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Abstract: Accurate information about ecosystem structure and biogeochemical properties is essential
to providing better estimates ecosystem functioning. Airborne LiDAR (light detection and ranging)
is the most accurate way to retrieve canopy structure. However, accurately obtaining both
biogeochemical traits and structure parameters requires concurrent measurements from imaging
spectrometers and LiDARs. Our main objective was to evaluate the use of imaging spectroscopy (IS)
to provide vegetation structural information. We developed models to estimate structural variables
(i.e., biomass, height, vegetation heterogeneity and clumping) using IS data with a random forests
model from three forest ecosystems (i.e., an oak-pine low elevation savanna, a mixed conifer/broadleaf
mid-elevation forest, and a high-elevation montane conifer forest) in the Sierra Nevada Mountains,
California. We developed and tested general models to estimate the four structural variables with
accuracies greater than 75%, for the structurally and ecologically different forest sites, demonstrating
their applicability to a diverse range of forest ecosystems. The model R2 for each structural variable
was least in the conifer/broadleaf forest than either the low elevation savanna or the montane conifer
forest. We then used the structural variables we derived to discriminate site-specific, ecologically
meaningful descriptions of canopy structural types (CST). Our CST results demonstrate how IS
data can be used to create comprehensive and easily interpretable maps of forest structural types
that capture their major structural features and trends across different vegetation types in the Sierra
Nevada Mountains. The mixed conifer/broadleaf forest and montane conifer forest had the most
complex structures, containing six and five CSTs respectively. The identification of CSTs within a site
allowed us to better identify the main drivers of structural variability in each ecosystem. CSTs in open
savanna were driven mainly by differences in vegetation cover; in the mid-elevation mixed forest,
by the combination of biomass and canopy height; and in the montane conifer forest, by vegetation
heterogeneity and clumping.

Keywords: vegetation structure; imaging spectroscopy data; random forests; LiDAR

1. Introduction

Terrestrial ecosystems regulate the exchange of energy and matter between the land and the
atmosphere [1]. Trees fundamentally define the three-dimensional structural and energetic properties
of forest ecosystems including the amount of light energy intercepted for photosynthesis, which is
subsequently available for respiration, and evapotranspiration [2,3]. Furthermore, the structural and
biogeochemical traits within ecosystems may promote complementarity in energy use, including higher
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biomass and productivity that allow greater species coexistence in space, while vertically differentiated
forest light strategies promote coexistence [4]. We lack information on the spatial and temporal
variability of these physiological processes and the plant traits and geophysical parameters that drive
exchanges in energy and matter. Jetz [5] identified the lack of this information as limiting our ability to
understand global terrestrial ecosystem functioning and its influence on the Earth’s climate though
the carbon, water, energy and nutrient cycles. Of particular concern is our inability to predict the
status of carbon sequestration under future climates [6–8]. Better constraints on greenhouse gas (GHG)
fluxes could be achieved with concurrently measured estimates of ecosystem functioning in terms of
biogeochemical traits and three dimensional canopy structures. [9–12]. Measurement of horizontal
and vertical canopy structure also provides quantitative information on wildlife habitat [13–16],
and biodiversity [17].

To measure the spatial and temporal variability of physiological processes that drive exchanges
of energy and matter between the land and the atmosphere, we need to map canopy biochemistry
and structural properties, ideally measured simultaneously. Both LiDAR (light detection and ranging)
and RaDAR (radio detection and ranging) have the capability to measure canopy structure [18,19],
including height, biomass, and vertical structure. Although airborne LiDAR has limitations, it is
widely accepted that it provides the best estimates of canopy structure, based on numerous studies
over the past 20 years e.g., [18,20–24]. However, to obtain both biogeochemical traits and structure
parameters requires measurements from both imaging spectroscopy (IS) and LiDARs. However, even
when available, these data may not be acquired in the same season or even the same year, given cost
and schedules. Combining archived LiDAR data with newly acquired IS data may limit the accuracy
of retrieved spatial and temporal variability of the energy and mass exchange driving variables due
to differences in weather conditions, growth stage, and disturbances of various types (defoliation,
fertilization, irrigation, etc.) such that the structural variables no longer fit the biogeophysical variables.

We asked the question, is there another way to retrieve structure information? If so, can it be
done concurrent with the IS acquisition? It is generally accepted dogma that vegetation structure is
difficult or impossible to get with optical sensors alone [25]. Nonetheless, optical data have been used
to estimate above-ground forest biomass from albedo or brightness e.g., [26–28]. Lu [26] developed
models to estimate above-ground biomass with R2 close to 0.8 in a Brazilian Amazon successional forest
and Zheng [27] estimated above-ground biomass with an accuracy of R2 0.67 using an independent
validation dataset. Other studies have estimated forest structural properties from stereo imagery
and LiDAR, with accuracies of R2 = 0.91 and R2 = 0.79 for height and biomass respectively [29],
and combined optical and LiDAR data [30,31], with accuracies for tree high estimation of R2 = 0.84
and root mean square error (RMSE) = 7.3 m in the Sierra Nevada Mountains (California-USA) [30].
Huesca [32] estimated biomass, height and vegetation heterogeneity with accuracies higher than R2 =

0.8 for a mixed broadleaf and conifer forest in the Sierra Nevada Mountains (California, USA).
Because IS samples surface reflectance though many contiguous, narrow bands measuring

the reflected solar spectrum between 400–2500 nm [33], the spectrum contains both absorbing and
scattering bands, which provides information about both structure and process, thus the data has
potential to capture important structural and physiological properties [34] that are not as well retrieved
using broadband spectral data. For instance, IS has been demonstrated to map the distribution
and concentration of many key canopy biochemicals and traits like leaf mass area (LMA), leaf area
index (LAI), leaf water content (LWC) and leaf biomass [35–44]. This suggests that IS provides new
opportunities to quantify ecosystem composition and function [9–11] and has promise for estimating
the structural properties of forest canopies [31,32,45,46].

Most studies using IS data to map forest canopy structure have focused on a single site or forest
type [47,48], or, have considered only a single structural variable, such as above ground biomass [31].
To truly capture the critical structural differences among forest types, forest canopy structure is better
captured with a suite of metrics. Huesca [32] discriminated three canopy structural variables within
a mixed conifer and broadleaf forest in the mid-elevation Sierra National Forest (California, U.S.A.),



Remote Sens. 2019, 11, 1100 3 of 29

using the random forests model on a combination of spectral metrics sensitive to biomass, canopy
height and spatial heterogeneity. This method allows simultaneous collection of both physiological
and structural parameters, which are expected to lead to better estimates of gas exchange processes.

Machine learning methods such as random forests have become popular in remote-sensing studies
and provide satisfactorily results in many ecological applications with remote sensing data [49–52].
This technique handles high volumes of data; it is fast and avoids overfitting. In addition, it provides a
ranking of the most important metrics that then can be used to select the most relevant information,
reducing data dimensionality [53].

The main objective of this research was to prove the usefulness of IS data to retrieve vegetation
structure for forests with different species and structures in the central Sierra Nevada Mountains
(California, U.S.A.). The specific objectives are (1) to develop generalized models to estimate structural
variables (i.e., biomass, canopy height, vegetation heterogeneity, and forest clumping), using optical
properties from IS metrics; and (2) to develop a methodology that use the structural variables to
discriminate site-specific, ecologically meaningful descriptions of canopy structural types (CSTs).
For example, pixels with low values of height, biomass, vegetation heterogeneity, and clumping
represent sites with annual grasses or other low herbaceous cover species, while pixels associated
with somewhat higher biomass and clumping typically represent shrublands or sparse tree cover if
it is somewhat taller. In this research, LiDAR data was used as reference data to define the canopy
structural variables and IS data was used to map these variables across the study area.

In Huesca [32] we assessed the relationship between optical metrics and structural variables
derived from LiDAR. We used the IS-derived structural variables (canopy height, biomass, vertical
distribution of foliage with height) to predict the CSTs, which allowed us to demonstrate that the
combined metrics described different types of plant communities, from grasslands, to shrublands, to tall
forests. This new paper advances the findings in [32] by identifying four structure variables compared
to three, for sites covering a broader forested region of complex topography that represent three very
different forested ecosystems: an oak-pine savanna, a mixed conifer/broadleaf mid-elevation forest,
and a high elevation conifer forest. In Huesca [32] we defined CSTs with LiDAR data and then used
Random Forests to define them with IS-derived structural metrics. In this paper we used the IS-derived
and LiDAR-derived structural variables to define a procedure to that could be followed to identify
CSTs in the three different ecosystems. Our hypothesis is that if we apply the same methodology to
discriminate CSTs with LiDAR-derived and IS-derived structural variables and they both identify the
same CSTs, then our methodology is consistent and robust.

