
remote sensing  

Article

Effective Airplane Detection in Remote Sensing
Images Based on Multilayer Feature Fusion and
Improved Nonmaximal Suppression Algorithm

Mingming Zhu 1,*, Yuelei Xu 2, Shiping Ma 3, Shuai Li 1 , Hongqiang Ma 4 and Yongsai Han 1

1 Graduate College, Air Force Engineering University, Xi’an 710038, China; lishuailisuai@163.com (S.L.);
facricc@163.com (Y.H.)

2 Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China;
xuyuelei@nwpu.edu.cn

3 Aeronautics Engineering College, Air Force Engineering University, Xi’an 710038, China; article_hf@163.com
4 Aviation Maintenance NCO Academy, Air Force Engineering University, Xinyang 464000, China;

zxcvbbnm789@126.com
* Correspondence: ming_paper@163.com

Received: 23 March 2019; Accepted: 2 May 2019; Published: 5 May 2019
����������
�������

Abstract: Aiming at the problem of insufficient representation ability of weak and small objects and
overlapping detection boxes in airplane object detection, an effective airplane detection method in
remote sensing images based on multilayer feature fusion and an improved nonmaximal suppression
algorithm is proposed. Firstly, based on the common low-level visual features of natural images and
airport remote sensing images, region-based convolutional neural networks are chosen to conduct
transfer learning for airplane images using a limited amount of data. Then, the L2 norm normalization,
feature connection, scale scaling, and feature dimension reduction are introduced to achieve effective
fusion of low- and high-level features. Finally, a nonmaximal suppression method based on a soft
decision function is proposed to solve the overlap problem of detection boxes. The experimental
results show that the proposed method can effectively improve the representation ability of weak and
small objects, as well as quickly and accurately detect airplane objects in the airport area.

Keywords: airplane detection; remote sensing images; multilayer feature fusion; nonmaximal
suppression; convolutional neural networks; transfer learning

1. Introduction

With the rapid development of high-resolution satellite remote sensing technology, the resolution
of remote sensing images has become higher, and the acquisition method has become more convenient
and diversified, facilitating the detection of objects in remote sensing images [1,2]. Airplanes are
a typical military and civil object in an optical remote sensing image; they have important functions in
battlefield surveillance, aviation control, and transport. However, due to the uncertainty associated
with the type, position, and dimension of an airplane and a complex background, airplane detection is
always a challenging research topic.

To address this challenge, new methods are proposed constantly; they are divided into conventional
and deep learning methods. The conventional methods mainly include the feature detection and the
classification learning methods. In the feature detection methods, descriptor and decision criteria
are designed based on geometrical or statistical features of an object to complete object detection.
For instance, Li et al. [3] proposed a method that combined visual salience and symmetry to classify
airplanes via shape matching. Bo et al. [4] proposed a region segmentation-based airplane detection
method. Liu et al. [5] proposed an airplane recognition method based on coarse-to-fine edge detection.

Remote Sens. 2019, 11, 1062; doi:10.3390/rs11091062 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-7562-9220
http://www.mdpi.com/2072-4292/11/9/1062?type=check_update&version=1
http://dx.doi.org/10.3390/rs11091062
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 1062 2 of 18

Tan et al. [6] used a directional local gradient distribution detector and a constant false alarm rate
(CFAR)-type algorithm to detect objects. Wang et al. [7] proposed a novel method in two steps
to overcome the problem of low aircraft detection precision in remote sensing images. The core
concept of the classification learning method is to convert the detection problem into a classification
problem; the most important steps are feature extraction and classifier training. For instance, based
on sparse coding, Liu et al. [8] proposed a novel method to represent airplane features. First, radial
gradient transformation was applied to dictionary learning; next, sparse coding and constraint pooling
were combined to represent the features of an airplane; finally, a support vector machine (SVM)
model was employed for classification. Yildiz et al. [9] combined a Gabor filter with an SVM for
airplane detection. An et al. [10] proposed an automatic airplane detection system for high-resolution
remote sensing images. First, a candidate object is located via a circular frequency filter; next,
Histogram of Oriented Gradient (HOG) and AdaBoost algorithms are combined to detect the airplane.
These conventional fixed models combine manual feature design with classifier training and have
limitations such as a redundant sliding window and insufficient feature representation. Therefore,
airplane detection accuracy and efficiency are low. In recent years, deep learning has been widely
deployed to learn object features automatically. Particularly, the performance of convolutional neural
networks (CNNs) in image classification and detection is significantly superior to that of conventional
methods. Chen et al. [11] applied the deep belief network (DBN) to airplane detection; however,
the DBN was only used as an object classifier and had undesirable detection performance and a long
execution time. Wu et al. [12] proposed a binarized normed gradients (BING) detection method
coupled with a CNN; however, the 2000–3000 candidate regions produced by BING incurred a high
computing cost, which severely affected the speed of the algorithm. Li et al. [13] proposed airplane
detection architecture based on reinforcement learning and CNNs; however, compared with the existing
leading algorithm, the detection time was too long. Zhang et al. [14] proposed a weakly supervised
learning boxwork based on coupled CNNs. Zhong et al. [15] proposed a model that achieved favorable
detection accuracy, especially for partially occluded objects. However, this method requires optical
images, so is not suitable for remote sensing images.

