy, min and sd_ratio (standard deviation ratio). The average of CV is
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significantly increased after fire, which is due to different magnitude of change in mean and standard
deviation of canopy height.
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Figure 6. Barplots of 24 metrics derived with Sentinel−2 data from both northern California and
western New Mexico sties, where error bars are standard errors and an asterisk (*) denotes significance
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Based on training data (70% of ATL08 segments) derived with Sentinel−2 forest maps and burn
maps, the best number of splits was set as 10 in each bootstrap iteration, corresponding to the minimum
OOB error of 18.84%. For the testing samples (30% of ATL08 segments), the overall accuracy is 83.15%
and kappa is 0.6435. The high classification accuracy is due to the difference of burned and unburned
metrics recorded by ATL08. As shown in Figure 6, most metrics decreased significantly after fire
events. Table 4 shows the confusion matrix of classification on burned and unburned segments.
Burned segments have lower user’s accuracy (81.54%) and producer’s accuracy (74.65%) compared
to the unburned ones. The row sum (113) of unburned segments is larger than the column sum
(107), indicating unburned segments are overestimated and burned segments are underestimated.
Classification of all forest segments was shown in Figure 7a,c, where the distribution of burned
segments fits burn map well.

Table 4. Confusion matrix of testing data from Random Forest based on Sentinel−2 derived samples
and Landsat 8 derived samples. The reference was based on visual interpretation.

Reference Reference

Sentinel−
2

m
ap

Unburn Burned R_Sum U_Acc

Landsat8
m

ap

Unburn Burned R_Sum U_Acc

Unburn 95 18 113 84.07% Unburn 95 34 129 73.64%
Burned 12 53 65 81.54% Burned 19 75 94 79.79%
C_Sum 107 71 178 C_Sum 114 109 223
P_Acc 88.79% 74.65% P_Acc 83.33% 68.81%
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Figure 7. Random Forest classification of ATL08 forest segments (a) using Sentinel−2 derived samples
and (b) Landsat 8 derived samples for northern California site; (c) using Sentinel−2 derived samples
and (d) Landsat 8 derived samples for western New Mexico. Blue points are centermost photon of
unburned segments and red for burned segments.

For Landsat 8 derived training data, the minimum OOB error is 21.92% with the best number of
splits being 13. The overall accuracy of testing data is 76.23% and kappa is 0.5230 which are both lower
than Sentinel−2 derived samples. The user’s accuracy and producer’s accuracy of burned segments
are 79.79% and 68.81% (Table 4), respectively. The row sum (129) of unburned segments is larger than
the column sum value (114) which means unburned segments were overestimated. Therefore, burned
segments were underestimated. Classification of all forest segments is shown in Figure 7b,d.

Figure 8 provides importance of all ATL08 forest segments derived with Sentinel−2 data and
Landsat 8 data, respectively. The two most important metrics in both datasets are n_ca_photons (the
number of canopy photons) and asr (apparent surface reflectance). These two metrics are favorable as
fire consumes biomass and blackens the ground surface, resulting in significant decrease in surface
reflectance and canopy biomass. In contrast, metrics such as max, RH98, RH95 and RH90 are not as
important, likely because many coarse trunks and stems are still standing after fires [24]; thus, these
values of burned segments are similar with the unburned ones. Moreover, height metrics are highly
correlated, which makes them redundant.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 18 
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Other metrics, such as n_te_photons (the number of terrain photons), toc_roughness (top of
canopy roughness), n_toc_photons (the number of top of canopy photons), canopy_relief (canopy relief
ratio), CV (coefficient of variation), sd_ratio (standard deviation ratio) and RH50, also contributed
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significantly to classification, as they provide information related to canopy structure. For example,
RH50 shows the median height of canopy photons, which declines with the decrease of canopy cover.
The number of canopy photons in the 100 m segment is recorded by n_toc_photons, which decreases
with losses of biomass. The normalized average canopy height is shown by canopy_relief, which
decreases with losses of canopy photons.

3.2. Burned Area Mapping by Logistic Regression

Using testing samples derived from Sentinel−2 data, the overall accuracy of classification is 74.16%
and kappa is 0.4585, which are lower than Random Forest. User’s accuracy and producer’s accuracy of
burned segments are 68.12% and 66.20%, respectively (Table 5). Row sum of unburned segments (109)
is larger than the column sum (107). Therefore, unburned segments are overestimated and burned
segments underestimated. Selected metrics were shown in Table S3 and fire probability was presented
in Figure S1.

Table 5. Confusion matrix of testing data from logistic regression based on Sentinel−2 derived samples
and Landsat 8 derived samples. The reference was based on visual interpretation.

