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Abstract: Surface runoff (R), which is another expression for river water discharge of a river basin, is a
critical measurement for regional water cycles. Over the past two decades, river water discharge has
been widely investigated, which is based on remotely sensed hydraulic and hydrological variables as
well as indices. This study aims to demonstrate the potential of upstream global positioning system
(GPS) vertical displacement (VD) and its standardization to statistically derive R time series, which
has not been reported in recent literature. The correlation between the in situ R at estuaries and
averaged GPS-VD and its standardization in the river basin upstream on a monthly temporal scale of
the Mekong River Basin (MRB) is examined. It was found that the reconstructed R time series from
the latter agrees with and yields a similar performance to that from the terrestrial water storage based
on gravimetric satellite (i.e., Gravity Recovery and Climate Experiment (GRACE)) and traditional
remote sensing data. The reconstructed R time series from the standardized GPS-VD was found
to have a 2–7% accuracy increase against those without standardization. On the other hand, it is
comparable to data that are obtained by the Palmer drought severity index (PDSI). Similar accuracies
are exhibited by the estimated R when externally validated through another station location with
in situ time series. The comparison of the estimated R at the entrance of river delta against that at
the estuaries indicates a 1–3% relative error induced by the residual ocean tidal effect at the estuary.
The reconstructed R from the standardized GPS-VD yields the lowest total relative error of less than
9% when accounting for the main upstream area of the MRB. The remaining errors may be the result
of the combined effect of the proposed methodology, remaining environmental signals in the data
time series, and potential time lag (less than a month) between the upstream MRB and estuary.

Keywords: Runoff; GPS; GRACE satellite gravimetry; Mekong River Basin; PDSI

1. Introduction

River water discharge (RWD) is among the critical hydrological components of river basins
measured near the mouth of estuaries [1,2]. Another representation of the RWD at the estuaries is
surface runoff (R), in which it is the RWD divided by the total basin area. In order to prepare for
unpredictable losses in agricultural products and economy (e.g., [3–6]), the continuous monitoring
of RWDs is necessary for tracking abrupt hydrological changes (i.e., droughts and floods) in deltaic
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environments. There is no global coverage of gauging network, however, that monitors the RWDs [7].
Apart from this, the frequency of discharge data acquisition has continuously declined since the late
1970s [8] because of insufficient funds for facility maintenance and upgrade [9]. As a result, indirect
methods for the RWD monitoring, such as remote sensing (RS), have recently gained increasing interest.

Traditional RS, such as Landsat Thematic Mapper (TM) and its Enhanced TM Plus (ETM+) images,
as well as moderate resolution imaging spectrometer (MODIS), have passively recorded instantaneous
surface parameters since the 1990s (e.g., [7]). The surface parameters obtained from RS [10–13], such as
flood area inundation, land surface temperature (LST), normalized difference vegetation index (NDVI),
and RS-derived geometric variables (e.g., river width), allow the direct correlation with water level or
RWD. Except for the RS-derived geometric variables, the foregoing localized RS data yield indirect
relationships to the RWD. Although RS-derived geometric variables can also be employed as inputs to
infer the RWD through Manning’s equation and its modified form (e.g., [14–21]), the accuracy of the
estimated RWD is region-dependent because of the technique’s ability to detect changes in rivers with
short widths [22] and the regional availability of roughness coefficients [23,24].

More recently, space geodetic techniques, such as satellite radar altimetry and the Gravity
Recovery and Climate Experiment (GRACE), have extensively been utilized to correlate with the
RWD (e.g., [25,26]). These observations, hereafter, are referred to as space geodetic-observed variables.
Satellite radar altimetry is able to directly monitor water level variations over water bodies, such as
river and lakes (e.g., [27,28]). The water level relates to the RWD via a power function (e.g., [29,30]);
hence, the time series of RS RWD is derived by directly correlating the measured satellite altimetric
water level with in situ RWD measurements (e.g., [31,32]). The use of a basin-wide RWD estimation
that employs multisatellite altimetric water level data has also been demonstrated in the Mekong
River Basin (MRB) [25]. The reflected signal contains radar altimetry footprints are contaminated by
land surfaces, however, when the river width is smaller than 5 km, such as that found in [33], thereby
significantly lowering their accuracy near the riverbank.

Although satellite radar altimetry can actively record along-track surface oscillations of inland
water bodies (e.g., [34]), GRACE can directly measure time-variable gravity, thereby making it possible
to calculate terrestrial water storage fluctuations at a global or regional scale (e.g., [35,36]). The terrestrial
water storage, being one of the water balance components, can physically relate to the RWD (e.g., [26,37]).
Therefore, the RWD can be estimated from the terrestrial water storage. GRACE-inferred terrestrial
water storage (hereinafter called GRACE-S) also allows the calculation of solid Earth vertical surface
deformation (e.g., [38–41]) that is consistent with the recorded global positioning system (GPS) vertical
displacement (VD) (hereinafter called GPS-VD) (e.g., [42–44]), as demonstrated and validated in
different geographic regions [45–47]. Conversely, the GPS-VD can also be utilized to infer the terrestrial
water storage (e.g., [48–51]). Given the foregoing GRACE-inferred physical quantity that is comparable
to the GPS-VD, it is anticipated that the latter can be a potential alternative for reconstructing the RWD;
no paper in this regard has ever been published in recent literature.

