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Abstract: The objective of detection in remote sensing images is to determine the location and category
of all targets in these images. The anchor based methods are the most prevalent deep learning based
methods, and still have some problems that need to be addressed. First, the existing metric (i.e.,
intersection over union (IoU)) could not measure the distance between two bounding boxes when they
are nonoverlapping. Second, the exsiting bounding box regression loss could not directly optimize the
metric in the training process. Third, the existing methods which adopt a hierarchical deep network
only choose a single level feature layer for the feature extraction of region proposals, meaning they
do not take full use of the advantage of multi-level features. To resolve the above problems, a novel
object detection method for remote sensing images based on improved bounding box regression and
multi-level features fusion is proposed in this paper. First, a new metric named generalized IoU is
applied, which can quantify the distance between two bounding boxes, regardless of whether they
are overlapping or not. Second, a novel bounding box regression loss is proposed, which can not only
optimize the new metric (i.e., generalized IoU) directly but also overcome the problem that existing
bounding box regression loss based on the new metric cannot adaptively change the gradient based on
the metric value. Finally, a multi-level features fusion module is proposed and incorporated into the
existing hierarchical deep network, which can make full use of the multi-level features for each region
proposal. The quantitative comparisons between the proposed method and baseline method on the
large scale dataset DIOR demonstrate that incorporating the proposed bounding box regression loss,
multi-level features fusion module, and a combination of both into the baseline method can obtain
an absolute gain of 0.7%, 1.4%, and 2.2% or so in terms of mAP, respectively. Comparing this with
the state-of-the-art methods demonstrates that the proposed method has achieved a state-of-the-art
performance. The curves of average precision with different thresholds show that the advantage of
the proposed method is more evident when the threshold of generalized IoU (or IoU) is relatively
high, which means that the proposed method can improve the precision of object localization. Similar
conclusions can be obtained on a NWPU VHR-10 dataset.

Keywords: object detection; remote sensing images; generalized intersection over union; bounding
box regression loss; hierarchical deep network

1. Introduction

Great progress made on remote sensing technologies means that a large number of remote sensing
images (RSIs) with high spatial or spectral resolution are available. Thus, the valuable information
represented in RSIs requires better analysis methods to meet the needs of many military and civilian
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applications [1]. These applications may consist of multiple tasks such as scene classification [2–4],
object detection [5,6], and other tasks [7–10]. The goal of object detection in remote sensing images
(ODRSIs) is to determine the locations of objects of interest and then to predict their classes. Due to
its vital role in surveillance, fire prevention, urban planning, and other tasks, ODRSIs have attracted
increasing attention [11–13].

In the early stages, handcrafted-based features such as scale invariant feature transform (SIFT) [14],
bag of words (BoW) [15], histogram of oriented gradient (HOG) [16], deformable part model (DPM) [17],
etc. were employed by many object detection methods in RSIs. Later, shallow learning algorithms
such as spatial sparse coding [18], independent component analysis (ICA) [19], etc. quickly gained
a modest degree of application in ODRSIs. Recently, significant progress has been made on deep
learning techniques [20–23], meaning the deep learning based methods now significantly outperform
handcrafted features and shallow learning based methods. At present, the most prevalent deep
learning based methods are anchor-based methods, which can be roughly classified into one-stage and
two-stage methods according to their strategy for generating proposals.

The one-stage methods, also called region-free methods, yield a series of grid-based bounding
boxes for prediction. You only look once (YOLO) [24], which accomplishs the object detection through
a regression strategy, divided the input image into separate parts and predicted the category of each
part. YOLO v2 [25] and YOLO v3 [26], which are the subsequent improved methods of YOLO, attracted
more widespread attention. Another classical one-stage method called single shot multibox detector
(SSD) [27] generates a series of prior boxes with different scales and aspect ratios across multiple
feature maps, and predicts the category of each box. Due to the fast detection speed, the one-stage
methods have been applied to ODRSIs. Liu et al. [28] proposed an ODRSIs method based on the
YOLOv2 framework, which combined the multi-level features and used a feature introducing scheme
to enhance the accuracy of small-scale object detection. To improve the computation efficiency and the
effect of small object detection, Chen et al. [29] incorporated the semantic segmentation and global
activation information into the SSD framework for object detection in RSIs. The other works examining
ODRSIs based on one-stage methods include Tang et al. [30], Tayara et al. [31], and Chen et al. [32].