2. Study Site, Materials and Methods

2.1. Study Site

Our study region is located on the western slopes of the Sierra Nevada Mountains of central
California. We focus on three sub-regions (49.94 km2, 24.39 km2, and 134.02 km2) located coincidentally
within the National Science Foundation (NSF) National Ecological Observatory Network (NEON)
terrestrial sites in Domain 17 and which also overlaps with two sites and is near to the third site of
the National Science Foundation’s Southern Sierra Critical Zone Observatory (CZO) (Figure 1). Our
study areas are limited by the availability of LiDAR data acquired concurrently with IS data. The three
sites represent forest types that are extensively distributed throughout the Sierra Nevada Mountains,
in California.

The lower elevation site is located in the San Joaquin Experimental Range (abbreviated as SJER;
located at 37◦5′ N, 119◦43′ W) and covers an elevation range from 210 m to 520 m above sea level.
The area is characterized by open woodland savanna dominated by Quercus douglasii, Quercus wislizeni
and Pinus sabiniana and generally associated with shrub species of Ceanothus sp., Arctostaphylos sp. and
Aesculus californica, as well as various annual grass species. Summers in this Mediterranean climate are
hot and dry with mean temperatures between 24 ◦C and 27 ◦C. Winters are cool and wet with mean
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temperatures ranging from 4 ◦C to 10 ◦C. The annual precipitation is around 486 mm, restricted to the
extended winter period, from October/November to April/May [54], producing an annual drought
duration of six or more months in the summer–autumn period.
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Figure 1. Maps of study region. Blue box shows the context of this data in California while the
red boxes in the panel show the National Ecological Observatory Network (NEON) study sites we
used. The source of the land cover map shown in the figure is from the vegetation map of California
(CALVEG). The five vegetation types are representative of the entire Sierra Nevada Range and the four
lower elevation types in the Coast Ranges to the west of the Central Valley of California.

The mid-elevation site is Soaproot Saddle (abbreviated as SOAP; located at 37◦2′ N, 119◦15′ W) in
the Sierra National Forest and is situated approximately 998 m to 1383 m above sea level. The site is
dominated by evergreen and deciduous broadleaf trees and mixed conifer forest. The main conifer
tree species are Pinus ponderosa, Calocedrus decurrens, and Pinus lambertiana, and the most common
broadleaf tree species are the deciduous Quercus kelloggii and the evergreen Quercus chrysolepsis. Forest
density varies from dense to relatively open. Summers are hot and dry, and winters are mild and wet.
The mean temperature varies from 5.5 ◦C to 18.0 ◦C, and the annual precipitation is around 805 mm
per year [55].

The highest elevation site is the Teakettle Experimental Forest (abbreviated as TEAK; 36◦58′ N,
119◦1′ W) located within the Sierra National Forest at elevations from 2000 m to 2800 m above sea
level and mainly characterized by montane old-growth conifer forest dominated by Abies concolor,
Abies magnifica and Pinus jeffreyi. Forest mosaics range from patches of dense canopy, scattered trees, or
shrub-dominated together with open rocky areas. Summers are cooler than lower elevations but are
also dry and winters are cool and moist, with snow typically covering the ground from November to
June. Most of the 1250 mm annual precipitation falls as snow between November and May [56].
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2.2. Data and Methods

Figure 2 shows the methodology flowchart. Two remotely-sensed datasets were used in this
research: (1) Small footprint, discrete return-recording LiDAR (Optec Gemni) from the NSF NEON
program and (2) IS data from the National Aeronautics and Space Administration’s (NASA) Advanced
Visible Infrared Imaging Spectrometer (AVIRIS-classic). The former was used to produce the reference
structural data, while the latter was trained to predict the structural variables measured by LiDAR.
In addition, LiDAR metrics were used to validate the IS models due to the accuracy of the LiDAR data
and the lack of field data for the four predicted structural variables. Previous studies have used LiDAR
as reference data for validation [57]. We evaluated the accuracy of the LiDAR canopy height prediction
by comparing it to studies in the literature [18,58–67], which reported coefficients of determination (R2),
between 0.70 and 0.95 [61–67] in ecosystems similar to our study sites [67]. Several studies estimated
conifers, like those present in our study sites, with height errors less than two meters [61,66,68–70] in
sites with species from mixed and broadleaf forests with different vegetation densities and tree species
compositions [71,72]. To evaluate our LiDAR height data directly, we compared maximum heights
of LiDAR with field observations (see Supplementary Materials Figure S1) obtaining an agreement
of R2 = 0.80 and a RMSE of 2.38 m which validates the use of the LiDAR data as reference data for
this analysis.
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The research took place in two phases (Figure 2). In the first phase, four structural variables
were selected from LiDAR. We built general, non-site-specific models to estimate the four structural
variables (i.e., biomass, canopy height, vegetation heterogeneity, and clumping) using optical metrics
from AVIRIS-classic and using LiDAR data as reference data to train, test and validate the model.
In the second phase, combinations of the structural variables were used to define spatially explicit
site-dependent CSTs. The procedure was carried out in parallel using IS-estimated structural variables
and LiDAR-derived structural variables. In a final step CST results from IS-derived data and
LiDAR-derived data were compared to validate the procedure.

2.2.1. Advanced Visible Infrared Imaging Spectrometer (AVIRIS) and Light Detection and Ranging
(LiDAR) Preprocessing

AVIRIS-classic data were acquired June 12, 2013 by the Jet Propulsion Laboratory (JPL). The sensor
was flown onboard an ER-2 aircraft at approximately 20 km altitude, resulting in a pixel spatial
resolution of 18 m. AVIRIS-classic has 224 spectral bands ranging from 370 nm to 2500 nm with a
nominal bandwidth of 10 nm [73]. JPL provided radiometric, geometric and atmospheric correction
to apparent surface reflectance. In addition, a topographic correction was done following the model
proposed by Soenen [74] based on the sun-canopy-sensor (SCS) correction proposed by Gu and
Gillespie [75]. The noisy atmospheric water bands from 1342 nm to 1482 nm and from 1800 nm to 1966
nm were removed, leaving 193 bands for the analysis.

Small footprint, discrete return-recording Optec Gemni LiDAR data from the NEON Airborne
Observation Platform (AOP) were collected for the three study sites on 9–15 June 2013 coincident
with the NASA IS data [76]. The areas covered by the LiDAR acquisition are shown in the red boxes
in Figure 1. The data have a point density of ~19 pts/m2. In addition, a 1 m2 spatial resolution
bare earth digital elevation model (DEM) was created by NEON, which was used to normalize the
height returns. All LiDAR-derived structural metrics were calculated on an 18 m grid that was
co-registered with AVIRIS-classic data pixel using 100 ground control points with an RMSE of < 0.5
pixel. We removed pixels without green vegetation using a two-step masking process: (1) pixels with
Normalized Difference Vegetation Index (NDVI) <0.2 and of these, (2) pixels that were considered
non-photosynthetic vegetation (non-green plant material) when un-mixed using multiple endmember
spectral mixture analysis (MESMA) [77]. The low NDVI threshold selected was based on the decision
to use a common criterion valid for all three study sites. This was especially important at the SJER
site due to low canopy cover in the savanna ecosystem, together with the summer timing of the data
acquisition (i.e., when the understory is dominated by dry grass). These steps resulted in masking
rock outcrops and water bodies in the images but did not remove all the roads as pixels were partly
vegetation covered.

2.2.2. Optical and LiDAR Metrics

The optical metrics were based on Huesca [32]:

(1). Sub-pixel cover fractions of Green Vegetation (representing different forest cover types), Soil,
Non-Photosynthetic vegetation (NPV), and shade were calculated using MESMA implemented
in the Visualization and Image Processing for Environmental Research (VIPER) Tools package
using ENVI image analysis software [78]. MESMA was run with the following constraints:
1. The maximum allowable RMSE = 2.5% and 2. The minimum and maximum allowable
endmember fractions must fall between −0.05 and 1.05. Spectra of NPV and soil endmembers
were independently collected during the overflight using an Analytical Spectral Devices (ASD)
full-range spectrometer sensor, the FieldSpec3 Spectroradiometer (Analytical Spectral Devices Inc.,
Boulder, CO, USA), while green vegetation endmembers were selected from the AVIRIS-classic
images. Several endmember spectra were selected for each cover type. The final endmembers
chosen had high COB (count-based endmember selection (COB: [79])) and low MASA (minimum
average spectral angle (MASA: [80])) and EAR (endmember average RMSE (EAR: [81])) values.
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(2). Narrow-band indices representing three types of spectral information were used: 1. those
sensitive to the presence of photosynthetic pigments: NDVI [82], Red Edge Normalized Difference
Vegetation Index (NDVI705) [83,84], Modified Red Edge Normalized Difference Vegetation Index
(mNDVI705) [84,85], and Enhanced Vegetation Index (EVI) [86]; 2. those sensitive to water
content: Normalized Difference Water Index (NDWI) [87], Normalized Difference Infrared Index
(NDII) [88], and 3. an index sensitive to dry plant matter content: the Cellulose Absorption Index
(CAI) [89]. Despite the similarity of these indexes, they provide different projections through the
data space related to these processes and each provides useful information, as described later in
the Results section. The formulas of the narrow-band indices used in this research are shown in
Supplementary Material Table S1.

