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Abstract: Timely and accurate crop type mapping is a critical prerequisite for the estimation of water
availability and environmental carrying capacity. This research proposed a method to integrate
time series Sentinel-1 (S1) and Sentinel-2 (S2) data for crop type mapping over oasis agricultural
areas through a case study in Northwest China. Previous studies using synthetic aperture radar
(SAR) data alone often yield quite limited accuracy in crop type identification due to speckles. To
improve the quality of SAR features, we adopted a statistically homogeneous pixel (SHP) distributed
scatterer interferometry (DSI) algorithm, originally proposed in the interferometric SAR (InSAR)
community for distributed scatters (DSs) extraction, to identify statistically homogeneous pixel
subsets (SHPs). On the basis of this algorithm, the SAR backscatter intensity was de-speckled, and
the bias of coherence was mitigated. In addition to backscatter intensity, several InSAR products were
extracted for crop type classification, including the interferometric coherence, master versus slave
intensity ratio, and amplitude dispersion derived from SAR data. To explore the role of red-edge
wavelengths in oasis crop type discrimination, we derived 11 red-edge indices and three red-edge
bands from Sentinel-2 images, together with the conventional optical features, to serve as input
features for classification. To deal with the high dimension of combined SAR and optical features, an
automated feature selection method, i.e., recursive feature increment, was developed to obtain the
optimal combination of S1 and S2 features to achieve the highest mapping accuracy. Using a random
forest classifier, a distribution map of five major crop types was produced with an overall accuracy of
83.22% and kappa coefficient of 0.77. The contribution of SAR and optical features were investigated.
SAR intensity in VH polarization was proved to be most important for crop type identification among
all the microwave and optical features employed in this study. Some of the InSAR products, i.e., the
amplitude dispersion, master versus slave intensity ratio, and coherence, were found to be beneficial
for oasis crop type mapping. It was proved the inclusion of red-edge wavelengths improved the
overall accuracy (OA) of crop type mapping by 1.84% compared with only using conventional optical
features. In comparison, it was demonstrated that the synergistic use of time series Sentinel-1 and
Sentinel-2 data achieved the best performance in the oasis crop type discrimination.

Keywords: oasis crop type mapping; Sentinel-1 and 2 integration; statistically homogeneous pixels
(SHPs); red-edge spectral bands and indices; recursive feature increment (RFI); random forest (RF)

1. Introduction

The Xinjiang Uygur Autonomous Region is a major agricultural region in the arid and semi-arid
areas of Northwest China. Due to the dry climate, almost all agriculture in Xinjiang depends on
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irrigation, leading to water shortage. This region relies on large-area cotton cultivation for profit,
with cotton production accounting for over 70% of the national total. Cotton planting consumes
large amounts of water, exacerbating the problem of water scarcity. Some areas in Xinjiang have
undergone structural adjustments of agriculture, reducing the cultivation area of cotton and expanding
the planting scale of two other cash crops, i.e., chili pepper and tomato. These adjustments resulted in
a more complex cropping structure, requiring the timely and accurate mapping of crop distribution.
Crop type distribution is vital information for estimating water availability and environmental carrying
capacity. This is especially important in the arid and semi-arid areas in Northwest China, where oasis
agriculture is the economic pillar, while the ecological environment is relatively fragile.

Optical remote sensing has been widely used in agricultural area mapping and crop classification
in recent years. Approaches utilizing MODIS (Moderate Resolution Imaging Spectroradiometer)
vegetation indices for crop type discrimination only suit for large-open fields, due to the low resolution
(250–500 m) of MODIS data [1–3]. A number of studies used Landsat spectrum and vegetation indices
for crop mapping, but the data availability is heavily limited by cloud cover due to Landsat’s 16-day
revisit interval [4]. Landsat data also encounters mixed-pixel problems in heterogeneous smallholder
farming areas. In addition, crop type discrimination places a higher demand on the spectral resolution.
The increased temporal, spatial, and spectral resolution of Sentinel-2 A/B imagery provides new
opportunities for improving crop type classification over heterogeneous cultivated land compared
with other optical sensors [5,6].

As pointed out by previous studies, due to cloud cover, the optical data discontinuity in key
growth stages of crops can still happen [7]. Furthermore, for crop types with similar phenological
cycles, only using spectral information is still challenging for reliable discrimination of crop types. As
synthetic aperture radar (SAR) can reflect the structure of vegetation, and optical imagery captures the
multi-spectral information of crops, it has been indicated that the synergetic use of SAR and optical
data can be complementary to each other [8,9].

Space-borne SAR, due to its all-day, all-weather capability, wide coverage, and strong penetrating
ability, has been increasingly used in crop classification, to complement with the use of optical imagery.
It was found that considerable improvement can be achieved by increasing polarization channels [10,11].
Some studies suggested that using multi-temporal acquisitions can improve the accuracy of crop type
mapping, and cross-polarized backscatter outperforms other polarization modes [12,13]. The launches
of Sentinel-1 A and B satellites dramatically increased the volume of freely available SAR data, with
dual-polarization modes, a 12-day revisit time, and 20 m spatial resolution. Thus, Sentinel-1 data is
more desirable for medium to high-resolution crop mapping. However, affected by speckles inherent
in SAR imaging systems, crop type mapping using SAR data alone yields quite limited accuracy [14].
The work by Ban et al. suggested that apart from speckles, the single parameter, high incidence
angle SAR system used in their study did not provide sufficient differences to differentiate some crop
species [15]. Thus, due to the limited viewing angles and orbits of available SAR data in most study
cases, the sole use of SAR data may not be sufficient for crop type classification, especially in complex
cropping systems.

By the synergic use of microwave Sentinel-1 features and optical Sentinel-2 features, the accuracy
of crop discrimination can be potentially improved [15–18]. However, despite the existing studies to
combine SAR and optical images for crop classification, few studies (1) explored the performance of
individual InSAR products (such as coherence, amplitude dispersion, and master versus slave intensity
ratio) in crop type identification. Regarding the de-speckling of SAR intensity, the conventional
procedure presented in previous studies uses a regular-shaped window (e.g., boxcar filter, Lee filter,
refined Lee filter, etc.) to reduce speckle effects, but in the meantime blurs the image especially over
textural areas [19].

The combination of SAR and optical imagery resulted in hundreds of input features (also known
as input variables) for the classification model. We adopted a supervised random forest classifier in the
crop classification due to its high capacity to deal with a large number of input features. Nevertheless, it
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has been reported that the classification accuracy can be considerably increased by removing redundant
features [20]. Feature selection is a crucial step to improve the performance of a classifier. From an
operational perspective, the manual selection of such high-dimensional features is not desirable. Many
approaches used separability criterion or hypothetical tests to select features based on assumptions
of the sample distribution. In some cases, these assumptions were not satisfied, particularly when
using SAR features. Moreover, crop samples can even break the assumption of unimodal distribution.
For example, the sowing and harvesting dates are usually farmer customized; crop growth stages are
affected by local weather conditions and soil conditions; therefore, they are site-specific. Thus, we
prefer not to use separability criterion or hypothetical tests to select features. In the literature, several
methods based on machine learning algorithms have been proposed for feature selection [21,22]. Some
studies indicated the built-in attribute of random forest, the feature importance score, can be utilized
as a ranking criterion to aid feature selection.