Although one-stage methods achieve high detection speeds, their detection accuracy is lower than
that of two-stage methods. Consequently, more researchers focus on the two-stage methods, i.e., region
proposals based methods, which firstly generate region proposals via a region proposal network (RPN)
and then conduct bounding box regression and classification for each proposal. The canonical two-stage
methods, such as Faster R-CNN [33], Region-based Fully Convolutional Networks (R-FCN) [34], and
feature pyramid network (FPN) [35], have a substantial influence on ODRSIs. For example, Li et
al. [36] incorporated additional multi-angle anchors into RPN for solving the rotational variations
of object, and it also introduced a local-contextual feature fusion module to alleviate the problem of
appearance ambiguities for ODRSIs. Zhong et al. [37] proposed a position-sensitive strategy to improve
the detection speed by sharing the most computation on the entire image. Chen et al. [38] used the
ResNeXt [39] as the backbone and incorporated scene-contextual information into FPN, moreover, they
utilized group normalization (GN) [40] as an alternative to batch normalization (BN) [41].

However, there are some common problems in both one-stage and two-stage methods. On the
one hand, the existing bounding box regression loss cannot directly optimize the metric (i.e., IoU) in
ODRSIs. Specifically, there is no direct correlation between the existing bounding box regression loss
(i.e., smooth L1 loss [33] and L2 loss [42]) and IoU. It is worth noting that designing a bounding box
regression loss based on IoU is not suitable because the IoU can not quantify the distance between
two bounding boxes when they are nonoverlapping. As a matter of fact, if two bounding boxes are
nonoverlapping, the IoU is always zero no matter how far away the two bounding boxes are. Although
the generalized intersection over union (GIoU) loss [43] has been proposed in natural image object
detection to alleviate the problem mentioned above, the effect is restricted due to the constant gradient
of bounding box regression (the details can be seen in Section 2.1.3).
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On the other hand, the existing methods which adopt a hierarchical deep network have several
problems in the feature extraction of region proposals. In existing methods, the RPN firstly generates a
large number of region proposals from all the layers. Next, the size of each region proposal is quantified
to determine the feature level to which the proposals belong. Finally, the features of each region
proposal are extracted from the selected feature level. Obviously, this approach has two problems:
(1) two proposals with similar sizes are likely to be assigned to different levels due to quantization error;
(2) each proposal just maps to a single feature map, which does not make full use of the advantages
of multi-level features. In fact, the multi-level features are used only at the RPN stage and are not
considered during the subsequent feature extraction of region proposals.

To resolve the above problems, a novel ODRSIs method based on improved bounding box
regression and multi-level features fusion is proposed in this paper. First, a new metric named
GIoU [43] is introduced, which can tackle both overlapping and nonoverlapping cases between two
bounding boxes. This solves the problem that existing metrics (i.e., IoU) fail to measure the distance
for the nonoverlapping cases for ODRSIs. Then, to solve the problem that the existing bounding box
regression loss could not directly optimize the metric in ODRSIs, a new bounding box regression loss
named IGIoU loss is proposed, which can optimize the new metric (i.e., GIoU) directly and solve
the aforementioned constant gradient problem involving GIoU loss [43]. Furthermore, a multi-level
features fusion (MLFF) module is proposed to combine the multi-level features for each proposal to
overcome the weakness of multi-level features methods not make full use of all available advantages.

The main contributions of this paper are as follows:

(1) A new metric (i.e., GIoU) for ODRSIs is adopted to replace the existing metric (i.e., IoU). The GIoU
overcomes the problem that the IoU cannot measure the distance when the predicted bounding
box and the ground truth box are nonoverlapping.

(2) A novel bounding box regression loss named IGIoU loss is proposed. The proposed IGIoU loss
can optimize the new metric (i.e., GIoU) directly, which thus solves the problem that the existing
bounding box regression loss cannot directly optimize the metric in ODRSIs. Furthermore, it can
overcome the problem that existing GIoU loss [43] cannot adaptively change the gradient based
on the GIoU value.

(3) A multi-level features fusion module named MLFF module is proposed. The proposed MLFF
can be incorporated into the existing hierarchical deep network, which can address the problem
that the existing methods which adopt a hierarchical deep network do not make full use of the
advantages of multi-level features for the feature extraction of region proposals.

2. Materials and Methods

2.1. Methods

The overall architecture of our method is illustrated in Figure 1. First, given a remote sensing
image with an arbitrary size as an input, the FPN was adopted as the backbone network, which yields
multi-scale feature maps at different levels. Next, the obtained multi-scale feature maps were fed
into an MLFF module, which pools features via RoIAlign [44] (i.e., an alternative to RoI pooling [33])
across levels p2 to p5 for each proposal and then fuses them by concatenating the pooled features along
the channel dimension. Finally, the fused features of each proposal were utilized for bounding box
regression and classification. Note that our IGIoU loss was adopted to replace the smooth L1 loss used
in the original FPN for bounding box regression.
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Figure 1. Framework of our object detection in remote sensing images (ODRSIs) method. (a) feature
pyramid network (FPN) backbone; (b) Multi-level features fusion; (c) Classification and bounding box
regression based on IGIoU loss.