Essentially, the GRACE-S and its standardization have been recently demonstrated to have a good
correlation with water level [52] and R [53]. The reason for the standardization is that it enhances
the regional characteristics of the averaged time series [54] when local means and variances are
largely different from the regional one [55], thus mitigating systematic influences due to geographic
environment [56]. Given the aforementioned similarity between GRACE-inferred quantities and
GPS-VD observations, the GPS-VD and its standardization can presumably achieve a similar quality to
that of GRACE in capturing the time series of R and standardized R via correlative analysis, respectively.

The Mekong River Delta (MRD), a geographic region that is vital for food (e.g., [57]) and water
security (e.g., [58]) in Southeast Asia, is the MRB downstream region immediately before the freshwater
is discharged into the coastal ocean. The R of the MRD is affected by dam operation, which increases
(decreases) the discharge flow during drought (flooding) seasons under the principle of no significant
annual changes [59,60]. Regardless of whether the dam is in the upstream or downstream MRB,
the effects of all dam operations accumulate. The accumulated effects that generate biases should be
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partly systematic for any specific month, year-on-year [61]. These biases can be partly reduced by the
subtraction (or differencing) process in the above standardization procedure. The aforementioned
reasons justify the potential use of the GPS-VD standardization that is obtained at the upstream of the
MRB to correlate with the R in the MRD statistically.

The potential use of the GPS-VD and its standardization is explored in the upstream of the MRB
for statistically correlating with the R at a hydrological station in the MRD on a monthly scale via linear
regression. The fitted parameters are then utilized to estimate the time series of R of another location
having an in situ time series for external validation. The available RS instantaneous data (NDVI [62]
and LST [63]), Palmer drought severity index (PDSI) [64], and GRACE-S and its standardization [65],
are employed for the purpose of comparison.

The structure of this paper is arranged as below: Section 2 describes the MRB and MRD geography;
Section 3 illustrates the datasets and their processing; Section 4 presents the methodology and evaluation
metrics; Section 5 demonstrates the reconstruction and estimation of R based on the GPS-VD and its
standardized form, while compared to those based on the NDVI, LST, PDSI, and GRACE-S and its
standardization; Section 6 summarizes the conclusions.

2. Geographic Environment of the Mekong River Basin and Mekong River Delta

The Mekong River, originating from the three-river headwater region in the eastern
Qinghai–Tibetan Plateau, is the transboundary river across the Southeast Asian continent [66].
Water first flows through the Lancang River in Yunnan Province within the boundary of China,
followed by Laos, Myanmar, Thailand, Cambodia, and Vietnam. Spanning 25◦ of latitude, the total
surface area of the entire MRB is around 795,000 km2 [67] (Figure 1).

Figure 1. Mekong River Basin boundary with hydrological stations (i.e., My Thuan, Can Tho, Tan
Chau, and Chau Doc stations) located in the Mekong River Delta and with GPS stations covering the
entire Yunnan province and Lancang River Basin within Yunnan province.
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Situated at latitude 21◦–29◦N and longitude 94◦–102◦E, Lancang River within Yunnan Province,
China (hereinafter abbreviated as LRWY), constitutes the main component of the upstream MRB with
an altitude ranging from 1500 to 4000 m and descending from north to south [68,69]. It is climate-driven
and affected by the Indian monsoon [70]; its distinct rainy and dry seasons are the principal seasonal
characteristics. During the wet season (May–October), the SW monsoons from the Bay of Bengal yield
the almost entire annual rainfall. During the dry season (November–April), however, severe drought
may occur [71]. Bare karst geology, which is characterized by rocks with low permeability, surrounds
rocks with high permeability at the eastern part of Yunnan Province. This further causes rapid water
infiltration into the ground, aggravating drought conditions [72].

The hydrological extremes in the upstream area significantly affect agriculture, living environments,
and economy in the midstream and downstream areas where half a billion people live within China and
the country’s transboundary [73]. In addition, the constructed massive dams have raised water conflicts
among various countries in Southeast Asia [74], despite the aim to regulate flow during extreme
hydrological periods [59,60]. The dam operated at different times of the year modifies the upstream R,
which would adversely impact the water availability downstream (e.g., [75,76]). This indicates that
understanding the hydrologically related variables upstream is necessary in order to raise an early
alert of extreme events that may occur in the downstream MRB, in particular, the MRD.