Reference Reference

Sentinel−
2

m
ap

Unburn Burned R_Sum U_Acc

Landsat8
m

ap

Unburn Burned R_Sum U_Acc

Unburn 85 24 109 77.98% Unburn 83 37 120 69.17%
Burned 22 47 69 68.12% Burned 31 72 103 69.90%
C_Sum 107 71 178 C_Sum 114 109 223
P_Acc 79.44% 66.20% P_Acc 72.81% 66.06%

As for Landsat 8 derived data, the overall accuracy and kappa are 69.51% and 0.3891, respectively,
lower than the Random Forest. User’s accuracy of burned segments is 69.90% and producer’s accuracy
is 66.06%. Moreover, the row sum of unburned segments (120) is larger than the column sum (114),
showing that unburned segments are overestimated.

3.3. Fire Severity Prediction Based on Random Forest

dNBR values are correlated with burn severity, where high dNBR value suggests high fire severity.
Random Forest regression was used to estimate dNBR. Figure 9a shows the regression result between
predicted dNBR and observed dNBR using testing samples derived from Sentinel−2 forest map
and burn map, where the linear relationship is significant with p < 0.001, R2 0.6072 and correlation
coefficient 0.78. Another burn severity index relative differenced normalized burn ratio index (RdNBR)
(=dNBR/sqrt(NBRpre-fire)) [39] was also employed in Random Forest to compare with dNBR. Linear
relationship between predicted RdNBR (Figure 9c) and observed RdNBR is significant with p < 0.001,
R2 0.5861. These results show the capability of using ATL08 metrics to estimate fire severity.

Figure 9b shows that variation of residuals is not constant, where the divergence of points
increases with dNBR first and then decreases. In Figure 9d, divergence of points also increases and
then decreases. Based on thresholds in Table 3, points in Figure 9b were classified into unburned (UB),
low (L), moderate-low (ML) and moderate-high (MH) severity, where high severity was missing as
only one point was over 0.66 in Figure 9b. Standard deviation of each class was calculated: UB 0.1034,
L 0.1764, ML 0.3034, MH 0.2292, where points in moderate low severity got highest standard deviation
which means highest uncertainty.
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4. Discussion

4.1. Comparison of Sentinel−2 and Landsat 8

In this study, 24 LiDAR metrics were utilized as predictors for burned ATL08 segments classification.
The classification accuracy reached 83%, which shows the feasibility of using ATL08 data for burn
area mapping. This study suggests that it is possible to employ spaceborne LiDAR data in fire
disturbances monitoring.

Optical images were used to provide a reference burn map and landcover map in previous
experiments. The images were collected with the same spectral bands, from Blue band to SWIR2
band (Table 2). Given their different spatial resolution, we wanted to investigate the effect of using
Landsat 8 and Sentinel−2 images on ICESat−2 segments classification. Using a Sentinel−2 derived
forest map and burn map, we got 592 forest segments (including burned forest and unburned forest)
from two study sites. For Landsat 8 data, there were 744 forest segments in total. Therefore, Landsat 8
data introduced many false forest segments compared with Sentinel−2 data. This phenomenon can
partly explain why Landsat 8 derived segments have slightly lower classification accuracy. In Table 4,
user’s accuracy and producer’s accuracy of burned segments are 81.54% and 74.65% to Sentinel−2
derived testing samples, 79.79% and 68.81% to Landsat 8 derived samples. Overall accuracies of testing
samples using Random Forest are 83.15% and 76.23% for Sentinel−2 derived segments and Landsat 8
derived ones, respectively. These results demonstrate that Landsat 8 derived segments have slightly
lower classification accuracy than that of Sentinel−2 derived segments. However, the accuracy of these
two datasets are comparable in fire mapping, 83.15% versus 76.23%.

4.2. Comparison of Classification Methods

From Tables 4 and 5, Random Forest performs better than logistics regression in ATL08 segments
classification. Random Forest classification produces higher overall accuracy and kappa than that of
logistic regression. Moreover, the user’s and producer’s accuracy of burned segments are also higher
in Random Forest. Therefore, it can be seen that with the same training samples and testing samples,
Random Forest can get better classification results. These benefits can be attributed to the capability of
data processing without statistical assumptions (e.g., parametric). However, Random Forest is a black
box model, which means users do not have access to a model.

In logistic regression, the stepwise procedure removes those insignificant metrics and helps to
simplify the model. Although the accuracy of logistic regression is a little bit lower, it is more efficient
in practice to have a simple model with acceptable accuracy.
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4.3. Comparison of LiDAR Metrics

Based on Figure 8, asr (apparent surface reflectance) is the most important metric (15.65% and
24.25% in importance) in burned ATL08 segments classification, n_ca_photons (the number of canopy
photons) ranking the second. Other metrics such as n_te_photons (the number of terrain photons),
n_toc_photons (the number of top of canopy photons), toc_roughness (top of canopy roughness), RH60,
canopy_relief (canopy relief ratio) and CV (coefficient of variation) are less important. It is reasonable
that reflectance contributes to capturing vegetation characteristics and changes. In Zhao et al. [40],
intensity related metrics in airborne LiDAR explained 60% of variations in leaf area index, which also
illustrates the importance of reflectance.