2.1.1. Multi-Level Features Fusion

In the original FPN, each proposal generated from RPN was mapped back to a kth level feature
map (i.e., Pk in Figure 1a) and multi-level feature maps based on the size of the proposal. The level k
was defined by:

k =
⌊
k0 + log2(

√

wh/224)
⌋

(1)

where b·c denotes the rounding down operation, w and h separately represent the width and height of
the proposal, k0 was the level corresponding to the proposal with wh = 2242, 224 × 224 was the size of
the input layer of ResNet50 (the backbone network). The default value of k0 was 4, which is analogous
to Faster R-CNN with a ResNet backbone that employs C4 as a single-scale feature map.

As shown in Equation (1), the smaller proposals were assigned to lower levels. Similarly, the
larger proposals were assigned to higher levels. However, there were some problems for this assigning
scheme, for instance, the proposals with similar size were possibly assigned to different level feature
maps because of the quantization error of Equation (1). Furthermore, the advantages of the hierarchical
features representation of FPN were not fully utilized since the feature of every proposal was only
extracted from the single level feature map of FPN.

A MLFF module is proposed in this paper to tackle the aforementioned problems. The framework
of MLFF is given in Figure 1b. The feature maps of all levels (i.e., P2 ∼ P5) were used by a MLFF module
for feature extraction of each proposal. The details of the MLFF module are presented as follows.

First of all, each proposal generated by the RPN was mapped back to the feature maps across all
levels, which were denoted by pink regions throughout all levels in Figure 1a. The size and spatial
location of any pink region in each level feature map can be calculated based on the size ratio between
the proposal and feature maps. The top-left and right-down coordinates of any pink region in ith level
feature map can be obtained by using the following equations:

xTL
i = Round(pTL

×
wi

wimg
), yTL

i = Round(qTL
×

hi
himg

)

xRD
i = Round(pRD

×
wi

wimg
), yRD

i = Round(qRD
×

hi
himg

)
, i ∈ [2, 5] (2)

where (xTL
i , yTL

i ) and (xRD
i , yRD

i ) denote the top-left and right-down coordinates of any pink region
in an ith level feature map, respectively, (pTL, qTL) and (pRD, qRD) denote the top-left and right-down
coordinates of region proposals in the input image, respectively, (wimg, himg) denotes the width and
height of the input image, (wi, hi) denotes the width and height of the ith level feature map, and
Round(·) denotes the rounding operation.
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Afterwards, the four level pink regions of each proposal were transformed into four groups
of 7 × 7 feature maps (denoted as F2, F3, F4, and F5, as shown in Figure 1b) through the RoIAlign
operation [44], and the fused features of each proposal can be obtained by the following equation:

F = F2 ⊕ F3 ⊕ F4 ⊕ F5 (3)

where F denotes the fused features of each proposal and ⊕ denotes the concatenation operation along
channel dimension.

The convolutional operation with 7 × 7 kernel was imposed on F to obtain the FC1, and the FC1

was followed by a fully connected layer (i.e., FC2) for bounding box regression and classification.

2.1.2. Generalized Intersection over Union

The IoU is a normalized measure which was adopted for evaluating the proximity of two bounding
boxes. The IoU was insensitive to the scales of the bounding boxes and has been widely used to
ODRSIs. As shown in Figure 2, the IoU between ground truth box BGT and predicted bounding box
BPT can be calculated as follows:

IoU =
area(BGT ∩ BPT)

area(BGT ∪ BPT)
, IoU ∈ [0, 1] (4)

where area(BGT ∩ BPT) and area(BGT ∪ BPT) denote the area of intersection and union between BGT and
BPT respectively. Note that IoU was suitable for evaluating the proximity of two bounding boxes shown
in Figure 2a, however, the area(BGT ∩ BPT) was always zero in the case shown in Figure 2b. In other
words, the IoU could not measure the distance when two bounding boxes were nonoverlapping. In
this paper, a new metric (i.e., GIoU) was adopted to address this problem. The definition of GIoU was
given as follows:

GIoU = IoU +
area(BGTUBPT)

area(BEC)
− 1, GIoU ∈ (−1, 1] (5)

where BEC and area(BEC) denote the smallest enclosing box of BGT and BPT and its area, respectively.
As shown in Figure 2, the IoU was inversely proportional to the distance between BGT and BPT when
they were overlapping, and the IoU remained at zero when the they were nonoverlapping. In contrast,
the area(BEC) was always proportional to the distance of two bounding boxes. In summary, as shown
in Equation (5), the GIoU monotonously decreased with the distance between BGT and BPT, regardless
of whether or not the two bounding boxes were overlapping. Apparently, the GIoU can overcome the
aforementioned shortcoming of IoU.
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Figure 2. Illustration of two intersecting (non-overlapping) bounding boxes. (a) Two intersecting
bounding boxes; (b) Two non-overlapping bounding boxes. The rectangles enclosed by a green solid
line, red solid line, and blue dashed line separately denote the ground truth box BGT, predicted
bounding box BPT, and smallest enclosing box BEC.
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2.1.3. Bounding Box Regression Based on IGIoU Loss

The bounding box regression loss of existing object detection methods in RSIs is usually adopted
to smooth L1 or L2 loss. Despite this, the two loss functions do not directly optimize the metric.
Specifically, the smooth L1 or L2 loss is used to optimize the four independent parameters of the
predicted bounding box, while the IoU emphasizes the overlapping degree between two bounding
boxes. Therefore, it was necessary to adopt a more reasonable loss function to perform the bounding
box regression.

Incorporating the IoU into bounding box regression loss was a logical consideration. However, as
mentioned in the last section, the IoU remains zero when two bounding boxes are nonoverlapping, and
the bounding box regression cannot be implemented in this case if a IoU based loss function is adopted.
Therefore, designing the bounding box regression loss function based on IoU was impractical.

To address this problem, Rezatofighi et al. [43] propose a GIoU loss in natural image object
detection, which incorporates the GIoU into the bounding box regression loss. The formulation of
GIoU loss was given as follows:

LGIoU = 1−GIoU (6)

where LGIoU denotes the GIoU loss, and the curve of LGIoU is shown in Figure 3. Obviously, the GIoU
loss can alleviate the aforementioned shortage which existed in IoU based loss by directly optimizing
the metric (i.e., GIoU). However, as shown in Figure 3, the GIoU loss has a constant gradient during
the whole training process, which restricts the effect of bounding box regression to some extent. As
a matter of fact, the strength of training should be enhanced when the predicted bounding box is
far away from the ground truth box. In other words, the absolute value of the gradient should be
increased when the GIoU is small. In addition, the value of the bounding box regression loss should
decrease with the GIoU. Following above analysis, an improved GIoU loss (IGIoU loss) was proposed
for the bounding box regression in this paper. The formulation of IGIoU loss was given as follows:

LIGIoU = 2× log2− 2× log(1 + GIoU) (7)

where LIGIoU denotes the IGIoU loss. The curve of LIGIoU is also shown in Figure 3 for intuitive
comparison between the GIoU loss and IGIoU loss.
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As shown in Figure 3, both LIGIoU and LGIoU monotonously decrease with GIoU, the absolute
value of gradient of LIGIoU also monotonously decreases with GIoU, and the gradient of LGIoU does not
change with GIoU. Apparently, the use of IGIoU is better for bounding box regression. Specifically, the
larger absolute value of a gradient is required when the distance between predicted bounding boxes
and ground truth bounding boxes is large (i.e., GIoU is small). As shown in Figure 3, the absolute
value of gradient of LIGIoU is larger than that of LGIoU when GIoU is small, which coincides with the
above analysis. A similar conclusion can be derived when GIoU was large. In summary, the designing
of LIGIoU was more reasonable than LGIoU from the perspective of theoretical analysis.