The MRD is a transition zone that is seasonally affected by both water discharge of the
MRB, and ocean tidal processes propagated landward [57] via the Bassac River and Mekong River
branches [77,78]. In addition, the regulation effect of Cambodia’s Tonle Sap Lake on the total discharge
of the MRB is substantial (e.g., [79–81]) before discharging into the northern part of Sunda Shelf.

3. Datasets and Their Processing

3.1. In Situ Discharge and Passive Remote Sensing Data

Given the regulated effect of Tonle Sap Lake and the backwater effect of ocean tides that govern
the total discharge of the MRB, the selection of in situ stations near the estuary mouth is a critical
task. Both aforementioned effects are to be minimized in the selected stations. The station at Phnom
Penh, despite far away from the mouth of estuaries, is not selected because it intersects with several
tributaries that would significantly modify the overall temporal discharge pattern. In this study, the Tan
Chau and Chau Doc stations, located at the entrance of the MRD and interior limit of the transition
zone [78], are chosen where both the abovementioned effects are minimized (Figure 1). Despite being
closer to the mouth of estuaries, the Can Tho and My Thuan stations are also employed to assess the
backwater impact caused by ocean tides on the R time series estimation.

The station discharge time series obtained from the Mekong River Commission (MRC) is available
at http://www.mrcmekong.org. The selected WD time series data spanning from January 2012 to
December 2014 are extracted because of the shorter time span of GPS data. Since half-daily and daily
period of ocean tides are the most dominant ocean tidal forcing, the time series of Tan Chau and Chau
Doc pair of stations (hereinafter called TC-pair station) and that of My Thuan and Can Tho pair of
stations (hereinafter called MC-pair station) are summed up, respectively, serving as a further monthly
averaging process to further mitigate the ocean tidal effect.

The observed RWD (in m3/s), accounting for converting second into day, meter into millimeter
and dividing by the total basin area (i.e., 795,000 km2), can then be converted into a daily R (in mm/day).
The R at a monthly scale (in mm/month) is then computed by adding daily R together. Both the TC-pair
and MC-pair station time series exhibit similar temporal patterns (Figure 2).

http://www.mrcmekong.org
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Figure 2. Runoff time series of MC-pair station, and TC-pair station.

The LST from MOD11C3 and NDVI from MOD13C2 MODIS products are the traditional RS data
that can be downloaded at the Land Processes Distribution Active Archive Center (https://lpdaac.usgs.
gov/dataset_discovery/modis/modis_products_table). Both datasets are directly employed to compare
against the GPS-reconstructed R time series.

3.2. Palmer Drought Severity Index

The PDSI [64], downloaded at http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html [82], is a
widely employed index to quantify meteorological drought using worldwide precipitation and
temperature data time series to model relative dryness. The index ranges from −10 (dry) to +10 (wet)
with a 2.5◦×2.5◦ spatial resolution.

3.3. GRACE Terrestrial Water Storage and Its Standardization

Five monthly GRACE solution data products are employed, including the Center for Space
Research (CSR) Release (RL) 05 (hereinafter abbreviated as CSR RL05), RL06 (hereinafter abbreviated
as CSR RL06), and its RL06 mascon solution (hereinafter abbreviated as CSR-mascon), Jet Propulsion
Laboratory (JPL) RL 05 (hereinafter abbreviated as JPL RL05), and GeoforschungsZentrum (GFZ) RL 05
(hereinafter abbreviated as GFZ RL05). Except for the monthly CSR-mascon GRACE-S readily available
at a 0.25◦×0.25◦ grid that can be downloaded at http://www2.csr.utexas.edu/grace/RL06_mascons.html,
all other monthly GRACE Level-2 data represent mass changes in terms of Stokes coefficients (SC),
which can be downloaded at http://icgem.gfz-potsdam.de/series.

While the SC of the JPL RL 05 are expanded up to degree 90, the SC of the CSR RL05, CSR RL06,
and GFZ RL05 are expanded up to degree 60. Using equations in [83], the SC of the CSR RL05, CSR
RL06, GFZ RL05 and JPL RL05 can be converted into GRACE-S that is interpolated into a 1◦×1◦grid.

Except for the CSR-mascon, before converting SC into a GRACE-S time series, the degree-one
and C20 terms in SC are added and replaced, respectively, to correct the geocenter motion and the
geoid [84,85]. In addition, a de-striping procedure is applied. As tested in this study, a Gaussian filter
with a 350-km radius is the optimal radius chosen to reduce the uncertainties arising from correlated
errors of TWS data in space at finer resolutions [86,87].

The processed monthly GRACE-S are then used to reconstruct R (i) by directly correlating with
the in situ R and (ii) by calculating the recently proposed drought index based on GRACE (hereinafter
abbreviated as GRACE-SI) [65], in which it is subsequently correlated with the standardized in situ R.