The objective of this research is to develop a method to integrate time series Sentinel-1 and Sentinel-2
features for the mapping of typical oasis crop distribution in heterogeneous smallholder farming areas.
Firstly, in addition to SAR backscatter intensity, a number of InSAR products were extracted from time
series Sentinel-1 data, such as the interferometric coherence, amplitude dispersion, and master versus
slave intensity ratio. A statistically homogeneous pixel (SHP) distributed scatterer interferometry
(DSI) [23,24] algorithm, originally proposed in the interferometric SAR (InSAR) community to identify
distributed scatters (DSs), was adopted for the de-speckling of backscatter intensity and bias mitigation
of coherence coefficient, so as to improve the quality of SAR features. To the best of our knowledge,
this is the first time the use of amplitude dispersion and bias mitigated coherence is explored in crop
type discrimination. Secondly, optical features were extracted from multi-temporal Sentinel-2 images.
In particular, red-edge spectral bands and 11 indices were derived and included as input features
for the oasis crop classification. Thirdly, a recursive feature increment (RFI) approach, on the basis
of random forest feature importance, was proposed to obtain the optimal combination of S1 and S2
features for crop type discrimination. Finally, a random forest classifier was applied to the optimal
feature set to produce a crop type distribution map. This study aims to answer the following questions:
(1) Does the integration of Sentinel-1 and Sentinel-2 features achieve better performance than using
SAR or optical features alone in the oasis crop type mapping? (2) If yes, which SAR feature has the
most significant contribution? Are there any InSAR products that are capable of distinguishing oasis
crop types? (3) To what extent can the inclusion of red-edge spectral bands and indices improve the
accuracy of the oasis crop type identification? Which red-edge band or indices contribute most?

2. Materials and Methods

2.1. Study Area

The study area is located in oasis agricultural areas in Bayingolin Mongol Autonomous Prefecture,
Xinjiang Uyghur Autonomous Region, China, encompassing the area 40.61◦–42.44◦ N, 85.82◦–87.14◦ E
(Figure 1). This area is situated in the southern foothills of the Tianshan Mountains, on the north-eastern
edge of the Tarim Basin, adjacent to the west bank of Bosten Lake, and to the north of the Taklimakan
Desert. This region features a warm temperate continental climate, with much more evaporation
than precipitation. It has a representative planting pattern in the arid and semi-arid regions of
Northwest China.

The major crop types cultivated from spring to autumn include cotton, spring corn, summer corn,
pear, chili pepper, tomato, etc. Cotton is sown from early April to early May and harvested by the
end of September. Spring corn is sown in mid-April to early June and harvested in mid-August to
mid-September. Summer corn is sown in mid-June to mid-July and harvested by early October. Pear
starts budding in late March, flowering from late March to the end of April, fruiting from May to
early September, and is harvested in September. Chili pepper and tomato seedlings are nurtured in
greenhouses from February to March, transplanted to open fields from mid-April to early May. Tomato
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is harvested in August, and chili pepper is harvested in October. Phenological calendars of the five
crop types are summarized in Table 1.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 28 
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collected sample points of major crop types are highlighted. The overlapped area of Sentinel-1 IW2 
sub-swath (in the blue rectangle) and mosaicked coverage of Sentinel-2 scenes (in the black rectangle) 
is the area of interest in this study. The background image is a true color Google Earth high-resolution 
image. Map data: Google Earth, Image © 2020 Europa Technologies. 
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Figure 1. The study area across Yuli, Korla, Bohu, Yanqi, Hejing, and Hoxud counties in Bayin Guoyu
Mongolian Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China. The in-situ collected
sample points of major crop types are highlighted. The overlapped area of Sentinel-1 IW2 sub-swath
(in the blue rectangle) and mosaicked coverage of Sentinel-2 scenes (in the black rectangle) is the area
of interest in this study. The background image is a true color Google Earth high-resolution image.
Map data: Google Earth, Image© 2020 Europa Technologies.

Table 1. Phenological calendars of the major crop types in the study site.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cotton 4 4
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2.2. Data 

2.2.1. In-Situ Reference Data 

Ground samples of six land cover types (cropland, forest, urban area, desert, waterbody, and 
wetlands) were visually identified from Google Earth high-resolution images in terms of polygons. 
These sample polygons were resampled to generate randomly placed points for each cover type 
(Table 2). Individual fields of five crop species were collected in a field campaign in July 2018. Crop 
sample points were randomly extracted from each field under the condition that the minimum 
distance between any two points must be no less than 20 m. This was done in ArcGIS Data 
Management toolbox. Stratified K fold was applied in the units of crop fields; that is, sample points 
from the same field can only be used for training or testing. Thus, training samples are not spatially 
correlated to the samples used in validation. In the crop type classification, five folds were used to 
verify the accuracy, and the details are shown in Table 3. 

Table 2. Ground samples of the six land cover types in the study area. 

Land Cover Type Sample Points 
Cropland 3817 

Forest 1468 
Desert 1468 

Urban area 2349 
Waterbody 3257 
Wetlands 3125 

Table 3. Ground samples collected for major crop types in the study area. 

Crop Type Fold 
Training Samples Testing Samples 

No. of Fields No. of Points Points No. of Fields No. of Points 

Chili pepper 

1st 57 148 18 37 
2nd 50 147 25 38 
3rd 68 147 7 38 
4th 63 151 12 34 
5th 71 147 4 38 

Corn 

1st 23 89 9 22 
2nd 25 88 7 23 
3rd 30 90 2 21 
4th 29 87 3 24 
5th 21 90 11 21 

Cotton 

1st 37 150 13 38 
2nd 43 151 7 37 
3rd 43 152 7 36 
4th 34 151 16 37 
5th 43 152 7 36 

Pear 

1st 22 76 2 19 
2nd 20 78 4 17 
3rd 15 76 9 19 
4th 18 77 6 18 
5th 21 73 3 22 
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√
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2.2. Data

2.2.1. In-Situ Reference Data

Ground samples of six land cover types (cropland, forest, urban area, desert, waterbody, and
wetlands) were visually identified from Google Earth high-resolution images in terms of polygons.
These sample polygons were resampled to generate randomly placed points for each cover type
(Table 2). Individual fields of five crop species were collected in a field campaign in July 2018. Crop
sample points were randomly extracted from each field under the condition that the minimum distance
between any two points must be no less than 20 m. This was done in ArcGIS Data Management
toolbox. Stratified K fold was applied in the units of crop fields; that is, sample points from the same
field can only be used for training or testing. Thus, training samples are not spatially correlated to the
samples used in validation. In the crop type classification, five folds were used to verify the accuracy,
and the details are shown in Table 3.

Table 2. Ground samples of the six land cover types in the study area.

Land Cover Type Sample Points

Cropland 3817
Forest 1468
Desert 1468

Urban area 2349
Waterbody 3257
Wetlands 3125

Table 3. Ground samples collected for major crop types in the study area.