Due to the emergence of big data and the continuous performance improvements of software and
hardware platforms, the performance of deep-learning-based natural image object detection technology
improves constantly and remains in a leading position [16,17]. However, as data collection from remote
sensing images is difficult and manually marked datasets are scarce, the technology to detect objects
in a remote sensing image is always inferior to that for a natural image. The emergence of transfer
learning technology [18] provides the possibility of applying a deep learning object detection model
to a remote sensing image. As an airplane position has multiple orientations, learning the rotational
invariance is critical to a classifier. To address this feature of airplanes, Zhang et al. [19] obtained
rotation-invariant features via the gradient of an extended histogram. Wang et al. [20] obtained
rotational invariance via a rotation-invariant matrix. Liu et al. [8] proposed a sparse-coding-based
feature extraction method; although rotational invariance was extracted, it was not suitable for other
objects. The majority of these methods designed or extracted rotation-invariant features. In this
paper, multiple orientations of an airplane position are addressed via data-enhanced rotation and flip
technology; similar to learning the image feature via a CNN, the rotation-invariant feature is learned
directly. Thus, in this study, after using Faster R-CNN [21] as the basic framework and establishing
a remote sensing image database, we improved and optimized the network model and ultimately
improved effectively the representation ability of weak and small objects.

The main contributions of this study are as follows.
An effective detection model was developed for airplane detection based on remote sensing

images. The method enables object detection to be unified in a deep network framework, and the
entire network framework has end-to-end characteristics.



Remote Sens. 2019, 11, 1062 3 of 18

A remote sensing image database was established based on a data expansion technique,
providing the data foundation for subsequent applications of the deep learning model in the field of
airplane detection.

Multilayer feature fusion was introduced to improve the representation ability of weak and small
objects. L2 norm normalization, feature connection, scale scaling, and feature dimension reduction
were used to fuse the multilayer features.

Soft decision was introduced to improve the traditional nonmaximum suppression method,
which reduced the missed detection rate of the network when the object was highly overlapped.

2. Materials and Methods Methodology

2.1. Related Work

The network architecture of Faster R-CNN is illustrated in Figure 1, which mainly involves shared
convolutional layers, region proposal networks (RPNs), and a detection network. It takes a single
image as the input and outputs the prediction probability value and object detection box of the desired
object category. The shared convolutional layers are used to extract features. RPNs generate the
rectangle candidate box sets. The detection network includes a region of interest (RoI) pooling layer,
a fully connected layer, and a classification and regression layer. The RoI pooling layer maps the
corresponding RoI feature vectors. Then, the mapped RoI feature vectors are input to the classification
layer and the regression layer to achieve the object detection task.
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2.1.1. Region Proposal Networks

Region proposal methods rely on inexpensive features and economical inference schemes. In order
to reduce the running time of region generation, RPNs [21] have been proposed. To generate the
rectangle candidate box sets, RPNs use a 3 × 3 sliding window to perform a convolution operation on
the convolutional feature map outputted by the last shared convolutional layer, where each sliding
window is mapped to a lower-dimensional vector, as shown in Figure 2. Then, the lower-dimensional
vector is input to classification layers and regression layers to achieve the task of object classification
and position regression, respectively. RPNs use anchors with multiple sizes and aspect ratios to solve
multiscale problems. By default, it uses three sizes and three aspect ratios.
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Figure 2. Schematic diagram of region proposal networks (RPNs).

In general, the intersection-over-union (IoU) formula [16] is used to measure the positioning
accuracy of the bounding box. The IoU describes the degree of overlap between bounding box A and
“ground truth” B, as shown in Figure 3.
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The IoU is defined as follows:

IoU =(A∩ B)/(A∪ B). (1)

For training RPNs, a binary class label (being an object or not) is assigned to each anchor. A positive
label is assigned to two types of anchors: (i) the anchor/anchors with the highest IoU overlap with
a certain ground truth box, and (ii) the anchor that has an IoU overlap higher than 0.7 with any
ground truth box. A negative label (nonobject) is assigned to any anchor that has an IoU lower than
0.3 for all ground truth boxes. The two tasks—object classification and candidate box regression—are
simultaneously completed and, thus, the loss function of the RPNs is defined as follows:

L(
{
pi
}
, { ti} ) = 1/Ncls

∑
i

Lcls(pi, pi
∗) + λ/Nreg

∑
i

pi
∗Lreg(ti, ti

∗) (2)

where i is the index of an anchor in a minibatch and pi is the prediction probability of anchor i containing
an object. If the true label of the anchor is positive, then pi