(3). Spectral canopy water absorption derivatives: Derivative analysis was used to measure the
wavelength position and magnitude of the NIR water absorption edges [90], abbreviated here as
Wtr1EdgeWvl and Wtr1EdgeMag, the canopy water absorption features between 958–1073 nm and
1105–1168 nm, abbreviated as Wtr1AbAr and Wtr2AbAr, respectively, and the physically-derived
equivalent water thickness (EWT; the depth of water/per pixel area) [90–92].

(4). Principal component analysis (PCA) [93] was performed both using the full spectral range, as
well as the independent regions: visible, near infrared, and shortwave infrared which was done
to summarize significant information in all three regions of the spectrum. The PCA components
that provided strong relationships with canopy structure [32] were included in this study.

The LiDAR metrics selected were those in Huesca [32], including maximum height (Hmax),
mean height (Hmean), median height (Hmedian) and standard deviation of canopy height (Hstd),
which were derived from the height distribution of the LiDAR returns. To avoid outliers, the 99th
percentile was used to assign the maximum height. The standard deviation of the canopy height model
(CHMstd) was created at 1 m2 spatial resolution. The fractional cover (FC) [21,94] and the fractional
cover from the first returns (FC_1ret) [21] represent the vertical projection of the vegetation canopy
onto the ground calculated as the ratio between vegetation and ground returns. FC is based on all
returns while FC_1ret only considers the first returns. Leaf area index (LAI) [95] is estimated from
the canopy cover. The integral of the vegetation vertical profile (VVPint) at 0.5 m vertical resolution,
represents the proportion of canopy returns for each height bin and is used to estimate biomass [96,97].
In addition, we computed the clumping index using the method of García [23] to estimate the degree
of randomness of the spatial distribution of canopy materials. The term clumping/randomness refers
to the spatial distribution of the vegetation within our 18 m pixels. Although usually applied to the
degree of randomness of leaves/needles or shoots, it is not restricted to a specific scale but can be
applied to the degree of clumpiness or randomness of the crowns or in the case here, the vegetation
within the pixel. The clumping index was not included in Huesca [32] due to distortion in some of the
flight lines. This problem was fixed by the NEON team, and used in this analysis [76].

2.2.3. LiDAR-Derived Structural Variables

The relationship among all 10 LiDAR metrics was measured by Pearson’s R coefficient (R)
(Supplementary Materials Table S2). Results showed strong inter-correlations among LiDAR metrics
in the three study sites, ranging from −0.7 to 1.00. Thus, we grouped the highly correlated metrics
into variables related to biomass (composed of VVPint, LAI, FC, and FC_1ret, with cross-correlations
between 0.91–1.0), variables related to canopy height (composed of Hmean, Hmedian and Hmax,
with cross-correlations between 0.79–1.0), variables related to vegetation heterogeneity or canopy
roughness (composed of Hstd and CHMstd, with cross-correlations between 0.96–1.00), and the
clumping index, which had the least correlation to the other structural variables and was treated as an
independent variable.

In this study, the metrics selected from the mid-elevation site, were chosen to represent each
metrics group and were based on the variable that presented the highest correlations. The metric
Biomass was most strongly represented by the vertical distribution of canopy elements (VVPint).
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Hmean represented canopy height, and CHMstd represented vegetation heterogeneity. CHMstd is a
continuous metric that represented vegetation heterogeneity based on canopy heights. The clumping
index represented how the vegetation is distributed in the space; that means the degree of clumpiness
or randomness of the vegetation. Both structural variables (i.e., CHMstd and clumping index) represent
horizontal structural variables. Of the four selected structural variables, biomass and height can
be considered “vertical vegetation variables”, and vegetation heterogeneity and clumping can be
considered “horizontal vegetation variables”.

2.2.4. Modeling Structural Variables with Optical Metrics

We developed a single, cross-site model for each of the final four structural variables (i.e. biomass,
vegetation height, vegetation heterogeneity and clumping), estimating them with the optical metrics
defined in Section 2.2.2 using the random forests model. It is a non-parametric non-linear tree-based
regression model [98]. The number of decision trees was initially selected by running the procedure
1000 times and analyzing the regression error. At 200 trees, the error stabilized and, to set a conservative
limit, we chose 500 iterative trees to ensure that every observation was predicted multiple times.
The random forests model randomly selects the best fit four optical metrics from the 24 possible metrics
(Table 1). These combinations can be different in each tree; therefore, over the 500 runs the relative
strength of each metric on model performance was established.

Table 1. Light detection and ranging (LiDAR) and imaging spectroscopy (IS) metrics considered in the
development of the structural variables.

LiDAR Metrics IS Metrics

Maximum height (Hmax) Green vegetation (GV) fraction, Non-Photosynthetic vegetation (NPV) fraction,
soil fraction, shade fraction; [78]

Mean height (Hmean) Normalized Difference Vegetation Index (NDVI); [82]
Median height (Hmedian) Red Edge Normalized Difference Vegetation Index (NDVI705); [83,84]

Standard deviation of height (Hstd) Modified Red Edge Normalized Difference Vegetation Index (mNDVI705); [84,85]
Standard deviation of Canopy Height Model (CHMstd) Enhanced Vegetation Index (EVI); [86]

Fractional Cover (FC) [18,91] Normalized Difference Water Index (NDWI); [87]
Fractional Cover form the first returns (FC-1rtn); [18] Normalized Difference Infrared Index (NDII); [88]

Leaf Area Index (LAI); [92] Cellulose Absorption Index (CAI); [89]
Vegetation Vertical Profile integral (VVIint) [93,94] Wavelength positon of the NIR water absorption edge (Wtr1EdgeWvl), [90]

Clumping Index [23] Magnitude positon of the NIR water absorption edge (Wtr1EdgeMag), [90]

Canopy water absorption feature between 958-1073 nm (Wtr1AbAr), [90]
Canopy water absorption feature between 1105-1168 nm (Wtr2AbAr), [90]

Equivalent Water Thickness (EWT); [90–92]
Principal Component: PC1, PC2, PC1_visible, PC2_visible, PC1_NIR, PC2_NIR,

PC1_SWIR1 and PC1_SWIR2 [93].

In order to evaluate the reliability of each model, one set of data was used to develop the model
(i.e., training-testing dataset), and another independent dataset was used to evaluate the model’s
reliability (i.e., validation dataset). Training and validation were selected to be sufficiently far apart
to avoid any spatial autocorrelation. The Moran I correlogram was used to estimate the minimum
distance apart validation points needed to be from training points to avoid spatial autocorrelation.
At each iteration, the training step used 1/3 of the independent testing-training data and the remaining
2/3 was used for internal testing of the model. The training-testing dataset was selected from North to
South over the western part of each site, and the validation dataset from North to South over the Eastern
part with a separation of 2.5 km, 1.0 km, and 1.4 km for SJER, SOAP and TEAK, respectively, in order to
capture the maximum variability of each structural variable while avoiding the spatial autocorrelation.

The complex terrain and difficult access to areas with steep slopes, compounded with large
gradients and clustered species distribution patterns made it difficult to find an unbiased sampling plan
for these training, testing, and validation datasets. We employed a dual-validation method to evaluate
(1) the R2 and (2) the spatial extendibility of the models. Each model’s accuracy and precision was
evaluated by its R2 and the model’s error using the RMSE and the mean percent standard error (MPSE).
Sometimes RMSE can be difficult to interpret because it depends of the range of the variable, therefore,
we also report the ranges of each variable among other basic statistics (Supplementary Materials
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Table S3). (2) The spatial extendibility of the model was evaluated over an independent validation data
for each study site by assessing the relationships measured by R2, and RMSE between the AVIRIS-classic
estimated structural variables values and the LiDAR data. By spatial extendibility we mean that a
statistical model developed from the training-testing data was compared to an independent validation
dataset, which was obtained from the image at locations sufficiently separated beyond the distance
determined by the spatial autocorrelation test at each site, but within its elevation zone community
type. This validation evaluates the robustness of the model at each site. We also tested for spatial
autocorrelation of the errors for each structural variable in each study site using Moran’s I index.
We present the ranking of the most important metrics based on the increase in the random forests’
mean square error if they were deleted from the composite structural variables.