Crop Type Fold
Training Samples Testing Samples

No. of Fields No. of Points Points No. of Fields No. of Points

Chili pepper

1st 57 148 18 37
2nd 50 147 25 38
3rd 68 147 7 38
4th 63 151 12 34
5th 71 147 4 38

Corn

1st 23 89 9 22
2nd 25 88 7 23
3rd 30 90 2 21
4th 29 87 3 24
5th 21 90 11 21

Cotton

1st 37 150 13 38
2nd 43 151 7 37
3rd 43 152 7 36
4th 34 151 16 37
5th 43 152 7 36

Pear

1st 22 76 2 19
2nd 20 78 4 17
3rd 15 76 9 19
4th 18 77 6 18
5th 21 73 3 22

Tomato

1st 19 104 2 31
2nd 16 108 5 27
3rd 19 108 2 27
4th 15 110 6 25
5th 15 110 6 25
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2.2.2. Satellite Data

To monitor the growth stages of major crop types cultivated from spring to autumn in the study
area, we examined Sentinel-1 and Sentinel-2 data acquired in the time period from late March to early
October. After discarding Sentinel-2 acquisitions with too much cloud cover (more than 20%), there
were in total eight Sentinel-2 acquisitions left. The available number of the Sentinel-1 and Sentinel-2
acquisitions for each month is summarized in Table 4.

Table 4. The employed Sentinel-1 and Sentinel-2 acquisitions of each month.

Acquisition Time Mar Apr May Jun Jul Aug Sep Oct

Sentinel-1A 1 2 3 3 3 3 2 2
Sentinel-2A 0 0 1 0 0 1 1 1
Sentinel-2B 0 0 0 1 1 0 1 1

The employed Sentinel-1 data is the level-1 interferometric wide swath (IW) single look complex
(SLC) data. In total, 18 acquisitions were used (Table 5).

Table 5. Metadata of the data stack of Sentinel-1 (S1) interferometric wide swath (IW) single look
complex (SLC) data using the parameters from the first image. These values remain very close for all
subsequent acquisitions.

Sentinel-1 IW SLC Data

First acquisition 26 March 2018
Last acquisition 16 October 2018
Pass direction Ascending

Polarization mode VV + VH
Incidence angle (◦) 36.12–41.84
Wavelength (cm) 5.5 (C-band)

Range spacing (m) 2.33
Azimuth spacing (m) 13.92

The Sentinel-2 data used in this study is the MSI Level-1C data (Table 6). In total, eight acquisitions
were used, spanning the time from 9 May 2018 to 11 October 2018.

Table 6. Central wavelength and bandwidth of different spectral bands of Sentinel-2 data used in
this research.

Spatial Resolution (m) Spectral Bands S2A S2B

Central Wavelength (nm) Central Wavelength (nm)

10

B2 Blue 496.6 492.1
B3 Green 560 559
B4 Red 664.5 665
B8 Near-infrared (NIR) 835.1 833

20

B5 Red-edge 1 703.9 703.8
B6 Red-edge 2 740.2 739.1
B7 Red-edge 3 782.5 779.7

B8A NIR narrow 864.8 864

B11 Short-wave infrared (SWIR) 1 1613.7 1610.4
B12 SWIR 2 2202.4 2185.7

2.3. Methods

The workflow used in this research is provided in Figure 2.
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Figure 2. The workflow of crop type mapping by the integration of time series Sentinel-1 and
Sentinel-2 features.

Firstly, a number of SAR features were extracted from time series Sentinel-1 data. It has been
reported intensity and derived ratios (VV versus VH ratio, and the normalized ratio procedure between
bands (NRPB)) can monitor the vegetation changes. Some studies indicated that SAR interferometric
coherence can potentially improve the discrimination capability of different land cover types [25–28].
Thus, the backscatter intensity, interferometric coherence, and their derivative products were derived
as SAR features for crop mapping. A by-product from interferometric pairs was also included; that
is, the master versus slave intensity ratio computed respectively for the VH and VV polarization
modes. In addition, we derived a statistic of time series SAR intensity, i.e., the amplitude dispersion
computed respectively for VH and VV polarization. The amplitude dispersion was originally used in
multi-temporal interferometric SAR (InSAR) for the initial selection of persistent scatters, which is a
good indicator to distinguish vegetated surface and man-made structures, bare rocks, etc.

Secondly, optical features were derived from Sentinel-2 images. In addition to the conventional
features, such as the visible, NIR (Near-infrared), SWIR (Short-wave infrared) bands, normalized
difference vegetation index (NDVI), and normalized difference water index (NDWI), the red-edge
spectral bands were also extracted. A total of 11 red-edge indices (will be detailed in Table 7)
were calculated for each S2 acquisition, in order to thoroughly explore the contribution of red-edge
wavelengths in crop type discrimination.

To deal with the high dimensional input features for the classifier, we proposed a recursive
feature increment approach to select the optimal combination of SAR and optical features (detailed in
Section 2.3.2) based on the random forest feature importance ranking.
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A two-step hierarchical cotton mapping strategy (Figure 2) was implemented in this research. In
step 1, the entire field site was classified into six land cover types, i.e., cropland, forest, desert, urban
area, water body, and wetlands, so as to create a cropland mask. In the second step, the cropland
was mapped into five different crop types, including chili pepper, corn, cotton, pear, and tomato. The
automated feature selection method and RF classification were used both in step 1 and step 2, as
illustrated in Figure 2.

2.3.1. Data Processing and Feature Extraction

1. Sentinel-1 Data Processing and Feature Extraction

All Sentinel-1 IW SLC images were pre-processed by the SNAP—ESA Sentinel Application
Platform v7.0.0 (http://step.esa.int). Processing steps include co-registration, de-burst, and subset. To
derived InSAR products, in total, 17 interferometric pairs were formed for each polarization mode using
the acquisition on 26 March 2018 as the common master image, and all the subsequent acquisitions as
the slave images. The next step is the de-speckling of intensity and accurate estimation of coherence.
As pointed out by [29], using regular-shaped windows, conventional de-speckling methods average the
values of neighboring pixels indiscriminately, leading to degraded image resolution and blurred edges
between objects of different scattering characteristics. Furthermore, conventionally, the coherence
is calculated by a regular-shaped sliding window, which unavoidably averages pixel values from
different distributions (e.g., belonging to different land cover types), resulting in a biased estimation.
In this study, a SHP DSI algorithm [23,24] was applied to the single look complex SAR data prior to
SAR feature extraction. Here, we briefly summarize the principles and processing steps of the SHP
DSI algorithm:

In SAR images, there are large numbers of distributed scatters (DSs) that exist in a resolution cell
in cropland, forest, desert, etc. DSs cannot dominate the backscatter characteristics of a resolution cell,
and the pixel appears as a random variable along the time dimension. When the SAR time series is
sufficiently long, according to the central limit theorem, the vector sum of all the distributed scatters
from a pixel can be defined as a complex Gaussian random variable. In a SAR image, we can identify
if a pixel has the same statistical distribution with the other using the confidence interval. In this
way, pixels can be divided into different statistically homogeneous pixel (SHP) subsets. The SHP DSI
algorithm applies a modified Lee filtering method to the diagonal elements of the complex covariance
matrix of an arbitrary pixel, on the basis of the SHP subset that the pixel belongs to, to obtain filtered
time series intensity.