To reduce GRACE-S anomalies, the median of GRACE-S for each month is employed to calculate
GRACE-SI [52] as follows:

SIi, j =
Si, j −median

(
S j

)
s j

(1)

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table
http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html
http://www2.csr.utexas.edu/grace/RL06_mascons.html
http://icgem.gfz-potsdam.de/series
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where SIi, j and Si, j are the GRACE-SI and GRACE-S for month j of each year i, respectively; S j and s j
are GRACE-S and its corresponding sampled standard deviation, respectively. The same calculation
procedure for standardizing in situ R is performed using Equation (1).

3.4. GPS Vertical Displacement and Its Standardization

To obtain a daily GPS-VD in the upstream of the MRB, GAMIT FORTRAN software [88] is
employed to preprocess the raw observations of 33 GPS stations that monitor Yunnan Province.
The observations during 2012–2014 are available from the Crustal Movement Observation Network of
China (CMONOC). This is performed by a stochastically constrained network solution (i.e., assigned
with a 5-cm uncertainty) [89] aligned to 24 IGS stations in the ITRF2008 coordinate reference frame that
surrounds China [90]. The Earth orientation parameters are also constrained to a priori values listed in
the International Earth Rotation Service (IERS) Bulletin B.

Standard correction procedures are applied (i) to constrain the orbits to the IGS final ephemeris;
(ii) to make corrections for the first three-order terms of the ionospheric delay in GAMIT [91]; (iii)
to make corrections for the tropospheric delay using Vienna mapping function 1 [92] and the global
modelof pressure and temperature applied in Geodesy [93]; (iv) to apply the antenna offsets given
by the IGS filed antenna correction; (v) to remove the non-tidal atmospheric loading using the MIT
correction data files; (vi) to remove the ocean tidal loading by choosing the FES2004 model [94]
option in GAMIT [88]; (vii) to remove tides due to the solid Earth and pole according to the IERS
standard [95]. Moreover, to yield a purely hydrological signal similar to that of GRACE, vertical crustal
displacement caused by ocean bottom pressure changes in the GPS-VD should be corrected using half
the daily-modeled data downloaded at the Global Geophysical Fluid Center (http://geophy.uni.lu/).

Outliers that are larger than twice the standard deviation are discarded. To reduce the aliasing
effect and draconitic errors (e.g., ~351 d [96,97]) in the seasonal signal, spectral filtering is applied after
the fast Fourier transformation (FFT) of the GPS-VD time series. After the spectral filtering, the first
peak is apparently closer to 1 cpy (Figure 3). The 33 filtered GPS spectra are then transformed back
into the time domain via the inverse FFT. In general, the height extremes of the GPS time series are
reduced after filtering.

Figure 3. Unfiltered (blue) and filtered (red) GPS time series and their respective Fourier power spectra
for two selected GPS stations (YNLC and YNYL).

http://geophy.uni.lu/
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Explored at a monthly scale, the daily GPS-VD are averaged every month to yield the monthly
VD. To obtain the monthly standardized GPS-VD data, the same calculation procedure is performed
using Equation (1).

4. Methodology and Assessment Metrics

4.1. Correlative Analysis and Runoff Standardization

In this study, all RS and space geodetic-observed variable data are averaged separately over the
bounded square covering Yunnan Province and LRWY (Figure 1) before reconstruction and estimation
of R in the MRD. Note that smoothing is applied to all the data before the correlative analysis.

The R reconstruction is achieved by a direct linear model fitting with a constant offset, b, and a
slope, a, which is given by:

yt = axt + b (2)

where yt and xt are the in situ R (or standardized R) at the selected stations (MC-pair and TC-pair) and
remotely sensed variables (or its standardized form or indices) at monthly epoch t, except a one-month
time shift was applied to NDVI and LST to improve the reconstruction performance. In addition,
the GPS-VD, being negatively correlated with GRACE-S and in situ R, was multiplied by a negative
one. Note that a and b are the parameters to be estimated during the model fitting process.

The reconstructed R when quantitatively evaluated against the same in situ R used for the
reconstruction are referred to as internal evaluation, whereas the above estimated parameters
determined from the R reconstruction that are subsequently used for the R estimation and evaluated
against at other stations in the MRD are referred to as external evaluation; both evaluations assess the
methodology employed in this study.

The overlapping time spans of the NDVI, LST, GRACE-S, and GPS-VD during 2012–2014 are
employed to correlate the observed R, because the time series of all the remotely sensed variables share
similar seasonal patterns to the observed R. However, notable differences are observed. For instance,
both the GRACE-S and GPS-VD averaged at the upstream of the MRB against the R time series present
a variable time lag over the entire time span (Figure 4). This can be attributable to a slightly different
hydrological condition between the upstream and the downstream of the MRB each year under climatic
variability (e.g., [98]). Regardless of averaging GPS-VD over the bounded square of the entire Yunnan
Province or LRWY, GPS-VD yields an abnormal pattern between January and April of 2014. This can
be due to GPS-VD being more sensitive to local hydrological variations or events when compared to
GRACE-S [51].