2.2.5. Canopy Structural Types Definition

We wished to understand how these four structural variables (i.e., biomass, vegetation height,
vegetation heterogeneity and clumping) related to different forest types in the three study sites. While
the generic model was developed to produce the four structural variables using data from all three
study sites, we used these to develop a set of CSTs that were defined site by site. Our objective
here is to develop a procedure to identify CSTs. This procedure was applied independently to both
LiDAR-derived structural variables (i.e., those used as reference data) and to the IS-derived structural
variables (i.e., used as predicted structural variables). We then compared the CSTs derived from these
two data sources. In addition we wanted to evaluate how CSTs varied within and between sites that
are characterized by differences in climate, topography, soils, community composition, community
types, and frequency of disturbance.

CSTs are defined by the combination of vertical and horizontal structure variables. Vertical
structure is represented by biomass and height while horizontal structure is represented by vegetation
heterogeneity and clumping. In a first step each variable was to be divided into several classes.
The number of classes is defined by the user and depends on the requirements of a specific research
objective. For this study we classified biomass and height into three classes that represented low,
medium and high values. Vegetation heterogeneity was classified into two classes that represents
homogeneous (i.e., low values) and heterogeneous (i.e., high values) pixels. Clumping was also
classified into two classes that represented clumping distribution of trees (i.e., low values) s versus
random distribution of trees (i.e., high values).

An unsupervised IsoData classification [99] was used to classify biomass, height and vegetation
heterogeneity. This procedure calculates evenly distributed class means within the dataset, and then
iteratively clusters the pixels into the nearest class. However, the clumping was classified using a static
threshold of 0.5, with values above 0.5 indicating regular to random distribution, and values below 0.5
indicating clumped aggregation (where 0 = completely clumped, 1 = completely random; Garcia et al.,
2015).

The combination of biomass and height classifications created a maximum of 9 vertical structure
classes (3 biomass classes combined with 3 height classes). Each class was analyzed in terms of
representativeness (i.e., number of pixels and spatial continuity) and the proximity among classes with
the intent to reduce the number of combinations to an interpretable and ecologically meaningful set.
The final selection of classes represents what we called “vertical canopy structural types” (VCSTs).
The combination of vegetation heterogeneity and clumping resulted in a maximum of 4 horizontal
structure classes (2 vegetation heterogeneity classes combined with 2 clumping classes). Each class
was analyzed following the same criteria explained above. The final selection represents what we
called “horizontal canopy structural types” (HCSTs). In a final step, VCSTs and HCSTs were combined.
Each class was analyzed in terms of representativeness (i.e., number of pixels and spatial continuity)
and the proximity among classes to define the final CSTs.

One class is selected as potential VCST, HCST, or as the final CST when it represents more than
15% of the pixels of the study site and shows spatial continuity (or coherence). Those representing
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less than 15% were merged with one of the previous classes based on the average class proximity
and spatial coherence. One additional rule in the merging process was that a high class value for
any structural variable cannot be combined with a low class value. This restriction means that a high
biomass pixel cannot be joined with a low biomass pixel or high height with low height. The other
classes that could not be grouped and represent less than 15% of the pixels of the study site were
evaluated as to whether they should be grouped together or considered as a different class.

The next step was to ecologically interpret the CSTs for each study site using the U.S. Forest
Service’s vegetation map of California (CALVEG), updated in 2015 [100]. It provides information on
vegetation cover types and attributes, such as crown size and height. CALVEG is the best source
of spatial information about these sites, and produced at the same spatial scale and for the same
time period, and CVEG provided independent information on the ecological status of these forests.
Two attributes within CALVEG were used to conduct this analysis: (1) Vegetation Cover Type and
(2) National Vegetation Classification Standard (NVCS). Within the latter, only the classes of “closed
tree canopy” and “open tree canopy” were considered. Each CST is described with the percentage of
each class attribute. The sum of all “vegetation cover type” classes within in each CST sums to 100%,
however the sum of the two selected classes from the NVCS classification are not required to equal
100% because they do not represent all classes within this attribute. Table 2 presents the classes defined
within the vegetation cover type attribute.

Table 2. Vegetation cover types defined within U.S. Forest Service’s vegetation map of California
(CALVEG) mapping.

Cover Type Description

CON Conifer forest/woodland
HDW Hardwood forest/woodland
MIX Mixed conifer and hardwood forest/woodland
SHB Shrub
HEB Herbaceous
BAR Barren [Rock/Soil/Sand/ Snow]
WAT Water
AGR Agriculture
URB Urban

3. Results

3.1. Modeling Structural Variables with Optical Metrics

Random forest regression models for all four structural variables achieved high goodness-of-fit,
with R2 values of 0.83, 0.80, 0.78 and 0.76, and RMSEs of 0.01, 1.08, 2.82, 0.01 for biomass, canopy height,
vegetation heterogeneity, and clumping, respectively (Table 3, Figures 3–6). Clearly the spatial patterns
for the structural variables between LiDAR and optical data closely match for all four variables at all
three sites, even with the banding observed in the clumping images (Figure 6). Additional information
about the correlations between the LIDAR variables and structural variables at each study site are
provided in the Supplementary Materials Figure S2. The relationship between the four structural
variables and the most important optical metrics are shown in the Supplementary Materials Table S4.

To evaluate the site-specific performance of the general models, we see they produced IS-derived
maps that were similar to LiDAR-derived maps at each site, although some differences are observed
(Table 3). By examining the R2 correlations within the training-testing and validation datasets compared
to the reference data (i.e., LiDAR-derived structural variables) for each of the four structural variables,
R2 values were greater than 0.70 for the training dataset for all variables except height in SJER and
TEAK, and equal or above 0.58 in SOAP. Lowest accuracies were found using the validation dataset
for each study site, which was especially evident in SOAP, but nontheless with low RMSE. However,
considering the independent validation data for the three study sites together, the R2 values were 081,
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0.69, 0.72 and 0.70 for biomass, canopy height, vegetation heterogeneity and clumping respectively.
Biomass was the structural variable with highest R2 at all study sites (i.e., R2 of 0.80, 0.66 and 0.8 in
SJER, SOAP and TEAK respectively) and height was the structural variable with lower R2 in SJER and
SOAP (i.e., R2 of 0.67 and 0.59, respectively) and clumping in TEAK (R2 of 0.72).

Table 3. The fit of random forests to the regression model, measured by the coefficient of determination
(R2), the root mean square error (RMSE) and the mean percent standard error (MPSE) (see Supplementary
Materials, Table S3) for the four structural variables and for the training (i.e., T) and validation (i.e., V)
datasets by individual site.

Biomass Height Vegetation Heterogeneity Clumping

R2(TV) 0.83/0.81 0.80/0.69 0.78/0.72 0.76/0.70
RMSE (T/V) 0.01/0.09 1.08/3.52 2.82/1.68 0.01/0.09
MPSE (T/V) 15.50/19.43 25.36/50.75 25.37/36.95 19.99/23.57

SJER
R2 (T/V) 0.80/0.56 0.67/0.40 0.73/0.52 0.73/0.53

RMSE(T/V) 0.06/0.06 1.01/1.12 0.51/0.43 0.06/0.04
MPSE(T/V) 16.63/18.32 21.37/30.61 16.93/16.75 18.62/12.26

SOAP
R2 (T/V) 0.66/0.35 0.59/0.33 0.60/0.52 0.58/0.17

RMSE(T/V) 0.06/0.08 2.28/2.23 1.25/1.20 0.07/0.01
MPSE(T/V) 11.39/16.20 23.35/75.99 20.79/59.99 20.35/25.32

TEAK
R2 (T/V) 0.80/0.64 0.78/0.57 0.71/0.49 0.72/0.44

RMSE(T/V) 0.07/0.08 2.94/3.15 1.33/1.40 0.07/0.08
MPSE(T/V) 15.62/2013 23.26/39.75 22.91/27.86 20.33/26.76

SJER (Figure 3a,b, Figure 4a,b, Figure 5a,b and Figure 6a,b) and TEAK (Figure 3e,f, Figure 4e,f,
Figure 5e,f and Figure 6e,f) show similar overall fit for biomass, vegetation heterogeneity and clumping
for the training dataset with R2 equal or greater than 0.72. But in general terms TEAK presents lower
R2 for three of the four variables (except biomass) in the validation dataset. TEAK has higher R2 for
height compared to SJER for both training and validation datasets with R2 of 0.78 and 0.57 for training
and validation respectively versus 0.67 and 0.40 for training and validation respectively in SJER. SOAP
had the lowest R2 values for the four structural variables (Figure 3c,d, Figure 4c,d, Figure 5c,d and
Figure 6c,d), but they are still within the range of other classifiers with R2 values of 0.66, 0.59, 0.64
and 0.58 for biomass, canopy height, vegetation heterogeneity and clumping respectively using the
training dataset. Much lower values are found in SOAP for the validation data with R2 values of 0.35,
0.33, 0.52 and 0.17 for biomass, canopy height, vegetation heterogeneity and clumping respectively.
This site has the most complex vegetation in terms of species number and types, but it is the smallest
area by 2–5 times the other two sites, providing a potential explanation for its lower performance.