As for the interferometric coherence, for an arbitrary pixel i, the coherence coefficient is
calculated as:

γ =

∣∣∣∣∣∣ K∑
i=1

S1(i)S∗2(i)

∣∣∣∣∣∣√
K∑

i=1

∣∣∣S1(i)
∣∣∣2 K∑

i=1

∣∣∣S2(i)
∣∣∣2 (1)

where S1(i) and S2(i) represent the corresponding complex values of the pixel i in the master and
slave images, and K is the number of pixels in an SHP subset where the pixel i is located. Firstly,
the coherence coefficient is calculated on the basis of each SHP subset for the purpose of removing
the errors caused by the image texture. Secondly, a maximum-likelihood fringe rate algorithm [24]
is applied to compensate for the interferometric fringe pattern. Finally, the bias in the coherence
estimation is further mitigated using the second kind of statistical estimator proposed by [30].

After the implementation of the SHP DSI algorithm, we obtained the de-speckled backscatter
intensity and bias-corrected coherence coefficient for each acquisition date. The units of VH and VV
intensity were both converted decibels (dB). On this basis, a number of other Sentinel-1 features were
generated as follows.

http://step.esa.int
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As one of the InSAR products, the master versus slave intensity ratio of the VH and VV polarization
modes was calculated as

Intensity_VH_mst/slv_ratio =
intVH,mst
intVH,slv

Intensity_VV_mst/slv_ratio =
intVV,mst
intVV,slv

(2)

where intVH,mst, intVV,mst and intVH,slv, intVV,slv are respectively the backscatter intensity (in the unit of
dB) of the master and slave images of each interferometric pair with the VH, VV polarization mode.

A statistic previously used in multi-temporal InSAR, i.e., amplitude dispersion is calculated as

amp_dispVH =
std(ampVH)

mean(ampVH)
, amp_dispVV =

std(ampVV)

mean(ampVV)
(3)

where ampVH and ampVV represent the amplitude of each Sentinel-1 acquisition of the VH and VV
polarization mode.

A by-product of backscatter intensity, i.e., VV versus VH intensity ratio is calculated as

Intensity_VV/VH_ratio =
intVV

intVH
(4)

where intVV and intVH are respectively the backscatter intensity (in the unit of dB) of each Sentinel-1
acquisition.

Another intensity-based ratio, the normalized ratio procedure between bands (NRPB) [31] is
calculated as

NRPB =
intVH − intVV

intVH + intVV
(5)

Table 7. Spectral indices calculated from Sentinel-2 data.

Reference Spectral Indices Formula

NDVI Normalized Difference Vegetation Index NDVI = (B8−B4)
(B8+B4)

NDWI Normalized Difference Water Index NDWI = (B3−B8)
(B3+B8)

Red-edge spectral indices Formula

NDVIre1 Normalized Difference Vegetation Index
red-edge 1 [32]

NDVIre1 =
(B8−B5)
(B8+B5)

NDVIre1n Normalized Difference Vegetation Index
red-edge 1 narrow [6]

NDVIre1n =
(B8a−B5)
(B8a+B5)

NDVIre2 Normalized Difference Vegetation Index
red-edge 2 [6]

NDVIre2 =
(B8−B6)
(B8+B6)

NDVIre2n Normalized Difference Vegetation Index
red-edge 2 narrow [6]

NDVIre2n =
(B8a−B6)
(B8a+B6)

NDVIre3 Normalized Difference Vegetation Index
red-edge 3 [32]

NDVIre3 =
(B8−B7)
(B8+B7)

NDVIre3n Normalized Difference Vegetation Index
red-edge 3 narrow [6]

NDVIre3n =
(B8a−B7)
(B8a+B7)

CIre Chlorophyll Index red-edge [33] CIre = B7
B5 − 1

NDre1 Normalized Difference red-edge 1 [32] NDre1 =
(B6−B5)
(B6+B5)

NDre2 Normalized Difference red-edge 2 [34] NDre2 =
(B7−B5)
(B7+B5)

MSRre Modified Simple Ratio red-edge [35] MSRre = (B8/B5)−1
√
(B8/B5)+1

MSRren Modified Simple Ratio red-edge narrow [6] MSRren =
(B8a/B5)−1
√
(B8a/B5)+1
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In summary, we derived 10 subcategories of features from Sentinel-1 data. Adding features of
different acquisition dates together, 142 Sentinel-1 features were produced, geocoded, and resampled
to 10 m resolution.

2. Sentinel-2 Data Processing and Feature Extraction

Sentinel-2 data were firstly processed from Level-1C to Level-2A surface reflectance using a
Sen2Cor—ESA Sentinel-2 Level 2A processor (https://step.esa.int/main/third-party-plugins-2/sen2cor/
(accessed on 30 October 2019)). Cirrus cloud correction was done during the Level-1C to Level-2A
processing by Sen2Cor. Pixels covered by thick clouds were masked out using the opaque clouds band
in the Level-2A product metadata. All spectral bands of 10 m and 20 m spatial resolution, including
the red-edge bands (Band 5, Band 6, and Band 7) were included in the analysis. The 20 m resolution
bands were resampled to 10 m resolution for further processing. Apart from the normalized difference
vegetation index (NDVI) and normalized difference water index (NDWI), 11 red-edge indices (Table 7)
were generated for each Sentinel-2 acquisition.

All geocoded Sentinel-1 features were aligned with the Sentinel-2 features. In summary, 33
subcategories, a total of 326 Sentinel-1 and Sentinel-2 features, were produced for subsequent analysis.

2.3.2. Optimal Feature Selection and Classification

1. Random Forest Classification

The random forest (RF) classifier [36] was deployed in this study for both cropland extraction
and crop type classification. Random forest is a machine learning algorithm for classification, which
consists of an ensemble of decision trees where each tree has a unit vote for the most popular class
to classify. RF has been widely used for remote sensing classification, as it runs efficiently on large
databases and performs well with high-dimensional features.

In this study, we used the RF classifier from the Scikit-learn Python module [37] for classification.
The two key parameters, i.e., the number of trees and the number of features in each node, were chosen
by analyzing the out-of-bag (OOB) errors. As a result, the number of trees was set as 450 in step 1 and
550 in step 2, and the number of maximum features in each tree was set as the square root of the total
number of input features in both steps.

2. Optimal S1 and S2 Input Variable Selection Using Recursive Feature Increment (RFI) Method

Inspired by the backward feature elimination method [22], we proposed a forward feature selection
approach to obtain the optimal combination of S1 and S2 features, which is referred to as the recursive
feature increment (RFI) method.

Firstly, a feature importance ranking was obtained by the permutation importance of random
forest calculated for each feature. The permutation importance assesses the impact of each feature
on the accuracy of the random forest model. The general idea is to randomly permute the feature
values and measure the decrease of the accuracy due to the permutation. In this study, we utilized the
permutation importance function from the ELI5 package to estimate the feature importance.

Secondly, using the feature ranking with the most important feature placed at the top, RF
classification was implemented by recursively considering bigger and bigger feature sets, starting
from one feature and adding one at a time. For the feature set at each iteration, an RF classifier is
parameterized and assessed using stratified k-fold cross-validation, with the mean overall accuracy
(OA), mean kappa coefficient, and mean f1 score of all classes, as well as the f1 score of individual
class recorded.