To investigate the improvement resulting from the standardization, the observed R is standardized
and compared to the standardized GRACE-S (hereinafter called GRACE-SI) and GPS-VD (hereinafter
called GPS-DSI) using Equation (1). The above model fitting procedure is applied to correlate the
standardized R with other standardized variables (i.e., PDSI, GRACE-SI, and GPS-DSI).

The estimated parameters and their corresponding standard deviation of Equation (2) is displayed
in Table 1. Large offsets (i.e., b) and standard deviation are shown for the in situ R fitted with NDVI and
LST. Hence, it is expected that the reconstructed R from NDVI and LST are not fitted well, as shown
in Figure 5. The in situ R fitted with GRACE-S and GPS-VD appears to be better than that of NDVI
and LST. This linear fitting results preliminarily indicate that our proposed space geodetic-observed
variables (i.e., GRACE-S and GPS-VD) are better in R reconstruction.
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Figure 4. (a,c) Time series of runoff against averaged GRACE terrestrial water storage (GRACE-S) from
CSR RL05 data and (b,d) GPS vertical displacement (GPS-VD) of the entire Yunnan Province at (top)
MC-pair and (bottom) TC-pair stations.

4.2. Assessment Metrics

Three performance evaluation metrics, including the Pearson correlation coefficient (PCC),
normalized root mean square error (NRMSE), and Nash–Sutcliffe efficiency (NSE) model coefficient,
are employed to evaluate the reconstructed R against the observed R at in situ stations.

The PCC, which describes the degree of collinearity between two variables, is defined as follows:

PCC =

1
N

N∑
i=1

(
R0(i) −R0

)(
Re(i) −Re

)
√

1
N

N∑
i=1

(
R0(i) −R0

)2
√

1
N

N∑
i=1

(
Re(i) −Re

)2

(3)
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The NRMSE, being the RMSE divided by the maximum fluctuating range of observations,
is defined as follows:

NRMSE =

√
1
N

N∑
i=1

(Re(i) −R0(i))
2

max(R0) −min(R0)
(4)

The NSE model coefficient, ranging from −∞ to 1, is a performance indicator for evaluating the
predictive power of the estimated R compared to the in situ R [99]. When the NSE model coefficient is
closer to 1, the performance of the estimated R is better. It is defined as follows:

NSE = 1−

N∑
i=1

(Re(i) −R0(i))
2

N∑
i=1

(
Re(i) −R0

)2
(5)

where R0(i) and Re(i) represent the observed and estimated Rs of month i, respectively; R0 and Re are
the means of R0 and Re, respectively; max(R0) and min(R0) are the maximum and minimum R of the
in situ time series, respectively.

Table 1. Internal evaluation of runoff reconstructed at MT-pair station, and external evaluation of
runoff estimated at TC-pair station based on reconstructed R from relationships between MC-pair
station and abovementioned variables for the entire Yunnan Province.

Station Data Version a (/Month) b (mm/m) Standard Deviation (a &b)

MC pair
reconstruction

Traditional RS data
NDVI 0.0317 –165.7979 0.0024 16.1466
LST –0.1313 1976.1705 0.0125 183.5319

Space
geodetic-observed

Variables

CSR RL05 0.3467 41.3759 0.0238 1.8711
GFZ RL05 0.3419 41.2598 0.0233 1.8605
JPL RL05 0.3515 43.1586 0.0221 1.7327

CSR-mascon 0.2797 41.8492 0.0177 1.7470
CSR RL06 0.3419 41.3328 0.0214 1.7252

GPS-VD 4.3926 45.4435 0.2740 1.7290

TC pair
reconstruction

Traditional RS data
NDVI 0.0281 –142.1093 0.0020 13.3132
LST –0.1143 1725.1072 0.0111 163.8818