Examining the spatial distribution of model errors at each site, we found no coherent spatial
pattern for errors in SJER (Supplementary Materials, Figure S3a–d) except for clumping. This was also
true for canopy height and heterogeneity at SOAP (Supplementary Materials, Figure S3f,g). The highest
errors for biomass and clumping (Supplementary Materials, Figure S3e,h) were concentrated in
the southwest part of the SOAP study site, where the model underestimates the values. At TEAK
(Supplementary Materials, Figure S3i–l), we observed clear spatial patterning in model errors for all
variables except clumping (S3l). Strong striping was observed for clumping at all sites (Supplementary
Materials, Figure S3d,h,l). Moran’s I index showed significant positive spatial autocorrelation that
is in agreement with the spatial patterns observed. The highest errors in biomass were found in the
southwest and northwest parts of the TEAK study area, the highest errors in canopy height were also in
a southwest to northeast band, and the highest errors in vegetation heterogeneity were in the southwest
(Supplementary Materials, Figure S3j,k), respectively. Those areas correspond to extreme values of the
variable (i.e., either very high or very low), at least partially due to the regression approach used for
estimating these structural variables.
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Figure 3. Spatial distribution of biomass from LiDAR-derived data (a,c,e) and from Random Forests 
regression using optical metrics (b,d,f), for SJER (a,b), SOAP (c,d) and TEAK (e,f). White areas are 
non-vegetated, either water bodies, rock or bare ground, etc. See Supplementary Materials, Table S5 
for the ranking of the input metrics. Note regions are not to scale due to optimizing images and site 
size differences. 

Figure 3. Spatial distribution of biomass from LiDAR-derived data (a,c,e) and from Random Forests
regression using optical metrics (b,d,f), for SJER (a,b), SOAP (c,d) and TEAK (e,f). White areas are
non-vegetated, either water bodies, rock or bare ground, etc. See Supplementary Materials, Table S5
for the ranking of the input metrics. Note regions are not to scale due to optimizing images and site
size differences.
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Figure 4. Spatial distribution of canopy height from LiDAR-derived data (a,c,e) and from Random 
Forests regression using optical metrics (b,d,f), for SJER (a,b), SOAP (c,d) and TEAK (e,f). White 
areas are non-vegetated, either water bodies, rock, bare ground, etc.  Note regions are not to scale 
due to optimizing images and site size differences. See Supplementary Materials, Table S5 for the 
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differences. 

Figure 4. Spatial distribution of canopy height from LiDAR-derived data (a,c,e) and from Random
Forests regression using optical metrics (b,d,f), for SJER (a,b), SOAP (c,d) and TEAK (e,f). White areas
are non-vegetated, either water bodies, rock, bare ground, etc. Note regions are not to scale due to
optimizing images and site size differences. See Supplementary Materials, Table S5 for the ranking of
the input metrics. Note regions are not to scale due to optimizing images and site size differences.
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Figure 5. Spatial distribution of vegetation heterogeneity from LiDAR-derived data (a,c,e) and from 
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White areas are non-vegetated, either water bodies, rock or bare ground, etc. Note regions are not to 
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Figure 5. Spatial distribution of vegetation heterogeneity from LiDAR-derived data (a,c,e) and from
Random Forests regression using optical metrics (b,d,f), for SJER (a,b), SOAP (c,d) and TEAK (e,f).
White areas are non-vegetated, either water bodies, rock or bare ground, etc. Note regions are not
to scale due to optimizing images and site size differences. See Supplementary Materials, Table S5
for the ranking of the input metrics. Note regions are not to scale due to optimizing images and site
size differences.
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non-vegetated, either water bodies, rock, bare ground, etc. Note regions are not to scale due to 
optimizing images and site size differences. See Supplementary Materials, Table S5 for the ranking of 
the input metrics. Note regions are not to scale due to optimizing images and site size differences. 

To evaluate the site-specific performance of the general models, we see they produced 
IS-derived maps that were similar to LiDAR-derived maps at each site, although some differences 
are observed (Table 3). By examining the R2 correlations within the training-testing and validation 
datasets compared to the reference data (i.e., LiDAR-derived structural variables) for each of the 

Figure 6. Spatial distribution of clumping from LiDAR-derived data (a,c,e) and from random forests
regression using optical metrics (b,d,f), for SJER (a,b), SOAP (c,d) and TEAK (e,f). White areas are
non-vegetated, either water bodies, rock, bare ground, etc. Note regions are not to scale due to
optimizing images and site size differences. See Supplementary Materials, Table S5 for the ranking of
the input metrics. Note regions are not to scale due to optimizing images and site size differences.

3.2. Canopy Structural Types (CSTs)

Result from the analysis of CSTs is shown in Figure 7 and Table 4. Each CST represents different
patterns of biomass, height, vegetation heterogeneity and clumping within the forest (Supplementary
Materials Figure S4). The coherent spatial distribution of each CST show the class may consistently
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represent a forest type or condition. Table 5 shows the percentage of each vegetation cover type from
CALVEG within each CST. Only the results from the IS-derived data are displayed in Table 5 for SJER and
SOAP because the differences between LiDAR-derived and IS-derived data were negligible. For TEAK,
both are displayed (i.e., LiDAR-derived and IS-derived data) because there is a disagreement in one of
the CST classes. Supplementary Materials Figure S5 presents a red–green–blue (RGB) combination,
equivalent to the fractional composition of each of the three most important structural variables at
each site. We present this figure to demonstrate that the number of CSTs identified in our analysis
(Figure 7) is consistent with the patterns seen in Supplementary Materials Figure S5 and these results
are spatially coherent. Supplementary Materials Tables S6 and S7 show the agreement between CSTs
derived from LiDAR and IS data.

Table 4. Description of SJER, SOAP, and TEAK canopy structural types (CSTs) using LiDAR-derived
variables and IS-derived variables. B: Biomass (from 0 to 1), H: Height (m), VH: Vegetation heterogeneity
(m), and C: Clumping (from 0 to 1).

B H VH C

SJER (LiDAR/IS)
CST1 0.06/0.07 1.86/2.14 0.62/0.75 < 0.5 (low)
CST2 0.18/0.17 4.28/4.18 1.49/1.46 < 0.5 (low)
CST3 0.34/0.34 6.54/6.26 2.70/2.58 < 0.5 (low)

SOAP(LiDAR/IS)
CST1 0.32/0.37 4.96/7.27 3.11/4.10 0.30/0.30
CST2 0.59/0.59 10.91/12.79 6.11/6.45 0.41/0.45
CST3 0.71/0.68 8.23/9.73 4.32/6.10 0.70/0.59
CST4 0.68/0.70 12.10/14.04 7.61/8.28 0.65/0.62
CST5 0.57/0.59 16.33/15.87 8.31/8.93 0.44/0.50
CST6 0.77/0.75 18.13/17.06 9.72/9.68 0.63/0.64

TEAK(LiDAR/IS)
CST1 0.30/0.23 7.40/6.03 4.29/3.42 0.29/0.22
CST2 0.48/0.56 5.78/8.84 3.93/5.12 0.58/0.59
CST3 0.53/0.50 14.08/14.32 7.61/7.59 0.37/0.39
CST4 0.65/0.63 13.33/19.99 7.22/9.71 0.62/0.43
CST5 0.69/0.71 22.57/20.62 10.75/9.87 0.49/0.58

Table 5. Percentage of the vegetation cover types (VCT) and the national vegetation classification
standards (NVCS) (i.e., closed and sparse tree canopy attributes) defined within CALVEG mapping for
each canopy structural type (CST). SJER and SOAP IS classification were not included as they show
minimal difference from LiDAR data. TEAK IS classes are provided as they differ the most from LiDAR
values, as explained in the text.