Finally, by analyzing the time series of the accuracy metrics, for example, the kappa coefficient,
the feature set corresponding to the iteration achieving the highest accuracy is selected as the optimal
combination of S1 and S2 features.

https://step.esa.int/main/third-party-plugins-2/sen2cor/
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3. Accuracy Assessment

The performance of classification was assessed using stratified k-fold cross-validation. The entire
sample dataset was split into k stratified “folds”. The folds were made by preserving the percentage of
samples for each class. In the case of unbalanced samples, this is to ensure that each fold is a good
representative of the whole. For each fold in the sample dataset, the classification model was trained on
k-1 folds and tested on the kth fold. This was repeated until each fold had served as the test set. Three
accuracy metrics were used in this study, i.e., the overall accuracy (OA), Cohen’s kappa coefficient,
and F1 score of each class. All these metrics were averaged over the k folds.

The OA is calculated from the confusion matrix by adding the number of correctly classified sites
together and dividing it by the total number of the reference sites. It is to test what proportion were
mapped correctly out of all of the reference sites. From the confusion matrix, the producer’s accuracy
(PA, also referred to as recall) and the user’s accuracy (UA, also referred to as precision) can also be
calculated. UA (precision) is the ratio of correctly predicted positive observations to the total predicted
positive observations; PA (recall) is the ratio of correctly predicted positive observations to all the
observations in the actual class. The kappa coefficient is to evaluate if the classification does better
than randomly assigning values by taking into account the possibility of the agreement occurring by
chance. In the case of uneven class distribution, the F1 score is a more useful metric than OA, as it is a
weighted average of precision and recall. The F1 score for each class is calculated as follows:

F1 = 2
precision× recall
precision + recall

(6)

3. Results

3.1. Step 1: Cropland Extraction

A random forest (RF) classifier was applied to the Sentinel-1 and Sentinel-2 features for land cover
classification, so as to generate a cropland mask. As the purpose of this step is to extract a cropland
mask, we use the F1 score of cropland (Figure 3) as the accuracy metric for the RFI feature selection
(Section 2.3.2). The top 114 features in the importance ranking were selected. The feature importance
scores of the top six features are displayed in Figure 4, with corresponding boxplots of different land
cover types shown in Figure 5.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 28 
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Figure 5. Boxplots of the top six most important features of different land cover types. Each feature is
named by its subcategory and acquisition time in the format of “yyyymmdd”.

In Figure 5, the top six features exhibit a good ability to distinguish different cover types, which
reflects the reliability of the RFI feature selection method.

The random forest classifier was parameterized using the selected 114 features to generate a
land cover map (Figure 6a). Then, a cropland mask (Figure 6b) was produced from the land cover
classification results. The land cover classification accuracy was assessed using 10-fold cross-validation
(Table 8).
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Figure 6. (a) Land cover classification map; (b) cropland mask extracted from the land cover
classification results.

Table 8. Accuracy of step 1 land cover classification, assessed by stratified 10-fold cross-validation
using the ground samples. OA: overall accuracy.

Mean OA (%) Kappa Coefficient F1 Score

94.05% 0.927

Cropland 0.942
Forest 0.835
Desert 0.908

Urban area 0.932
Waterbody 0.995
Wetlands 0.945

3.2. Step 2: Crop Type Mapping

3.2.1. Optimal S1 and S2 Feature Combination and Crop Type Mapping

Using the RFI feature selection method, we obtained the optimal combination of Sentinel-1 and 2
features for crop type discrimination. In this case, the kappa coefficient was used as the main accuracy
metric to determine the final feature set. The mean OA achieved its maximum at the same time as the
kappa coefficient, at the 113th iteration. Thus, in total, 113 features were selected. The mean OA and
mean kappa coefficient averaged over the k-fold cross-validation are plotted in Figure 7. The feature
importance scores of the top six features selected for crop type classification are shown in Figure 8.
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Figure 8. The feature importance score of the top six features selected by the RFI method for crop
type classification, in descending order. Each importance score was normalized and converted to a
percentage. Each feature is named by its subcategory and acquisition time in the format of “yyyymmdd”.

The boxplots of the top six features (Figure 9) reveal the good separability of different crop types,
which proves the rationality of the RFI feature selection results. For example, the intensity of the VH
mode reflects a good ability to distinguish pear from other crop types in March. Pear values in Band 8
(NIR) in July show a clear distinction from other crops. Corn can be easily separated in the red-edge
index NDVIre2n in September. Cotton is clearly distinguished in Band 11 (SWIR 1) in June.

Based on the optimal combination of S1 and S2 features, a random forest classification model was
trained using the ground samples and applied to the whole study area to produce a crop distribution
map (Figure 10). The classification accuracy was assessed by fivefold cross-validation (Table 9). Besides,
the accuracy was also verified by a “one sample per field” method; that is, from an individual validation
field (as listed in Table 3), only one sample was extracted. In this method, the validation samples are
independent from each other. The corresponding accuracy metrics are listed in Table 10.
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Figure 9. Boxplots of different crop types of the top six important features selected by the RFI approach.
Each feature is named by its subcategory and acquisition time in the format of “yyyymmdd”. (a)
Boxplots of the band 11 values from the 3 June 2018 acquisition of Sentinel-2; (b) boxplots of the band 6
values from the 17 August 2018 acquisition of Sentinel-2; (c) boxplots of the NDVIre2n indices derived
from the 1 September 2018 acquisition of Sentinel-2; (d) boxplots of the VH intensity values from the 26
March 2018 acquisition of Sentinel-1; (e) boxplots of the band 8 values from the 23 July 2018 acquisition
of Sentinel-2; (f) boxplots of the band 7 values from the 17 August 2018 acquisition of Sentinel-2.
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Table 9. Accuracy of step 2 crop type classification using the optimal combination of S1 and S2 features,
assessed by stratified fivefold cross-validation using the ground samples.

Mean OA (%) Kappa Coefficient F1 Score

86.98% 0.83

Chili pepper 0.84
Corn 0.71

Cotton 0.97
Pear 0.94

Tomato 0.79

Table 10. Accuracy of step 2 crop type classification using the optimal combination of S1 and S2
features, assessed by stratified fivefold cross-validation using one sample from each validation field.

Mean OA (%) Kappa Coefficient F1 Score

83.22% 0.77

Chili pepper 0.87
Corn 0.69

Cotton 0.91
Pear 0.89

Tomato 0.71

From Figure 10, we can see that pears are mainly planted in Korla County; the four counties near
Bosten Lake (Bohu, Yanqi, Hejing, and Hoxud) are the main production areas of chili peppers and
tomatoes; cotton is mostly cultivated in Yuli County on the edge of the Tarim Basin. Corn cultivation
spreads across the whole study area.