2.2. Experimental Materials

2.2.1. Dataset

To validate the effectiveness of our method, various experiments on the NWPU VHR-10 [42,45,46]
and DIOR benchmark dataset were conducted with a total of 3775 instances and 192,472 instances
available, respectively. The details of both datasets are listed in Figure 4.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 22 
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The NWPU VHR-10 dataset includes 800 very-high-resolution RSIs acquired from Vaihingen
datasets [47] and Google Earth. The dataset was divided into two parts: one was a positive set that
includes 650 images, each of which covered at least one of the 10 categories, with some examples listed
in Figure 5: (a) airplane, (b) baseball diamond, (c) basketball court, (d) bridge, (e) ground track field,
(f) harbor, (g) ship, (h) storage tank, (i) tennis court, and (j) vehicle. The other one was a negative
set including 150 images that did not contain any objects belonging to the above categories. The
negative set was intended for weakly supervised learning methods [48] or semi-supervised learning
methods [49]. Therefore, the negative set was not utilized in our experiments. The positive set was
divided into training, validation, and testing sets, which include 20%, 20%, and 60% of the images of
the positive set, respectively [37,42].
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Considering the fact that the number of the samples of the NWPU VHR-10 dataset is limited,
the DIOR dataset recently proposed by Li et al. [50] was also utilized to verify the effectiveness and
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generalization of the proposed method in this paper. The DIOR dataset is a large scale benchmark, the
size of which is comparable to another well-known large-scale DOTA dataset [51,52]. Specifically, the
DIOR dataset includes 23,463 images and 192,472 object instances covered by 20 categories, where
each category contains around 1200 images. The 20 categories cover all categories in the NWPU
VHR-10 dataset as well as other ten categories, with some examples listed in Figure 5: (k) airport, (l)
chimney, (m) dam, (n) expressway service area, (o) expressway toll station, (p) golf course, (q) overpass,
(r) stadium, (s) train station, and (t) wind mill. The training set, validation set, and testing set include
5862 images, 5863 images, and 11,738 images, respectively [50].

2.2.2. Evaluation Metrics

The evaluation metrics adopted by this paper were similar to the metrics used on MS COCO [53].
Specifically, the average precision (AP) under multiple thresholds and mean average precision (mAP)
were adopted to quantitatively evaluate the experimental results. Note that both GIoU and IoU were
utilized as metrics to comprehensively demonstrate the advantages of our method, which include:

(1) The ability to determine the curve of AP with a different threshold. The AP was calculated
by using the area under the precision-recall curve (p-r curve) [54–56]. The precison and recall were
defined as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where TP, FP, and FN separately represent the number of true positives, false positives, and false
negatives, respectively. Obviously, the precision denotes the ratio of correctly detected results (i.e., true
positives) out of all the detected results, and the recall denotes the ratio of true positives that were
correctly detected. The detection result was considered to be a true positive when the metric (i.e., GIoU
or IoU) exceeded a fixed threshold, otherwise it was treated as false positive. Obviously, the value of
AP was changed with different thresholds. Therefore, the curve of AP with a different threshold (i.e.,
0.5–0.95) was adopted for comprehensively evaluating the effectiveness of our method, as shown in
Figures 6–9.

(2) mAP. In general, the AP50 denotes the AP value when threshold was 0.5, meaning the
definitions of AP55, ..., AP90, and AP95 are similar to AP50. The mAP is the mean value of AP50–AP95.
The mAP, AP50, and AP75 were utilized for quantitative evaluation of our method, as shown in
Tables 1–4. Note that the “mAP” used on PASCAL VOC [57] was quite different to the mAP used in
this paper, as it was equivalent to the AP50.

In essence, compared with the traditional “mAP” used in PASCAL VOC, the evaluation metrics
used in this paper are richer and can evaluate our method more comprehensively.

2.2.3. Implementation Details

(1) Data Augmentation. The total of training and validation samples of NWPU VHR-10 was 260,
which was insufficient for training the FPN network. Therefore, a data augmentation strategy was
adopted to enlarge the scale of the training samples. First of all, each of training samples was rotated
90◦ clockwise, and this process was repeated four times to obtain the 4× training samples. Then, each
training image was horizontally flipped to obtain the 8× training samples, including 2080 samples.
Considering the large number of training samples (i.e., 5862 training samples and 5863 validation
samples), the samples augmentation was not imposed on the DIOR dataset.

(2) Parameters Setting. The ResNet50 model pretrained on ImageNet was adopted as the backbone
network in this paper. The shorter side of each image was resized to 800 pixels, while the longer side
was no more than 1333 pixels. The threshold of non-maximum suppression (NMS) was 0.7 in both
the training and inference stages of RPN, and the threshold of NMS was 0.5 in both the training and
inference stages of the detection network. In the training stage of RPN, each layer (i.e., P2–P5 shown in
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Figure 1) generated 2000 proposals and a total of 2000 proposals was left after various elimination
strategies (such as NMS). In the inference stage of RPN, each layer generated 1000 proposals and a
total of 1000 proposals was finally left. The whole model was optimized by using stochastic gradient
descent (SGD) [58]. The above settings were set by referring to the program provided by Facebook AI
Research (Available at: https://github.com/roytseng-tw/Detectron.pytorch.).

All the experiments were conducted on PyTorch framework, and running on a workstation with
two E5-2650V4 CPUs (i.e., a total of 2.2 GHz 12 × 2-cores), 512 GB memory, and 8 NVIDIA RTX Titan
GPUs (i.e., a total of 24 GB × 8 memory).