VCT &NVCS SJER SOAP TEAK
CST1 CST2 CST3 CST1 CST2 CST3 CST4 CST5 CST6 CST1 CST2 CST3 CST4 CST5

LiDAR

AGRICULTURE 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BARREN 0 0 0 17 1 0 0 0 0 17 14 2 2 0

HARDWOOD 24 43 55 16 12 23 3 3 1 1 4 0 5 0
GRASS 74 53 18 2 1 0 0 0 0 3 0 1 0 0

MIX 1 4 27 49 68 55 78 74 73 4 13 4 14 5
SHRUB 0 1 0 9 6 12 2 1 0 10 13 2 2 0

CONIFER 0 0 0 7 11 9 17 22 26 66 55 90 77 94
Closed tree canopy 29 65 75 81 79 90 10 21 32 59 70
Sparse tree canopy 17 1 0 0 0 0 28 16 16 6 4

Imaging
Spectroscopy

AGRICULTURE 0 0 0 0 0
BARREN 18 9 2 0 0

HARDWOOD 1 9 0 0 0
GRASS 2 1 1 0 0

MIX 6 20 5 1 6
SHRUB 9 10 3 1 0

CONIFER 64 51 89 97 93
Closed tree canopy 9 30 31 58 84
Sparse tree canopy 32 13 15 6 2
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Figure 7. Spatial distribution of the structural types (CST) in SJER using reference data i.e.,
LiDAR-derived data (a) and IS-derived data (b); similarly in SOAP these are (c) and (d); and in
TEAK (e) and (f). Note regions are not to scale due to optimizing images and site size differences.

3.2.1. Structural Types Defined in the San Joaquin Experimental Forest

Of the nine potential classes from the combinations of biomass and canopy height (i.e., vertical
structure), we found three different vertical canopy structural types (VCSTs) at SJER, representing
low biomass and low height, medium biomass and medium height, and high biomass and tall height.
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Within the four possible classes from the combinations of vegetation heterogeneity and clumping (i.e.,
horizontal structure), there were just two horizontal canopy structural types (HCSTs) discriminated
because most pixels were classified within the low clumping class. Thus, differences between these
two combined classes are based on mainly on vegetation heterogeneity. Finally, the six classes from
combing the VCSTs and HCSTs were grouped into three unique CSTs (Figure 7a,b and Table 4).

Differences among CSTs at SJER were driven mainly by vertical structure. In general terms,
low to medium biomass (i.e., mean biomass between 0.06 and 0.18) and canopy height (i.e., mean
canopy height between 1.86 and 4.28 m) were associated with more homogeneous areas (i.e., mean
vegetation heterogeneity between 0.62 and 1.49), while high biomass and tall canopy height (i.e., mean
biomass and canopy height higher than 0.30 and 6 m respectively) characterized more heterogeneous
areas (i.e., mean vegetation heterogeneity greater than 2.5). Following the procedure described in the
methods section, the CSTs were independently determined using LiDAR-derived structural variables
and IS-estimated structural variables (Figure 7a,b).

Table 5 shows the percentage of each vegetation cover type from CALVEG within each CST.
Only the results from the IS-derived data are displayed in Table 5 because the differences between
LiDAR-derived and IS-derived data were negligible (see Table 4). The first CST is dominated by grass
species (74%). The second CST is dominated by a mix of hardwood species and grass (43% hardwood
and 53% grass). The third canopy structural type is mainly dominated by hardwood species (55%
hardwood, 27% hardwood/conifer mixed).

3.2.2. Canopy Structural Types Defined in Soaproot Saddle

At SOAP, analysis of the nine possible classes from vertical structure (i.e., the combinations
of biomass and canopy height) resulted in five VCSTs. The four classes resulting from the
horizontal structure (i.e., the combinations of vegetation heterogeneity and clumping) were sufficiently
representative and distinct that they were not grouped. The 20 final classes from the combinations of
VCSTs and HCSTs were grouped into six different CSTs (Figure 7c,d and Table 4).

The similarity between CSTs obtained from LiDAR-derived variables and from IS-derived variables
is clear (Figure 7). CST1 and CST6 are characterized by low and high values of structural variables,
respectively. The other four CSTs represent intermediate situations. CST4 and CST5 represent medium
biomass (i.e., mean biomass between 0.57 and 0.70) and high vegetation heterogeneity (i.e., mean
vegetation heterogeneity between 7.61 and 8.93) together with a regular to random distribution of the
vegetation (i.e., mean clumping between 0.44 and 0.65). The difference between these CSTs is in canopy
height. While CST4 is characterized by medium canopy height (i.e., mean height around 12–14 m),
CST5 is dominated by taller canopies (i.e., mean height around 15–16 m). There is a difference in terms
of biomass between CST2 and CST3 from LiDAR-derived and IS-derived data. CST2 and CST3 are
represented by medium and high biomass respectively with LiDAR-derived data but by low and
medium biomass respectively with IS-derived data. Both CSTs are characterized by homogeneous
vegetation, however, while CST2 is associated with medium canopy height and clustered vegetation
aggregations (i.e., mean canopy height around 11–12 m and mean clumping around 0.4), CST3 is
characterized by low canopy height and by regular to random distribution of the vegetation (i.e., mean
canopy height around 8–9 m and mean clumping around 0.59–0.70).

Table 5 shows the range in percentage for each CST of each CALVEG vegetation cover type
together with the attributes of closed and sparse tree canopy from the national vegetation classification
standards. Only the results from the IS-derived data for TEAK are shown in Table 5 because the
differences between LiDAR-derived and IS-derived data for JSER and SOAP were negligible (See
Table 4). All CSTs are dominated by mixed forest (Table 5) according to CALVEG data with an increasing
percentage from CST1 to structural type CST6 (from 49% in CST1 to 73% in CST6). Hardwood species
dominate the first three CSTs while conifer species dominate the last three CSTs. The first CST is
associated with low values of the four structural variables and has a relatively high percentage of sparse
tree canopy and non-vegetated areas (i.e., 29% and 17% respectively) in relation to the other CSTs.
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The main difference between CST2 and CST3 is based on the vegetation distribution (i.e., clumping)
(Table 5). According to CALVEG, CST3 has a higher percentage of hardwood forest, and it is mainly
associated with more closed forests than CST2, which has a high percentage of open forest that is
associated with a clumped distribution. The differences between CST4 and CST5 are in canopy height
and clumping, which is medium and high, respectively, for CST4, and high and low, respectively,
for CST5. These results can be explained in terms of vegetation distribution. Although CST5 has a
higher percentage of coniferous forest, it is more open than CST4, thus the former presents a greater
degree of clumping as represented by lower values of the clumping index. CST6 is characterized by
high values of all structural variables; this is in agreement with the CALVEG classes because these
pixels are mainly associated with high percentage of conifer forest (26%) with a closed tree canopy
(90%).

3.2.3. Structural Types Defined in Teakettle Experimental Forest

At TEAK, analysis of the nine possible classes from the vertical structure resulted in three different
VCSTs that represent low, medium and high biomass and height. The four HCSTs resulting from the
horizontal structure were again sufficiently different to be representative and distinct, therefore they
were not grouped. Finally the 12 resulting classes from the combination of VCSTs and HCSTs were
grouped into five different CSTs (Figure 7e,f and Table 4).

CST1 is characterized by low values of the four structural variables. CST2 and CST3 are
characterized by medium biomass but the rest of the structural variables are different. While CST2
represents small, homogeneous and regular to random distribution of vegetation (i.e., mean canopy
height between 5-8 m, mean vegetation heterogeneity between 3.93 and 5.12 and mean clumping
higher than 0.5), CST3 is characterized by tall, heterogeneous canopies in terms of tree heights and
clustered aggregations of forest trees (i.e., mean height taller than 14 m, mean vegetation heterogeneity
greater than 7.0 and mean clumping less than 0.5). In this site, there was disagreement between CST4
and CST5 in terms of clumping. CST4 represents random distribution in LiDAR-derived data but a
clumping distribution in IS-derived data and the opposite situation occurs in CST5.