Space
geodetic-observed

Variables

CSR RL05 0.3039 41.3581 0.0207 1.6265
GFZ RL05 0.2994 41.2575 0.0204 1.6280
JPL RL05 0.3087 42.9218 0.0189 1.4840

CSR-mascon 0.2419 41.7816 0.0169 1.6591
CSR RL06 0.2984 41.3252 0.0192 1.5479

GPS-VD 3.7715 44.8722 0.2726 1.7202

5. Evaluation and Discussion

This section illustrates the accuracy performance of the R time series’ reconstruction and estimation
for internal and external evaluations, respectively. These time series are from the traditional RSD
(NDVI and LST), space geodetic-observed variables (GRACE-S and GPS-VD), and their corresponding
standardizations (GRACE-SI and GPS-DSI), including the drought index (PDSI). The internal and
external evaluations of results are both applied to the MC-pair and TC-pair stations, so that the
estimated R from these two pairs can be compared against each other to assess the residual ocean
tidal effect at the estuary. Note that the MC-pair station is closer to the estuary mouth than the
TC-pair station with the former being located ~100 km and the latter ~220 km from the estuary mouth.
The combined internal and external evaluations could quantify a portion of the systematic ocean tidal
backwater effect on both reconstructed and estimated Rs.
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Serving as baseline results, both NDVI- and LST-reconstructed Rs from the LRWY exhibit temporal
patterns similar to the observed Rs from both the MC-pair (Figure 5a,b) and TC-pair (Figure 5c,d)
stations. However, relatively large differences are presented in peaks and troughs for the NDVI- and
LST-reconstructed Rs when compared to against the in situ R (Figure 5c,d). While no apparent time lag
for the NDVI-reconstructed R against the in situ R, the in situ R is lagged behind the LST-reconstructed
R from March 2013 to September 2014. We speculate that substantial differences between meteorological
conditions (e.g., LST) at the upstream and hydrological conditions (e.g., R) at the downstream of the
MRB (i.e., MRD) might exist during the above period. Note also that LST is the localized RS quantity
that has no direct relationship with the R, as mentioned in the introduction of this study. This is the
reason that it is served as a baseline result.

The R reconstructions from GRACE-S and GPS-VD exhibit better results than those of the NDVI
and LST-reconstructed Rs (Figure 6) (Table 2), whereas their respective standardizations demonstrate
even better performances (Figure 7) in capturing the peaks and troughs because a portion of the
systematic effects is reduced by the standardization process. A similar situation is also observed
in the TC-pair station time series with further reductions in the differences in peaks and troughs
(Figure 7d–f), as consistently shown by the increase in PCC and NSE values of the reconstructed R
in the downstream MRB (Table 3). The PDSI-reconstructed R exhibits results that are comparable
to those of GRACE-SI and GPS-DSI because the PDSI is a hydrometeorological index generated
from temperature and precipitation that captures the relative dryness of river basins in relation to
river discharge variations [100]. Among all GRACE-reconstructed Rs, the one reconstructed from
JPL RL05 yields the best result. The one reconstructed from RL05 and RL06 of CSR show similar
performances, whereas that of CSR-mascon solution yields a comparable performance.

By evaluating the differences of the MC-pair and TC-pair estimations in the assessment metrics
between Tables 2 and 3 or between Tables 4 and 5, it is found that the usage of TC-pair account for a 1–3%
decrease in the relative error, when compared to that using MC-pair close to the estuary mouth. This is
the remaining backwater effect due to ocean tides of the MC-pair in the estuary. The standardization
process yields a 2–7% increase in accuracy, no matter which pair station is used. The R reconstructed
from the GPS-DSI yields the lowest NRMSE value when accounting for the LRWY of the upstream
MRB only, indicating that it remains subject to the total relative error of less than 9%. It is speculated
that the remaining errors may be caused by our methodology, remaining environmental signals in the
data time series, and potential time lag of less than a month between the upstream MRB and the MRD.

Overall, the estimated Rs are slightly less accurate than the reconstructed Rs, whereas their
relative rankings remain practically the same. This could be partially caused by internal errors that are
introduced by the reverse process. The proposed methodology that employs the upstream standardized
GPS-VD (i.e., GPS-DSI) is proven to be a viable alternative to the estimation of R in the MRD located at
the estuary mouth of the MRB. However, the limitations of this study are that one in situ discharge
time series in the river delta or estuary is required, and the GPS stations should be situated on the
bedrock surface for observing the elastic deformation due to seasonal water storage changes.
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Figure 5. Runoff reconstructed from (a,c) NDVI and (b,d) LST at (a,b) MC-pair station, and (c,d)
TC-pair station.
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Figure 6. Runoff reconstructed from (a,c) GRACE and (b,d) GPS at (a,b) MC-pair station, and (c,d)
TC-pair station.
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Figure 7. Runoff reconstructed from (a,d), PDSI, (b,e) GRACE-SI, and (c,f) GPS-DSI, at (a–c) MC-pair
station and (d–f) TC-pair station.
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Table 2. Internal evaluation of runoff reconstructed at MT-pair station, and external evaluation of
runoff estimated at TC-pair station based on reconstructed R from relationships between MC-pair
station and abovementioned variables for the entire Yunnan Province.