Other 23 LiDAR metrics count 84.35% and 75.57% in importance for Sentinel−2 based samples and
Landsat 8 based samples, indicating the effectiveness of LiDAR data. To check the feasibility of using
other LiDAR metrics in burn area classification, we removed asr and used the remaining 23 metrics to
classify burned ATL08 segments, with 100% of the segments samples derived from Sentinel−2 data.
Table 6 shows the OOB error (22.80%) that is acceptable without asr.

Table 6. Out of bag (OOB) error of Random Forest model by Sentinel−2 based ATL08 samples, with
100% of the samples for training.

Metrics for Random Forest Total OOB Error OOB of Unburned OOB of Burned

Use 24 metrics 18.24% 13.52% 24.60%
Remove asr 22.80% 18.23% 28.96%

In fact, reflectance of optical images (asr in ATL08) is the sum of reflected photons within a
pixel from which we cannot get height information directly. However, LiDAR helps to record the
height information of each photons and based on which photons are classified into canopy photons
and ground photons in ATL08, producing n_ca_photons and n_te_photons. Other metrics such as
toc_roughness, RH60, canopy_relief and CV are also characteristics describing the 3D canopy structure
which contribute to wildfire classification.

4.4. Limitations

The high classification accuracy shown in Table 4 reveals the feasibility of using ATL08 metrics for
burned areas mapping along tracks. However, there are some limitations. First, it is unavoidable that
there is time lag between the fire occurrence and acquisition of ICESat−2 data. We know the revisit
time of ICESat−2 is 91 days currently. Therefore, the time lag between fire occurrence and ICESat−2
track will be around three months or two months. During the time lag, regrowth of forests after fire
will reduce the difference between burned and unburned forests, causing more challenges in burned
areas classification.

Moreover, logging or harvesting after fire will introduce damages to forest structure. This kind of
change will cause interferences to fire mapping. At first, logging will produce debris and abandoned
stems which might increase surface fuels. Second, large boles are removed and the density of canopy
declines. Under this situation, data collected from ATL08 cannot represent structure changes in real
fire events. However, our model still works as logging decreases canopy density and canopy height.

Moreover, the laser wavelength of the ICESat−2 ATLAS sensor is 532 nm, which makes it possible
to be obstructed by clouds. In this case, no photons, or only very few photons, can reach the land
surface when there are clouds. Therefore, only a small portion of the ICESat−2 data is suitable for land
surface monitoring in the presence of clouds.

5. Conclusions

This study aims to investigate the feasibility of using ICESat−2 ATL08 data product to classify
burned areas in wildfires. Both Sentinel−2 images and Landsat 8 data were used to produce reference
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land cover maps and burned maps. Twenty-four canopy related metrics derived from ATL08 were
employed to classify burned segments with Random Forest and logistic regression, respectively. Our
results indicate high classification accuracy of burned ATL08 segments based on both Sentinel−2
derived samples and Landsat 8 derived samples. Random Forest produced slightly higher classification
accuracy than logistic regression. The number of canopy photons and apparent surface reflectance
turned out to be the two most important metrics in classification. Metrics such as RH50, the number
of top of canopy photons, coefficient of variation and canopy relief ratio are also helpful. It is
anticipated that canopy related metrics will be more beneficial when differentiating fire severity as
they characterize structure changes. This study demonstrates the feasibility of employing ATL08 for
burned area mapping. As more ICESat−2 data accumulates over burned and unburned vegetation,
and our understanding of photons description of canopy structure and ICESat−2 products such as
ATL08 improve, we would expect to see more applications of using such data for assessing burned
vegetation, fire severity and fuel loads. Future studies could also make use of a synergistic approach
using ICESat−2 data and observations from other NASA missions, such as Global Ecosystem Dynamics
Investigation (GEDI) and National Aeronautics and Space Administration-Indian Space Research
Organization Synthetic Aperture Radar mission (NISAR), to improve the classification of burned and
unburned areas and assess fire risk.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/1/24/s1,
Figure S1: Scatterplot of asr (apparent surface reflectance) to probabilities calculated by logistic regression models
using testing samples from Sentinel-2 derived samples and Landsat 8 derived samples, respectively., Table S1:
Confusion matrix of forest map classification based on Sentinel-2 data and Landsat 8 data in two study areas,
where R_sum means row sum, C_sum is column sum, U_Acc is user’s accuracy and P_Acc is producer’s accuracy.
Table S2: Confusion matrix of burn maps based on Sentinel-2 data and Landsat 8 data in two study areas. Table S3:
Coefficients and 95% confidence intervals of logistic regression based on Sentinel-2 based samples and Landsat 8
based samples. VIF means variance of inflation factors.
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