Table 5 shows the percentage of each CALVEG vegetation cover type within each CST together
with the attributes of closed and sparse tree canopy from the national vegetation classification standards.
At this site, the differences between LiDAR-derived data and IS-derived variables were not negligible
in one of the CSTs, thus Table 5 provides both results. TEAK is mainly dominated by coniferous forests
but the percent of that dominance is different among structural types. CST1, has low values of the four
structural variables, and is associated with a higher percent of sparse low stature vegetation (28% and
32% for LiDAR-derived and IS-derived data, respectively) and non-vegetated area (17% and 18% for
LiDAR-derived and IS-derived data, respectively). CST2 had higher structural variables than CST1
(i.e., medium biomass, low canopy height and vegetation heterogeneity, and high clumping) that is
associated with the highest percentage of mixed forest (13% and 20% for LiDAR-derived and IS-derived
data, respectively) and the lowest percentage conifer forest (55% and 51% for LiDAR-derived and
IS-derived data, respectively). Pixels within CST3, CST4 and, CST5 are more than 70% conifer forest.
CST3 is associated with more open and sparse tree canopy (16% and 15% for LiDAR-derived and
IS-derived data, respectively) than CST4 and CST5. This explains the lower values of biomass and
canopy height in CST3. The main difference between CST4 and CST5 is the clumping. Both CSTs
are dominated by high percentage of coniferous forest, but CST5 has a greater closed tree canopy
percentage (70% and 84% for LiDAR-derived and IS-derived data, respectively) than CST4 (59%
and 58% for LiDAR-derived and IS-derived data, respectively). The main disagreement between
LiDAR-derived and IS-derived data is the proportion of mixed and conifer forests between CST4 and
CST5. While the percentage of conifer and mixed forest is similar for both CSTs using IS-derived data
(97% and 93% of conifer for CST4 and CST5 respectively, and 1% and 6% of mixed forest for CST4
and CST5 respectively), the conifer percentage is much higher and mixed forest percentage is much
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lower for CST5 than CST4 using LiDAR-derived data (77% and 94% of conifer for CST4 and CST5,
respectively, and 14% and 5% of mixed forest for CST4 and CST5, respectively).

4. Discussion

Our results demonstrate how IS data can be used to create comprehensive and easily interpretable
maps of canopy structural types across the major forest ecosystems of the Sierra Nevada Mountains,
California. The models developed provide accurate estimates of four structural variables (i.e., biomass,
canopy height, vegetation heterogeneity and clumping) across three study sites, demonstrating their
applicability to a diverse range of ecological types from an open savanna, to a dense conifer/broadleaf
mixed forest to a clumped distribution of trees in a high elevation montane conifer forest, using a
single, general model for each variable. We illustrated the spatial extendibility of each model using an
independent validation dataset that was tested (1) to show it had low spatial autocorrelation, and (2)
that it was not used in the training phase for model development.

We developed and tested a general model to estimate structural variables using IS data for three
structurally and ecologically different forested sites in the central Sierra Nevada Mts. Our study
provides a methodology to discriminate ecologically meaningful “canopy structural types” (CSTs)
that further refined and tested the approach of Huesca [32] to map forest structural variability based
on “canopy structural types” derived from IS data. The CSTs are site-specific and capture the major
structural differences and trends within each ecosystem. The number of CSTs provides information
about the canopy complexity of the ecosystems. Accurate maps of forest canopy structures are critical for
many environmental monitoring applications and understanding ecosystem change, from improving
estimates of ecosystem processes, estimating carbon sequestration patterns, to understanding habitat
conditions for other organisms in the forest, and to provide better information for management decisions.

CSTs maps have multiple ecological applications; for example, the CSTs can be used in a species
classifier along with AVIRIS-classic spectral data to improve classified estimates of spectrally similar
vegetation classes. The spatial variability in these CST classes provides more information about
landscape structure. For example, if the vegetation is of low stature it can represent herbaceous
vegetation, or if a bit taller it can represent a shrub layer with or without a tree overstory. A forest
type like “hardwood/conifer” may contain patches of herbaceous vegetation, shrubs and trees of
different size (e.g., from regrowth after fire or logging). Thus, this type of contextual information
provides additional details about the age since disturbance, carbon pools, vegetation types, and other
characteristics can inform interpretations about habitat condition or connectivity of habitat units. It can
also be used with the IS information to constrain the physiochemical traits and their physiological
processes as described in the introduction. Another application could use CSTs to evaluate past
disturbance events by developing a spatially explicit map of successional stage classes.

LiDAR is the most accurate method we have available to retrieve vegetation structure and this role
is widely accepted. Passive remote sensing data have not been seen as providing satisfactory estimates
of structural variables, such as biomass or tree height, because of the difficulty to accurately measure
3D vegetation structure from relatively large pixels and wide spectral bands [101]. IS data may be
better suited than multispectral data because the narrow spectral bands better resolve absorption and
scattering across the spectrum. The results from this analysis show a new method to produce both
physiological data and structural data measured concurrently from IS. This might be advantageous,
even if it has more error than LiDAR data, because LiDAR is often not concurrently available with
IS data. This data, perhaps periodically recalibrated against LiDAR, could allow evaluating seasonal to
interannual changes in vegetation condition.

Huesca [32] analyzed the relationships between single spectral bands and several combined
spectral metrics with structural variables derived from LiDAR from the SOAP site. Their results
demonstrated that multiple optical metrics are needed to derive good estimates of structure and
showed the importance of using the entire spectrum for resolving the variables. Their analysis of single
spectral bands showed that biomass was negatively correlated in visible and shortwave infrared (SWIR)
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parts of the spectrum and positively correlated in the NIR. For height and vegetation heterogeneity no
clear pattern of correlation emerged across the spectrum, however, they found the best combination
of optical bands had high correlations around 1100 nm, between the two water absorption features
(970 nm and 1240 nm) in the near-infrared region. Most terrestrial LiDAR use a band around 1050 nm
so the high correlation with structure at 1100 nm regions is consistent with the wavelengths used to
measure terrestrial LiDAR observations.

The correlation of individual metrics with structure also showed that the shade fraction, generally
the first principal component in image analysis, represents variable scene illumination, and is often
used as a proxy for albedo, which is important to include for estimating vegetation structure. These
results were used as the starting point for this analysis. In this study we show the importance of the
metrics found in Huesca [32] but also other new metrics such as the percentage of surface soil exposed
in the images, especially in the savanna ecosystem and the dry plant materials detected in the CAI
metric was especially valuable in the conifer high elevation forest.

To define CSTs, we needed to accurately estimate the four key structural variables: biomass, height,
vegetation heterogeneity and clumping. Of these, the most commonly estimated variable using optical
remote-sensing data is biomass [102]. The high R2 of the models developed in this study; specifically
at TEAK for vegetation height demonstrates the capability of IS to estimate structural variables that are
usually obtained from LiDAR data. Multispectral data often have broad bands that blur the scattering
and absorption wavelengths, do not cover the full wavelength region from 400 nm to 2500 nm, or have
much larger pixel sizes. One additional reason for limited success is that field plots are frequently too
few in number and/or limited to a small part of the study area. Using LiDAR as reference data greatly
expanded the number and areal coverage of our training and validation data. Using 18 m pixels, we
measured more than 150,000, 75,000, and 400,000 observations for SJER, SOAP and TEAK, respectively.
Of these, the models were trained on approximately 35,694 pixels from across the sites, tested on 71,388
and validated on 107,083 pixels. The lower overall R2 at the mid-elevation SOAP site is a function of
the fewer number of pixels that comprise this site in addition to its greater complexity.

To be useful, maps of CSTs should capture the major structural features, and differences and trends
within each ecosystem. The CSTs defined in each map are ecosystem-specific because each ecosystem
has different means and ranges of these structural variables. Based on the existing literature, we defined
our CSTs using four widely used key structural variables (i.e., biomass, height, vegetation heterogeneity,
and clumping) to ensure their utility for a range of ecological applications. The resulting CSTs were
interpretable when compared to the existing CALVEG database for these sites. For instance, CSTs
associated with low values of the structural variables were dominated by annual herbaceous vegetation
in SJER, and they were associated with a high percentage of sparse tree canopy and non-vegetated
areas in SOAP and TEAK. By contrast CSTs characterized by variables with high structural values
were mainly associated with high percentages of tall conifer trees in SOAP and TEAK, and a closed
canopy cover fraction. Moreover, the interactions of the structural variables in CSTs allow us to identify
structural variability across ecosystems.