2.2.4. Comparison Methods

To validate the effectiveness of the proposed IGIoU loss and MLFF module, six methods were
used for quantitative comparisons, which were denoted as FPN(baseline), FPN+MLFF, FPN+GIoU,
FPN+IGIoU, FPN+MLFF+GIoU, and FPN+MLFF+IGIoU, respectively, as shown in the first column
of Tables 1 and 3. The FPN [35] was adopted as the baseline in this paper. The FPN+MLFF was
obtained by incorporating the MLFF module into the FPN, which was used to validate the effectiveness
of the MLFF module. The FPN+GIoU replaced the bounding box regression loss adopted by FPN
(i.e., smooth L1 loss) with GIoU loss [43] given in Equation (6). Similarly, the FPN+IGIoU adopted
the proposed IGIoU loss given in Equation (7). The comparisons between FPN+IGIoU and FPN, as
well as FPN+IGoU and FPN+GIoU were used for validating the superiority of our IGIoU loss. The
FPN+MLFF+GIoU and FPN+MLFF+IGIoU separately used the GIoU loss and IGIoU loss for the
bounding box regression based on the FPN+MLFF model, which were utilized to verify the combined
effect of the MLFF module and proposed IGIoU loss.

Furthermore, in order to evaluate the overall performance of proposed method, four state-of-the-art
methods including Faster R-CNN [33], Mask R-CNN [44], FPN [35], and PANet [59] were used for
comparison with the proposed method, as shown in the first column of Tables 2 and 4.

3. Results

In this section, various quantitative evaluations on the NWPU VHR-10 and DIOR datasets is
given according to the evaluation metrics mentioned in Section 2.2.2.

3.1. Evaluation on NWPU VHR-10 Dataset

3.1.1. Evaluation of Proposed IGIoU Loss and MLFF Module

To validate the effectiveness of proposed IGIoU loss and MLFF module, the quantitative
comparisons between our method and five other methods on NWPU VHR-10 dataset are listed
in Table 1. As mentioned in Section 2.2.2, both GIoU and IoU based metrics were used for more
comprehensive evaluation.

Table 1. Comparison with baseline methods on NWPU VHR-10 dataset in terms of six evaluation
metrics. Bold fonts denote the best results.

Method
GIoU IoU

mAP (%) AP50 (%) AP75 (%) mAP (%) AP50 (%) AP75 (%)

FPN(baseline) 55.3 88.8 64.0 56.5 89.3 65.9
FPN+MLFF 56.2 89.6 64.2 57.5 90.4 66.7
FPN+GIoU 56.2 88.9 65.9 57.5 89.3 67.5
FPN+IGIoU 57.3 89.8 66.6 58.5 90.7 68.5

FPN+MLFF+GIoU 57.0 89.5 66.1 58.2 90.8 67.8
FPN+MLFF+IGIoU(Ours) 58.0 90.5 67.5 59.2 91.4 69.6

The Table 1 shows that the FPN+MLFF is superior to FPN in six evaluation metrics, which
demonstrates the effectiveness of the MLFF module. The comparisons between FPN+IGIoU and FPN,
as well as FPN+IGIoU and FPN+GIoU show that the IGIoU loss is better than the existing smooth
L1 loss and GIoU loss. The performance of FPN+MLFF+IGIoU is better than that of FPN+IGIoU

https://github.com/roytseng-tw/Detectron.pytorch
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and FPN+MLFF, which indicates that the combination of the MLFF module and IGIoU loss is
effective. A similar conclusion also applies to MLFF module and GIoU loss. A comparison between
FPN+MLFF+IGIoU and FPN+MLFF+GIoU demonstrates that the final combination of an MLFF
module and IGIoU loss is superior to the combination of an MLFF module and GIoU loss. In essence,
the overall performance of proposed method (FPN+MLFF+IGIoU) on NWPU VHR-10 dataset is the
best among the six methods examined, and effectiveness of the MLFF module, IGIoU loss, and their
combination are also validated.

To further evaluate our method, the curves of AP with different GIoU (IoU) thresholds of all
the comparison methods are shown in Figure 6. Obviously, regardless of the GIoU threshold or IoU
threshold, the curves of FPN+MLFF+IGIoU are better than for the other five methods, especially in the
range of the 0.65 to 0.8 of GIoU (IoU) threshold. In a word, the effectiveness of the proposed method
can be validated for various thresholds, and its superiority is more obvious when the threshold is
relatively high.
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3.1.2. Comparison with the State-of-the-Art Methods

To further validate the overall performance of the proposed method, four state-of-the-art methods
were compared wth the proposed method on NWPU VHR-10 dataset, as shown in Table 2. Similar to
in Section 3.1.1, both GIoU and IoU were adopted as the metrics.