3.2.2. Performance Comparison of SAR Features Filtered by Different Methods in Crop Classification

In this section, we compare the crop classification results obtained using SAR features processed by
conventional de-speckling methods and the SHP DSI method. The input variables include all the SAR
features mentioned in Section 2.3.1. In the conventional procedure, the intensity and intensity-derived
features were de-speckled using a 7 × 7 refined Lee filter, and the coherence was estimated using a 7 ×
7 sliding window. In the SHP DSI method, statistically homogeneous pixels (SHPs) were identified
based on a 5 × 9 window using the intensity stack formed by 18 acquisitions. Then, the de-speckled
intensity and accurately estimated coherence were obtained by the procedure described in Section 2.3.1.
An example intensity of a subset area extracted from the original SAR intensity, intensity filtered by
refined Lee method, and intensity filtered by the SHP DSI method are compared in Figure 11. Figure 12
shows the example coherence of the same subset area extracted from the interferometric coherence
estimated respectively using a 7 × 7 sliding window and the SHP DSI method. The crop classification
accuracy obtained by using SAR features processed by different filtering algorithms is listed in Table 11.
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radar (SAR) intensity; (b) SAR intensity filtered by the refined Lee method; (c) SAR intensity filtered by
the SHP distributed scatterer interferometry (DSI) method.
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Figure 12. A subset of VV coherence on 7 April 2019 extracted from (a) Coherence coefficient
estimated by a 7 × 7 sliding window; (b) Coherence coefficient estimated by the SHP DSI method with
bias mitigation.

Table 11. Accuracy metrics of crop type classification using SAR features processed by different filters.
SHP: statistically homogeneous pixel.

Mean OA Kappa
Coefficient

F1-Score
Chili

F1-Score
Corn

F1-Score
Cotton

F1-Score
Pear

F1-Score
Tomato

Original 60.20% 0.48 0.55 0.33 0.67 0.72 0.58
Refined Lee 73.21% 0.65 0.66 0.52 0.80 0.83 0.74

SHP DSI 79.46% 0.73 0.75 0.60 0.88 0.86 0.77

In Figure 11, it is evident that the speckles in original SAR intensity are both reduced by a refined
Lee filter and SHP DSI filter, but the sharpness and details of each image is better preserved in (c). In
Figure 12, it is found the coherence over a water body is overestimated in (a). This bias is reduced in (b)
by using the SHP DSI method. It is clear the coherence in (b) exhibits less salt and pepper-like noise.

In Table 11, it is demonstrated that the SAR features filtered by the SHP DSI method yield the best
accuracy in crop type classification. Compared with the results of using a refined Lee algorithm, the
overall accuracy is increased by 6.25%, the kappa coefficient is improved by 0.08, and the F1-scores of
each crop type are all improved.

3.2.3. Performance Comparison of Features from Different Sources in Crop Type Mapping

A comparison was conducted on the performance of crop type classification using four groups of
features. The first group includes only Sentinel-1 features; the second group contains only conventional
optical features exclusive of red-edge features; the third group comprises all Sentinel-2 features
inclusive of red-edge contribution; the last group consists of the both SAR and optical features. The
same feature importance ranking obtained in Section 3.2.1 was used for all groups. For each feature
group, the optimal feature set was individually determined by the RFI feature selection method, using
the kappa coefficient of each group as the accuracy metric. The mean OA and kappa coefficient reached
the maximum at the same iteration index for each test, as summarized in Table 12. The corresponding
F1 scores of different crop types are compared in Figure 13.



Remote Sens. 2020, 12, 158 18 of 27

Table 12. Accuracy assessment of crop type discrimination using different groups of features. The
mean overall accuracy (OA) and kappa coefficient were averaged over fivefold cross-validation in both
multi-sample per field validation and one sample per field validation.

Optimal Number
of Features

Mean OA Kappa Coefficient

Multi Samples
per Field

One Sample
per Field

Multi Samples
per Field

One Sample
per Field

Sentinel-1 133 79.46% 76.91% 0.73 0.69

Sentinel-2 without
red-edge features 58 82.37% 79.80% 0.77 0.72

Sentinel-2 104 85.43% 81.64% 0.81 0.75

Sentinel-1 and
Sentinel-2 113 86.98% 83.22% 0.83 0.77
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Figure 13. Comparison of crop type mapping results using different feature combinations. Four groups
of features were tested, the first group contains only SAR (Sentinel-1) features, the second group
contains only optical (Sentinel-2) features without the red-edge contribution, the third group has all of
the Sentinel-2 features, the fourth group includes both SAR and optical (Sentinel-1 and 2) features.

In both Table 12 and Figure 13, it is evident that the combination of SAR and optical features
achieved the best accuracy in crop type discrimination. The inclusion of red-edge bands and indices
improved the mean OA and kappa coefficient respectively by 1.84% and 0.03 (3.06% and 0.04% in
multi-samples per field validation), compared with the results using other Sentinel-2 features. By
integrating the optical and SAR features, the mean OA and kappa coefficient were improved by
1.58% (1.55% in multi-samples per field validation) and 0.02% compared with the results only using
Sentinel-2 features. In Figure 13, among the five crop types, the F1 score of chili pepper and corn were
significantly improved by the inclusion of red-edge features.

4. Discussion

4.1. Importance of Features from Different Sources

The accumulated importance scores were calculated by subcategories (Figure 14), different data
sources (Figures 15a and 16a), and the month of acquisition (Figures 15b and 16b).
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Among the features selected for cropland extraction (Figure 14a), it is found that the SWIR 2 
band (Band 12) contributed the most in the cropland extraction, followed by the Sentinel-1 VH 
intensity and Band 11 (SWIR 1), again the red-edge 1 (Band 5), and NDWI. 
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(red-edge 2), Band 4 (red), and Band 5 (red-edge 1). The optimal feature set comprises six 
subcategories of SAR features, 13 subcategories of red-edge features, and nine subcategories of 
conventional optical features. The contribution of features from different data sources will be 
explored in detail later. 

It should be noted that the VH intensity held a significant share in both land cover classification 
and crop discrimination. The intensity ratio between bands, i.e., S1 NRPB and VV versus VH intensity 
ratio were only used in land cover classification. As for InSAR products, it is found that the VV 
coherence was selected in step 2. No coherence was selected in step 1. The coherence feature with the 
highest score in its subcategory, i.e., the VH coherence on 17 August 2018, ranked 118 in the RF 
permutation importance results in step 1. Its importance score was 0.27%, which is comparable to the 
score of 0.29% of the last chosen feature, NDre2 (red-edge) index on 23 July 2018. The amplitude 
dispersion of VH polarization, the master to slave intensity ratio in both polarization modes, were 
used in both step 1 and step 2. 

All conventional optical features and the three red-edge spectral bands contributed to both the 
land cover classification. Regarding the red-edge indices, “NDVIre3” was only used in step 1; all the 
other 10 indices were selected for both cropland extraction and crop type identification. 
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Figure 14. Accumulated feature importance scores of features selected for (a) step 1: cropland extraction
and (b) step 2: crop type discrimination, calculated for each subcategory regardless of acquisition time.
Each importance score was normalized and converted to a percentage. Each feature is named by its
subcategory and acquisition time in the format of “yyyymmdd”.
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Figure 15. The accumulated importance scores of features selected in step 1: cropland extraction in three
groups. The first group contains only Sentinel-1 features; the second group comprises only Sentinel-2
features exclusive of the red-edge features; the third group includes only the red-edge features. (a)
Feature scores in the three groups calculated regardless of the acquisition time; (b) Feature scores in the
three groups calculated for each month. The VH amplitude dispersion, as a single-phase feature, is
plotted on the rightmost bar. Each importance score was normalized and converted to a percentage.
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Figure 16. The accumulated importance scores of features selected in step 2: crop type discrimination
in three groups. The first group contains only Sentinel-1 features; the second group comprises only
Sentinel-2 features exclusive of the red-edge features; the third group includes only the red-edge
features. (a) Feature scores in the three groups calculated regardless of the acquisition time; (b) Feature
scores in the three groups calculated for each month. The VH amplitude dispersion, as a single-phase
feature, is plotted on the rightmost bar. Each importance score was normalized and converted to
a percentage.
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Among the features selected for cropland extraction (Figure 14a), it is found that the SWIR 2 band
(Band 12) contributed the most in the cropland extraction, followed by the Sentinel-1 VH intensity and
Band 11 (SWIR 1), again the red-edge 1 (Band 5), and NDWI.