Although CSTs are based on structure and not on species, more species may co-occur in more
complex ecosystems, thus in sites with higher numbers of CSTs. In general, our results show that
the number of CSTs follows the number of tree species at each site, with SJER having fewest, TEAK
intermediate and SOAP having the largest number of tree species. For our study sites, the savanna
ecosystem at SJER had the least structural complexity with just three major CSTs: one dominated
by grass species, one by a mix of hardwood species and grasses, and the third by hardwood species.
At the other end of the spectrum, SOAP, a mixed conifer-hardwood forest, which is significantly
overstocked due to extended fire suppression, while in recent years it has experienced various types of
disturbance from fire and bark beetle kill, to management modifications. Thus, the combination of these
factors resulted in the greatest structural complexity with six unique CSTs. All structural types were
dominated by characteristics of a mixed forest, but with different percentages of conifer and broadleaf
trees, according to the CALVEG data. Three of the CSTs were dominated by hardwood species, while
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the other three were dominated by conifer species. TEAK also had high structural complexity with
five different CSTs. We might have expected less structural variability due to the strong dominance of
a true fir-pine conifer forest in this ecosystem. Our results showed the dominance of conifer species
with canopy height and vegetation complexity (as defined by vegetation heterogeneity and clumping),
which together created multiple CSTs. These structural variables are related to biotic competition, fire
suppression, and disturbance history.

Identification of different CSTs within a site allows us to better identify the main drivers, or the
main source of CST variation in structural variability in each ecosystem. In the low elevation SJER
savanna ecosystem, CSTs were mainly driven by differences in vegetation cover (i.e. biomass was the
structural variable more relevant in CST discrimination), perhaps in part because of lower overall
species diversity. This forest-savanna type forms the boundary between the grasslands of the Central
Valley floor and the higher elevation forests. Its structure is primarily constrained by the Mediterranean
climate, with long hot summers and extended periods of drought lasting six to eight months or more
and secondarily to the shallower soils with low nutrients and organic matter.

In high elevation montane conifer TEAK forest, CSTs were driven mainly by vegetation complexity
(i.e., vegetation heterogeneity and clumping were the most important structural variables). This forest
is mostly constrained by physical conditions with areas of steep terrain, large areas of granite bedrock
exposures at or just below the surface, soils are shallow with low organic matter and the growing
season is short due to freezing conditions for six to eight or more months of the year.

We identified several sources of error that should be considered when evaluating the use of optical
data for structure variables. These errors fall mainly into two broad groups: (1) measurement errors
from LiDAR and IS data, and (2) errors from our modeling approach. Acquisition factors, such as
altitude, scan angle, and point density can affect LiDAR data; other factors such as terrain, vegetation
composition, canopy closure may also introduce measurement errors in the data [103,104]. IS data is
affected by the sun-view angles, flight direction, georegistration, and atmospheric calibration as well
as topographic factors, vegetation composition and canopy closure. Among the IS-derived structural
variables, clumping was the least well-predicted. This could be due to an impact of low LiDAR point
density on this variable (see Supplementary Materials, Figure S3), or because the optical metrics do not
capture vegetation clumping as well. It is important to note that we did not observe the point density
effects on the IS-derived clumping (see Figure 6b,d,f).

Other errors come from our modeling approach. In particular, the selection of LiDAR-derived
reference variables or the selection of optical metrics, each carries its own caveats. That being said,
the metrics for this study were selected to balance model parsimony with completeness or complexity.
Moreover, there are additional general limitations of random forest regressions, such as predictions
with extreme values, or values outside the range of training data; and how the training-testing and
validation datasets were selected to avoid spatial autocorrelation, but these may not capture the full
spatial variability of the four structural variables due to topography, soils, and other site conditions.

Both measurement error and modeling error may have different impacts on each study site.
For instance, in SJER the main driver of CSTs were differences in canopy density, indicating errors in
biomass are most relevant for this ecosystem. Alternatively, errors in vegetation heterogeneity and
clumping are the most important in study sites such as TEAK, where these variables are the main
drivers of CSTs. Accuracy in biomass and canopy height are vital in SOAP since the combination of
both are the main drivers of their CSTs. Discretization of continuous structural variables into CSTs for
which ecologically meaningful thresholds cannot be defined is another source of error. Thus, pixels
on either side of a threshold will be classified into adjacent CSTs, which increase the error with the
number of classes of each structural variable. Some differences between LiDAR-derived CSTs and
IS-derived CSTs at TEAK could be due to this issue.

Finally, it is important to emphasize that while the model for each structural variable is applicable
to all three ecosystems studied, the CSTs are site-dependent. The methodology à propos takes into
account the variability within each study site and defines the CSTs based on the entire range of the
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structural variables within a specific study site. If we can discriminate more CSTs in one area than
another it means that site has greater structural complexity. Although we can analyze the main
drivers of vegetation structure, we cannot extrapolate the CSTs from one site to another with different
structural characteristics.

5. Conclusions

Our results demonstrate how IS data can be used to create comprehensive and easily interpretable
maps of canopy structural types across the ecosystems in the Sierra Nevada Mountains. The models
developed accurately estimate four structural variables (i.e., biomass, canopy height, vegetation
heterogeneity and clumping) across study sites, demonstrating their applicability to a diverse ecological
range of cover types from an open savanna, to a conifer/broadleaf mixed forest to a montane conifer
forest, using a single, general model for each variable.

Furthermore, our work provides a methodology to use these structural variables to discriminate
ecologically meaningful “canopy structural types” (CSTs). The CSTs are site-specific and capture
the major structural trends and differences within each ecosystem. The number of CSTs gives us
information about the degree of canopy complexity of the ecosystems. Moreover, results from CSTs
analysis also allowed us to identify the main drivers that define the structural variability in each
ecosystem. The next steps in this study will be to extend the developed models to a larger diversity of
forest ecosystems and to analyze the applicability and the portability of the models to scales. It could
be useful to evaluate how CSTs change over time, to determine if the main drivers are always the
same for a specific type of ecosystem. Accurate maps of forest canopy structure are critical for many
environmental monitoring applications. As we look to the future of forest management, understanding
the spatial distribution of canopy structural types will play a key role in our ability to adapt and
respond to change.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/9/1100/s1.
Figure S1: Relationship between maximum tree height from LiDAR measurements and field data. Figure S2:
Relationship between LiDAR and IS-derived data for the four structural variables (i.e. biomass (VVPint), canopy
height (Hm), vegetation heterogeneity (CHM) and clumping), for the three study sites (SJER, SOAP and TEAK).
The data looks continuous because of the high point density. The different gray levels represent the ranges >50%,
51%-75%, 76%-90% and 91%-95%, and >96% of all observations. Figure S3: Spatial distribution of errors for
biomass (a), canopy height (b), vegetation heterogeneity (c) and clumping (d) in SJER. Panels (e), (f), (g), and (h)
respectively for SOAP, and (i), (j), (k), and (l) respectively for TEAK. Black, white and grey shades represent
underestimation, overestimation and no error, respectively. The coordinates in UTM 11N of the lower left corner
of SJER, SOAP and TEAK are (254502, 4104126), (295848, 4098420), (317268, 4090230), respectively. The coordinates
of the upper right corner of SJER, SOAP and TEAK are (260100, 4113000), (301572, 4102650), (327186, 4103676),
respectively. Figure S4: Histogram of the four structural variables (i.e. biomass, canopy height, vegetation
heterogeneity and clumping) of each CST for SJER, SOAP and TEAK. Biomass and clumping values range from
0 to 1, height from 0 to 50 m and vegetation heterogeneity from 0 to 22 m. Red, blue and green represent high,
medium and low values respectively. Figure S5: RBG composition based on scaled (0-1) ranges for the three
most important canopy structural variables. Spatial/color patterns follow the CST classes for each site. Table S1:
Formulas of the narrow-band indices used in this research Table S2: Relationships among all pairs of LiDAR
metrics using Pearson’s R coefficient for the three study sites (SJER, SOAP and TEAK). (VVPint: vegetation vertical
profile, LAI: leaf area index, FC: fractional cover, FC_1ret: fractional cover from the first returns, Hmax: maximum
height, Hmean: mean height, Hmedian: median height, Hstd: standard deviation of height, CHMstd: standard
deviation of canopy height model). Colored coefficients represent best correlations for biomass (red-bold), height
(red-underlined) and vegetation heterogeneity (red-italic). Table S3: Statistics summary of training-testing (TT)
and validation (V) datasets for SJER, SOAP and TEAK for each of the four structural variables. VVP and clumping
scaled from 0 to 1, Hmean and CHMstd in meters Table S4: Relationship measured by R2 between the four
structural variables (i.e. biomass (VVPint), canopy height (Hm), vegetation heterogeneity (CHMstd) and clumping)
and the most important optical metrics according to the ranking of Random Forest. Table S5: The rank of the
highest 10 optical metrics for prediction based on the increase of mean square error (parentheses) when that metric
was removed from the structural variable. Table S6: Similarity between classes of VVPint, Hm, CHMstd and
Clumping of LiDAR derive data and IS-derive data for SJER, SOAP and TEAK. Table S7: Percentage of spatial
coincidence between CSTs defined with LiDAR-derived data and IS-derive data for SJER, SOAP and TEAK.
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