Table 2. Comparison with four state-of-the-art methods on NWPU VHR-10 dataset in terms of six
evaluation metrics. Bold fonts denote the best results.

Method
GIoU IoU

mAP (%) AP50 (%) AP75 (%) mAP (%) AP50 (%) AP75 (%)

Faster R-CNN 53.5 86.8 61.0 54.6 87.1 62.6
Mask R-CNN 54.7 88.8 62.6 55.8 89.4 64.2

FPN 55.3 88.8 64.0 56.5 89.3 65.9
PANet 56.3 90.5 63.9 57.8 91.8 65.8
Ours 58.0 90.5 67.5 59.2 91.4 69.6

The Table 2 demonstrates that the proposed method can obtain an absolute gain of 1.7% and 1.4%
in terms of GIoU mAP and IoU mAP, respectively, which validates the overall performance of the
proposed method. Note that the advantage of the proposed method in terms of AP75 is more obvious,
which demonstrates that the proposed method can improve the precision of object localization, the
details of which can be seen in Section 4.

Similar to in Section 3.1.1, the curves of AP with different GIoU (IoU) thresholds of all the
comparison methods are shown in Figure 7. It can be seen that the proposed method is superior to the
state-of-the-art methods, especially when the threshold is in the range of 0.65–0.85, which coincides
with the analysis of the previous paragraph.
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Figure 7. Comparison with four state-of-the-art methods on NWPU VHR-10 dataset in terms of curves
of AP with different GIoU (IoU) thresholds. (a) GIoU threshold; (b) IoU threshold.

3.2. Evaluation on DIOR Dataset

3.2.1. Evaluation of Proposed IGIoU Loss and MLFF Module

The quantitative comparisons completed in Section 3.1.1 were also implemented on the DIOR
dataset, as shown in Table 3 and Figure 8. Apparently, similar conclusions can be obtained by
comparing Table 3 with Table 1. The only difference is that the advantage of the proposed method
over the baseline method using the DIOR dataset is not as obvious as the advantage over the NWPU
VHR-10 dataset. This may be because the DIOR dataset is larger than the NWPU VHR-10 dataset and
its testing images are more challenging to use.

Table 3. Comparison with baseline methods on the DIOR dataset in terms of six evaluation metrics.
Bold fonts denote the best results.

Method
GIoU IoU

mAP (%) AP50 (%) AP75 (%) mAP (%) AP50 (%) AP75 (%)

FPN(baseline) 42.6 66.5 46.3 43.6 67.9 47.6
FPN+MLFF 43.3 67.8 46.9 44.2 68.9 48.1
FPN+GIoU 43.3 66.7 47.5 44.2 67.9 48.4
FPN+IGIoU 44.0 67.0 48.2 44.8 68.2 49.3

FPN+MLFF+GIoU 43.8 67.2 47.6 44.6 68.5 48.7
FPN+MLFF+IGIoU(Ours) 44.8 67.9 49.2 45.7 69.2 50.3

As illustrated in Figure 8, regardless of the GIoU threshold or IoU threshold, the curves of
FPN+MLFF+IGIoU are better than for the other five methods, especially in the range of 0.6 to 0.8 of the
GIoU (IoU) threshold. Moreover, it can be found that the AP value of our method on the DIOR dataset
at different thresholds is more balanced than the AP value on NWPU VHR-10 dataset by comparing
Figure 8 with Figure 6. Consequently, the superiority of the proposed method is further validated by
considering the challenges and size of the DIOR dataset.
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3.2.2. Comparison with the State-of-the-Art Methods

Comparisons similar to Section 3.1.2 were also implemented on the DIOR dataset, as shown in
Table 4 and Figure 9, and similar conclusions can be obtained by comparing Table 4 with Table 2. The
only difference is that the advantage of the proposed method over the state-of-the-art methods on the
DIOR dataset is not as obvious as the advantage on the NWPU VHR-10 dataset. The reason behind
this was analyzed in Section 3.2.1.
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Table 4. Comparison with four state-of-the-art methods on DIOR dataset in terms of six evaluation
metrics. Bold fonts denote the best results.