Station Variables/Indices PCC NRMSE NSE

MC-pair
reconstruction

Traditional RS data
NDVI 0.913 0.119 0.833
LST 0.875 0.141 0.766

Space geodetic-observed
Variables

CSR RL05 0.928 0.108 0.862
GFZ RL05 0.929 0.108 0.864
JPL RL05 0.939 0.100 0.882

CSR-mascon 0.938 0.101 0.880
CSR RL06 0.940 0.100 0.883

GPS-VD 0.940 0.100 0.883

Drought Indices

CSR RL05 0.963 0.079 0.927
GFZ RL05 0.963 0.079 0.927
JPL RL05 0.971 0.070 0.942

CSR-mascon 0.962 0.080 0.925
CSR RL06 0.966 0.076 0.933

PDSI 0.984 0.053 0.967
GPS-DSI 0.970 0.070 0.942

TC-pair
estimated from

MC-pair
reconstruction

Traditional RS data
NDVI 0.923 0.129 0.837
LST 0.870 0.164 0.739

Space geodetic-observed
Variables

CSR RL05 0.930 0.126 0.847
GFZ RL05 0.929 0.126 0.846
JPL RL05 0.942 0.116 0.870

CSR-mascon 0.926 0.129 0.837
CSR RL06 0.936 0.121 0.858

GPS-VD 0.922 0.134 0.826

Drought Indices

CSR RL05 0.948 0.118 0.865
GFZ RL05 0.947 0.120 0.861
JPL RL05 0.955 0.111 0.880

CSR-mascon 0.946 0.118 0.864
CSR RL06 0.952 0.113 0.877

PDSI 0.967 0.091 0.920
GPS-DSI 0.957 0.103 0.896
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Table 3. Internal evaluation of runoff reconstructed at TC-pair station, and external evaluation of runoff

estimated at MC-pair station based on reconstructed R from relationships between TC-pair station and
abovementioned variables for the entire Yunnan Province.

Station Variables/Indices PCC NRMSE NSE

TC-pair
reconstruction

Traditional RS data
NDVI 0.923 0.124 0.852
LST 0.870 0.159 0.756

Space geodetic-observed
Variables

CSR RL05 0.930 0.118 0.864
GFZ RL05 0.929 0.118 0.864
JPL RL05 0.942 0.108 0.887

CSR-mascon 0.926 0.121 0.858
CSR RL06 0.936 0.113 0.877

GPS-VD 0.922 0.125 0.849

Drought Indices

CSR RL05 0.964 0.086 0.929
GFZ RL05 0.964 0.086 0.929
JPL RL05 0.964 0.085 0.929

CSR-mascon 0.964 0.086 0.929
CSR RL06 0.962 0.087 0.926

PDSI 0.975 0.071 0.951
GPS-DSI 0.969 0.080 0.938

MC-pair
estimated from

TC-pair
reconstruction

Traditional RS data
NDVI 0.913 0.123 0.822
LST 0.875 0.145 0.753

Space geodetic-observed
Variables

CSR RL05 0.928 0.113 0.849
GFZ RL05 0.929 0.113 0.850
JPL RL05 0.939 0.106 0.868

CSR-mascon 0.938 0.108 0.864
CSR RL06 0.940 0.106 0.868

GPS-VD 0.940 0.107 0.866

Drought Indices

CSR RL05 0.955 0.093 0.898
GFZ RL05 0.956 0.092 0.901
JPL RL05 0.956 0.092 0.901

CSR-mascon 0.953 0.095 0.894
CSR RL06 0.954 0.094 0.896

PDSI 0.970 0.080 0.924
GPS-DSI 0.960 0.089 0.907
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Table 4. Internal evaluation of runoff reconstructed at MT-pair station, and external evaluation of
runoff estimated at TC-pair station based on reconstructed R from relationships between MC-pair
station and abovementioned variables for Lancang River within Yunnan Province.

Station Variables/Indices PCC NRMSE NSE

MC-pair
reconstruction

Traditional RS data
NDVI 0.905 0.124 0.818
LST 0.817 0.168 0.667

Space geodetic-observed
Variables

CSR RL05 0.954 0.088 0.910
GFZ RL05 0.956 0.085 0.915
JPL RL05 0.958 0.084 0.918

CSR-mascon 0.918 0.116 0.843
CSR RL06 0.946 0.094 0.895

GPS-VD 0.911 0.120 0.829

Drought Indices

CSR RL05 0.972 0.069 0.944
GFZ RL05 0.970 0.072 0.940
JPL RL05 0.984 0.052 0.969

CSR-mascon 0.967 0.075 0.935
CSR RL06 0.971 0.070 0.942

PDSI 0.974 0.067 0.948
GPS-DSI 0.972 0.069 0.945

TC-pair
estimated from

MC-pair
reconstruction

Traditional RS data
NDVI 0.929 0.124 0.851
LST 0.816 0.189 0.652

Space geodetic-observed
Variables

CSR RL05 0.945 0.114 0.873
GFZ RL05 0.947 0.113 0.876
JPL RL05 0.952 0.108 0.887

CSR-mascon 0.897 0.150 0.782
CSR RL06 0.937 0.121 0.858

GPS-VD 0.888 0.156 0.764

Drought Indices

CSR RL05 0.955 0.111 0.881
GFZ RL05 0.950 0.118 0.866
JPL RL05 0.966 0.099 0.905

CSR-mascon 0.949 0.113 0.875
CSR RL06 0.957 0.106 0.891

PDSI 0.962 0.096 0.911
GPS-DSI 0.956 0.105 0.893
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Table 5. Internal evaluation of runoff reconstructed at TC-pair station, and external evaluation of runoff