In the features selected for crop type discrimination (Figure 14b), the VH intensity exhibited the
highest accumulated score for crop type classification, followed by the NDVI, Band 8 (NIR), Band 6
(red-edge 2), Band 4 (red), and Band 5 (red-edge 1). The optimal feature set comprises six subcategories
of SAR features, 13 subcategories of red-edge features, and nine subcategories of conventional optical
features. The contribution of features from different data sources will be explored in detail later.

It should be noted that the VH intensity held a significant share in both land cover classification
and crop discrimination. The intensity ratio between bands, i.e., S1 NRPB and VV versus VH intensity
ratio were only used in land cover classification. As for InSAR products, it is found that the VV
coherence was selected in step 2. No coherence was selected in step 1. The coherence feature with
the highest score in its subcategory, i.e., the VH coherence on 17 August 2018, ranked 118 in the RF
permutation importance results in step 1. Its importance score was 0.27%, which is comparable to
the score of 0.29% of the last chosen feature, NDre2 (red-edge) index on 23 July 2018. The amplitude
dispersion of VH polarization, the master to slave intensity ratio in both polarization modes, were
used in both step 1 and step 2.

All conventional optical features and the three red-edge spectral bands contributed to both the
land cover classification. Regarding the red-edge indices, “NDVIre3” was only used in step 1; all the
other 10 indices were selected for both cropland extraction and crop type identification.

As shown in Figures 15a and 16a, the three groups of features held similar proportions in both
steps. The conventional optical features had the largest proportion in step 1 and step 2; the SAR
features accounted for −15% in step 1 and −16% in step 2; the red-edge features accounted for −24% in
step 1 and −22% in step 2.

Comparing Figures 15b and 16b, the features selected in step 1 and step 2 had significantly different
temporal distribution. For land cover classification, the features in May had the largest proportion,
followed by September, October, and June. Red-edge features contributed more in September, June,
and July. In crop type classification, it is clear that features in August held the biggest share, of
which red-edge features had a significant proportion. Compared with other months, the red-edge
wavelengths performed the best in August, when most crops were ripening. This is likely associated
with the sensitivity of the red-edge wavelengths to differences in the leaf structure and chlorophyll
content of crops. Conventional optical features (visible, NIR, and SWIR wavelengths) were dominant
from May to July and in October, and held a significant share in August and September.

In both steps, there were no optical features available in March and April, but some SAR features
show good separability in the early season. SAR features in June and July were not selected for either
of the steps. The proportion of SAR features re-increased in August and at the end of harvesting season
in October. The amplitude dispersion was used in both steps, as a single-phase feature, plotted on the
rightmost bar in both Figures 15b and 16b.

In addition, we examine the correlation between selected features in both step 1 and step 2, as
shown in Figure 17. In both step 1 and step 2, most of the selected features showed a low correlation,
as revealed by the histograms in (c) and (d).

4.2. The Contribution of SAR Features in Crop Type Discrimination

The electromagnetic radiation of the C-band cannot penetrate through vegetation cover. Therefore,
the radiation from the Sentinel-1 C-band SAR sensor reflects the interaction between the radar signal
and the ground surface cover, which explains the sensitivity of Sentinel-1 SAR to the vegetation cover.
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polarization mode, including six features of the VH intensity (Figure 18) and six features of the master 
versus slave VH intensity ratio (Figure 19), as well as the VH amplitude dispersion (Figure 20a). Pear 
is the most distinguishable crop in most of these features. This is highly likely because SAR intensity 
is sensitive to target structure, as the planting density and vegetation height in pear fields are 
significantly different from those in other crop fields. It is interesting to notice that the VV coherence 
on 7 April 2018 revealed a good ability to differentiate cotton from other crop types (Figure 20b). In 
Figure 20b, we can see the VV coherence is significantly low in the cotton field. According to local 
crop phenological calendars (Section 2.1), cotton is the crop that is most likely to be sown in early 
April. Other annual crops are usually sown or transplanted in mid-April or later. Thus, this is 
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Figure 17. Heat maps showing correlation between selected features. (a) Correlation heat map of
selected features in step 1; (b) correlation heat map of selected features in step 2. In both (a,b), the feature
indexes follow the feature rankings obtained through the RF feature importance score. Correlation close
to 1 or −1 indicates high positive or negative correlation between features. The diagonal elements in
both correlation matrices are self-correlation coefficients, so they constantly equal one. (c) The histogram
of correlation between selected features in step 1; (d) the histogram of correlation between selected
features in step 2. In both (c,d), the histograms were calculated after removing the diagonal elements of
the correlation matrices and converting a negative correlation coefficient to corresponding positive
values. Thus, the ‘0’ in the histogram indicates low correlation, while ‘1’ indicates high correlation.

It has been reported that VH polarization is more sensitive to the structural and geometrical
arrangements of plants [11,38]. This is in accordance with the result that VH intensity bands held
the biggest proportion in the selected SAR features (also in all features) for crop type discrimination
(Figure 14b). We examined the selected SAR features and found that 13 out of 22 features were in
VH polarization mode, including six features of the VH intensity (Figure 18) and six features of the
master versus slave VH intensity ratio (Figure 19), as well as the VH amplitude dispersion (Figure 20a).
Pear is the most distinguishable crop in most of these features. This is highly likely because SAR
intensity is sensitive to target structure, as the planting density and vegetation height in pear fields are
significantly different from those in other crop fields. It is interesting to notice that the VV coherence
on 7 April 2018 revealed a good ability to differentiate cotton from other crop types (Figure 20b). In
Figure 20b, we can see the VV coherence is significantly low in the cotton field. According to local
crop phenological calendars (Section 2.1), cotton is the crop that is most likely to be sown in early
April. Other annual crops are usually sown or transplanted in mid-April or later. Thus, this is possibly
related to the changes of the cotton field surface in the sowing season (early April) from bare soil to
plastic-mulched land, which leads to a fast decrease of coherence in 12 days, while the other crop fields
almost remain as before. In addition, chili pepper can be easier recognized from the VH intensity on 16
October 2018 (Figure 18f).
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of Sentinel-1; (b) boxplots of the master vs. slave VH intensity ratio derived from 10 September 2018
acquisition of Sentinel-1; (c) boxplots of the master vs. slave VH intensity ratio derived from 4 October
2018 acquisition of Sentinel-1.
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4.3. The Sensitivity of Red-Edge Wavelengths to Different Crop Types