Method
GIoU IoU

mAP (%) AP50 (%) AP75 (%) mAP (%) AP50 (%) AP75 (%)

Faster R-CNN 40.0 65.1 42.8 41.3 66.4 44.2
Mask R-CNN 41.4 65.7 45.2 42.9 67.0 46.6

FPN 42.6 66.5 46.3 43.6 67.9 47.6
PANet 44.1 68.1 47.8 44.8 69.3 49.0
Ours 44.8 67.9 49.2 45.7 69.2 50.3

As shown in Figure 9, the overall performance of the proposed method is superior to the four
state-of-the-art methods, especially when the threshold is in the range of 0.7–0.9. The reason for this
can also be seen in Section 4.
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3.3. Subjective Evaluation

To intuitively demonstrate the performance of our method, the detection results of our method
on DIOR dataset are visualized. As shown in Figure 10, the detected objects are enclosed by the red
bounding box. The classes of detected objects and the corresponding probabilities are also attached to
the bounding boxes. Figure 10 demonstrates that our method has an excellent performance on different
classes regardless of the scales and orientations of the objects.
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4. Discussion

As shown in Tables 1 and 3, although the proposed method has the best performance in terms
of mAP, AP50, and AP75 based on GIoU (IoU), the advantage of the proposed method over other
methods is different in three evaluation metrics. Specifically, the advantage of the proposed method
is the most obvious in terms of AP75, followed by mAP, and finally by AP50. In other words, the
advantage is the most obvious when the threshold of GIoU (IoU) is relatively high. As a matter of
fact, the above observations are in accordance with evaluations in terms of curves of AP with different
GIoU (IoU) thresholds. As shown in Figure 8 (evaluations on DIOR dataset), the advantage of the
proposed method is obvious when the GIoU (IoU) threshold is in the range of 0.6–0.8. In addition, the
performance of the proposed method only has a slight improvement when the GIoU (IoU) threshold is
in the range of 0.5–0.6 or 0.8–0.95. Similar observations can also be obtained from Figure 6 (evaluations
on the NWPU VHR-10 dataset).

The major contributions of this paper focus on the improvement of bounding box regression,
which will improve the precision of object localization. Therefore, the advantage of the proposed
method over other methods is obvious when the metric of object localization is relatively strict (e.g.,
the IoU or GIoU threshold is in the range of 0.6–0.8 for the DIOR dataset). However, the advantage no
longer exists if the metric is loose or too strict (e.g., the IoU or GIoU threshold is in the range of 0.5–0.6
or 0.8–0.95 for the DIOR dataset).
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5. Conclusions

A novel ODRSIs method based on improved bounding box regression and multi-level features
fusion was proposed in this paper. First, a new metric named GIoU, which considers both cases
of overlapping and non-overlapping between two bounding boxes, was employed to tackle the
problem that IoU can not measure the distance in the case of nonoverlapping between two bounding
boxes. Second, a novel bounding box regression loss named IGIoU loss was proposed, which can not
only optimize metrics (i.e., GIoU) directly but also overcomes the problem that existing GIoU based
bounding box regression loss cannot adaptively change the gradient based on the GIoU value. Finally,
to handle the problem that the feature extraction scheme of region proposals of the existing method
cannot make full use of multi-level features, an MLFF module was proposed and incorporated into the
existing hierarchical deep network. The quantitative evaluations on the DIOR and NWPU VHR-10
datasets demonstrate the effectiveness of the proposed method. Specifically, incorporating MLFF,
IGIoU loss, and their combination into the baseline method separately achieves absolute gains of 0.7%,
1.4%, and 2.2% or so in terms of COCO mAP on the DIOR dataset, and achieves an absolute gain of
1.0%, 2.0%, and 2.7% on the NWPU VHR-10 dataset, respectively. Moreover, the evaluations in terms
of the curves of AP with different thresholds demonstrate that the advantage of the proposed method
over other methods is obvious when the threshold is relatively high (e.g., IoU or GIoU threshold is in
the range of 0.6–0.8 for the DIOR dataset), which indicates that the proposed method can improve the
precision of object localization. Moreover, the comparison between four state-of-the-art methods and
the proposed method demonstates that the overall performance of the proposed method has achieved
a state-of-the-art level performance.

The GIoU employed in this paper can be applied to other methods in ODRSIs, and the proposed
IGIoU loss can also be used as the alternative to existing bounding box regression loss in other object
detection methods. Moreover, the proposed MLFF module can be easily embedded into the two-stage
object detection methods where the backbone is a hierarchical deep network. Our future works involve
extending the proposed method to detect the objects with oriented bounding boxes proposed by
Xia et al. [51] and Ding et. al. [52], as well as conducting evaluations on the DOTA dataset.
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