estimated at MC-pair station based on reconstructed R from the relationships between TC-pair station
and abovementioned variables for Lancang River within Yunnan Province.

Station Variables/Indices PCC NRMSE NSE

TC-pair
reconstruction

Traditional RS data
NDVI 0.929 0.119 0.862
LST 0.816 0.186 0.666

Space geodetic-observed
Variables

CSR RL05 0.945 0.105 0.894
GFZ RL05 0.947 0.103 0.897
JPL RL05 0.952 0.098 0.907

CSR-mascon 0.897 0.142 0.805
CSR RL06 0.937 0.112 0.879

GPS-VD 0.888 0.148 0.788

Drought Indices

CSR RL05 0.965 0.085 0.930
GFZ RL05 0.964 0.085 0.930
JPL RL05 0.970 0.078 0.941

CSR-mascon 0.963 0.087 0.927
CSR RL06 0.963 0.087 0.927

PDSI 0.969 0.079 0.940
GPS-DSI 0.972 0.076 0.945

MC-pair
estimated from

TC-pair
reconstruction

Traditional RS data
NDVI 0.905 0.127 0.810
LST 0.817 0.171 0.656

Space geodetic-observed
Variables

CSR RL05 0.954 0.095 0.894
GFZ RL05 0.956 0.093 0.899
JPL RL05 0.958 0.091 0.902

CSR-mascon 0.918 0.122 0.825
CSR RL06 0.946 0.101 0.880

GPS-VD 0.911 0.127 0.812

Drought Indices

CSR RL05 0.957 0.091 0.904
GFZ RL05 0.957 0.091 0.903
JPL RL05 0.965 0.083 0.918

CSR-mascon 0.954 0.094 0.897
CSR RL06 0.955 0.093 0.899

PDSI 0.959 0.089 0.906
GPS-DSI 0.963 0.086 0.913

6. Conclusions

In lieu of employing traditional remote sensing (RS) data for surface runoff (R) reconstruction,
the potential use of upstream GPS vertical displacement (GPS-VD) and its standardization (GPS-DSI) for
R reconstruction at estuaries on a monthly temporal scale is explored. It is found that the reconstructed
R time series at the Mekong River Delta (MRD) from the Mekong River Basin (MRB) upstream GPS-VD
are comparable to those from the GRACE terrestrial water storage (GRACE-S) and traditional RS data.

All reconstructed R time series from the standardized variables, including GRACE-SI, GPS-DSI,
and PDSI, are found to have a 2–7% increase in accuracy in terms of the NRMSE when compared to
those without standardization. The reconstructed R time series from the spatially averaged of the
upstream GPS-DSI is shown to be comparable to that reconstructed by the PDSI, but better than those
obtained by traditional RS data and GRACE-S. The internal evaluation also demonstrates that the
reconstructed R based on GPS-DSI attains a PCC of 0.97 and NSE of 0.94 for both MC-pair and TC-pair
stations. Despite being slightly less accurate than the reconstructed R, the estimated R exhibits an
accuracy that is similar to the above as externally validated via another station location.

The comparison of R reconstruction and estimation from the MC-pair and TC-pair stations
indicates that the remaining backwater effect induced by ocean tides yields a1%–3% in the relative
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error on the estimated Rs in this study. The R reconstructed from the GPS-DSI yields the lowest
NRMSE value of less than 9% when accounting for the main upstream area of the MRB (i.e., Lancang
River within Yunnan Province). This reveals that the best reconstructed R from the GPS-DSI remains
subject to the total relative error of ~9%. This may be caused by our methodology, the remaining
environmental signals in the data time series, and the potential time lag (less than a month) between
the upstream MRB and the MRD.

Overall, the proposed methodology, which employs the upstream GPS-VD and its standardization,
is proven to be a potential alternative for reconstructing and estimating R in the MRB. It is anticipated that
the proposed GPS-VD and its standardization can also be applied to basin-wide discharge estimations
and potentially replace the function of GRACE-S in terms of water balance. Higher temporal resolutions
of the reconstructed and estimated Rs can also be achieved via the GPS because the use of daily GPS-VD
solutions have become a standard practice, and also offers acceptable accuracy.
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