Red-edge refers to the region of the sharp rise in vegetation reflectance between the red and NIR
part of the electromagnetic spectrum. It is an important wavelength range that is sensitive to vegetation
conditions. This research demonstrated the advantage of adding red-edge spectral bands and indices
in the crop type discrimination, which increased the overall accuracy by 3.06% compared with the
results only using conventional optical features. In Figure 14, among the selected red-edge features,
Band 6 (red-edge 2), Band 5 (red-edge 1), and the NDVIre2n (red-edge index based on Band 6 and
Band 8A) exhibited greater importance. As for red-edge indices, 10 out of 11 indices were selected for
crop type discrimination (NDVIre3n was discarded by RFI method), with a number of indices showing
a good capability to differentiate corn from other crops (Figure 21). This explains why the inclusion of
red-edge features significantly improved the mapping accuracy of corn (Figure 13). Apart from corn,
some re-edge indices also revealed good separability of tomato (Figure 21c–f,h) and pear (Figure 22).
Several red-edge features show good capability to identify chili pepper (Figure 23). These findings
reinforce the benefit of using red-edge wavelengths in crop type mapping.
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Figure 21. Boxplots of selected red-edge indices showing a good capability to distinguish corn from
other crops. Each feature is named by its subcategory and acquisition time in the format of “yyyymmdd”.
(a) Boxplots of the NDVIre2n indices derived from the 1 September 2018 acquisition of Sentinel-2;
(b) boxplots of the NDVIre2n indices derived from the 17 August 2018 acquisition of Sentinel-2; (c)
boxplots of the CIre indices derived from the 17 August 2018 acquisition of Sentinel-2; (d) boxplots of
the NDVIre1n indices derived from the 17 August 2018 acquisition of Sentinel-2; (e) boxplots of the
MSRre indices derived from the 17 August 2018 acquisition of Sentinel-2; (f) boxplots of the NDre2
indices derived from the 17 August 2018 acquisition of Sentinel-2; (g) boxplots of the NDVIre2 indices
derived from the 17 August 2018 acquisition of Sentinel-2; (h) boxplots of the MSRren indices derived
from the 17 August 2018 acquisition of Sentinel-2; (i) boxplots of the NDVIre2 indices derived from the
01 September 2018 acquisition of Sentinel-2.
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From the top six scoring features for crop type mapping (Figure 8) and the accumulated 
importance score of each subcategory (Figure 14b), it can be inferred that the most important red-
edge band is Band 6, and the most useful red-edge indices is the NDVIre2n (calculated using Band 6 
and Band 8A (NIR narrow)). The top six features emphasized the significance of three red-edge 
features, i.e., Band 6 (red-edge 2), Band 7 (red-edge 3), and NDVIre2n (red-edge index based on Band 
6). The accumulated importance ranking (Figure 14b) indicated the contribution of Band 6, Band 5, 
and NDVIre2n. It has been reported that the red-edge close to red wavelengths (Band 5) is mainly 
related to the difference in chlorophyll content, while the red-edge close to NIR (Band 7) is usually 

Figure 22. Boxplots of selected red-edge indices revealing a clear distinction between the pear and other
crops. Each feature is named by its subcategory and acquisition time in the format of “yyyymmdd”. (a)
Boxplots of the NDVIre1 indices derived from the 9 May 2018 acquisition of Sentinel-2; (b) boxplots of
the NDVIre1n indices derived from the 6 October 2018 acquisition of Sentinel-2; (c) boxplots of the
NDVIre2 indices derived from the 9 May 2018 acquisition of Sentinel-2; (d) boxplots of the CIre indices
derived from the 06 October 2018 acquisition of Sentinel-2.
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Figure 23. Boxplots of selected red-edge features showing good separability of chili pepper. Each
feature is named by its subcategory and acquisition time in the format of “yyyymmdd”. (a) Boxplots
of the band 6 values from the 17 August 2018 acquisition of Sentinel-2; (b) boxplots of the band 6
values from the 1 September 2018 acquisition of Sentinel-2; (c) boxplots of the band 7 values from the
17 August 2018 acquisition of Sentinel-2.

From the top six scoring features for crop type mapping (Figure 8) and the accumulated importance
score of each subcategory (Figure 14b), it can be inferred that the most important red-edge band is
Band 6, and the most useful red-edge indices is the NDVIre2n (calculated using Band 6 and Band 8A
(NIR narrow)). The top six features emphasized the significance of three red-edge features, i.e., Band 6
(red-edge 2), Band 7 (red-edge 3), and NDVIre2n (red-edge index based on Band 6). The accumulated
importance ranking (Figure 14b) indicated the contribution of Band 6, Band 5, and NDVIre2n. It has
been reported that the red-edge close to red wavelengths (Band 5) is mainly related to the difference in
chlorophyll content, while the red-edge close to NIR (Band 7) is usually correlated to variations in the
leaf structure [6]. The above results suggest that the separability of red-edge features lies in both the
leaf structure and chlorophyll content of different crop species.
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In a nutshell, SAR features distinguish crops based on the structural and geometrical arrangements
of plants or changes of the crop field surface, while optical features rely on the multi-spectral information
to differentiate crops. In experiments, the red-edge wavelengths exhibited good separability between
different crop types, due to their sensitivity to the variations in chlorophyll content and leaf structure.
Therefore, the combination of SAR and optical integrated the physical and spectral characteristics of
crops, improving the performance of crop classification.

With the development of deep learning technology, powerful convolutional networks, such as
U-net [39], can be explored for crop type mapping in future work. U-net has the potential to support
multi-dimensional input variables. By implementing U-net with multi-temporal, multi-sensor features,
it is expected that a higher level of accuracy can be achieved in crop type identification.

5. Conclusions

This research proposed a method for the synergistic use of Sentinel-1 and Sentinel-2 features for
oasis crop type mapping through a case study in a smallholder farming area in Northwest China. First
of all, a SHP DSI algorithm was introduced for the de-speckling of SAR intensity and accurate estimation
of interferometry coherence to improve the quality of SAR features. It was demonstrated that the use
of the SHP DSI method improved the crop classification accuracy by 6.25% when only using SAR
features. A variety of SAR features and optical features were derived from multi-temporal Sentinel-1
and Sentinel-2 images, including several InSAR products and red-edge spectral bands and indices.
Secondly, based on the permutation importance of the random forest classifier, a recursive feature
increment feature selection method was proposed to obtain the optimal combination of Sentinel-1 and
Sentinel-2 features for cropland extraction and crop type classification. Finally, a crop distribution
map was generated with an overall accuracy of 83.22% and kappa coefficient of 0.77. The contribution
of SAR and optical features were explored thoroughly. Among all the Sentinel-1 features, the VH
intensity held the biggest proportion, indicating the better sensitivity of VH polarization to vegetation
changes. It was also noted that some of the InSAR products, such as the VH amplitude dispersion, the
master versus slave intensity ratio, and the VV coherence in early April revealed good separability of
certain crop types. As for Sentinel-2 features, we demonstrated the merits of using red-edge spectral
bands and indices in oasis crop type mapping. The inclusion of red-edge features improved the crop
classification OA by 1.84% compared with only using conventional optical features. This proves the
superiority of Sentinel-2 data due to the increased spectral resolution. A comparison was conducted on
the performance of oasis crop classification using four combinations of features. The results indicated
that the integration of SAR and optical features achieved the best performance. We concluded that the
integration of time series S1 and S2 imagery is advantageous, and thanks to the free, full, and open
data policy, it can be further explored in the vast majority of regions for the monitoring of crop status.
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