∗= 1. If the true label of the anchor is negative,
then pi

∗= 0. ti represents the parameterized coordinates of the candidate box, and ti
∗ represents the

coordinates of the ground truth box. Ncls and Nreg are normalization constants that represent the
number of samples in the small batch and the number of anchors, respectively. λ is an adjustable
equilibrium weight. The classification loss Lcls is the log loss over two classes (object or nonobject).
The regression loss Lreg is defined as follows:

Lreg(ti, t∗i ) =

 0.5
(
ti − t∗i

)2
i f

∣∣∣ti − t∗i
∣∣∣ < 1∣∣∣ti − t∗i

∣∣∣− 0.5 otherwise
. (3)
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2.1.2. RoI Pooling Layer

The biggest highlight in detection network is the RoI pooling layer [22], which directly maps the
corresponding RoI feature vectors of the candidate regions according to the mapping relationship
between the candidate region feature map and the complete feature map. Since the features need not
be extracted repeatedly, the time cost is greatly reduced. Then, the mapped RoI feature vector is input
to the classification layer and the regression layer to achieve the object detection task.

2.2. Methodology

The proposed airplane detection method mainly is divided into three parts, namely, the network
architecture of Faster R-CNN, multilayer feature fusion, and nonmaximum suppression based on soft
decision. The Faster R-CNN, mainly including shared convolutional layers, RPNs, and the RoI pooling
layer, is the basic network framework of our method. The aim of the multilayer feature fusion is to
improve representation ability of weak and small objects. The soft decision is introduced to reduce the
missed detection rate. The flowchart of the framework is shown in Figure 4. The proposed method
takes a single image as the input and outputs the prediction probability value and object detection
box of the desired object category. Firstly, the convolution features of the input image are extracted
by the shared convolutional layer. Secondly, the RPNs generate candidate regions and input them
into the detection network. Then, the detection network performs feature mapping, multilayer feature
fusion, and object detection successively. Specifically, feature mapping is implemented using the
RoI pooling layer; multilayer feature fusion is implemented by the L2 norm normalization, feature
connection, scale scaling, and feature dimension reduction; and the fully connected layer, classification
layer, and regression layer are used to achieve object detection. Finally, the nonmaximum suppression
based on soft decision is used to further reduce the number of detection frames.Remote Sens. 2019, 11, x FOR PEER REVIEW  6 of 20 
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2.2.1. Multilayer Feature Fusion

The geometric dimensions of an airplane object constituted a small portion of the test image
selected for this paper. The pixel size of an airplane object ranged from 32 × 32 pixels2 to approximately
64 × 64 pixels2. After a series of convolutional layer processing, the 32 × 32 airplane became 2 × 2 in
the final layer of the convolutional feature image; thus, the feature map was very rough. Additionally,
adjacent regions may have overlapped, which is unfavorable to airplane detection. A higher layer
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feature contains rich semantic information, which is favorable to object classification, while a lower
layer feature has high spatial resolution, which is favorable to object positioning. Object detection is
equivalent to classification plus positioning. Therefore, a well-designed object detection system should
leverage both the lower and higher layer features simultaneously, particularly for small objects.

Skip-layer connection is a classic concept in neural networks and has been applied to both
fully convolutional networks (FCNs) [23] and HyperNet [24]. The FCN combines rough higher
layer information and precise lower layer information for semantic segmentation and demonstrates
impressive performance, as shown in Figure 5.Remote Sens. 2019, 11, x FOR PEER REVIEW  7 of 20 
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HyperNet calculates feature mapping of the entire image via the convolutional layer of a pretrained
model. Then, the maximum pooling and a deconvolutional operation (Deconv) are employed to
aggregate the layered feature mapping and compress them into a unified space (Hyper Feature),
as shown in Figure 6.
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The result shows that the skip-layer connection in a network model is an effective way to
implement multilayer feature fusion. Therefore, in this paper, based on the structure and features of
the network model, the interlayer connection structure shown in Figure 7 was employed.
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Liu et al. [25] extracted feature vectors of the same position from different convolutional layers.
The activation response of lower layer features is significantly stronger than that of higher layers.
This finding means that the same feature normally has different response scales in different layers.
Therefore, during multilayer feature fusion, multilayer features cannot be simply added or combined.
First, the fixed feature vectors corresponding to the candidate region are extracted from different
convolutional layers (i.e., “conv3”, “conv4”, and “conv5”) via the RoI pooling layer. Next, L2 norm
normalization, connection of the features in each layer, scale transformation, and feature dimension
reduction are performed in sequence. Finally, the fused features are imported into the fully connected
layer, as shown in Figure 7.

The D channel feature x = (x1 · · · xd) exported from the convolutional layer in each layer undergoes
L2 norm normalization, as shown in Formula (4). Formula (5) shows an expression of the L2 norm:

x′i =
xi
‖x‖2

(4)

‖x‖2 =
(∑d

i=1
|xi|

2
)1/2

. (5)

Normalized features x
′

=
(
x′1 · · · x′d1

)
, y
′

=
(
y′1 · · · y

′
d2

)
of different layers are fused and connected

via Formula (6):
z =

(
x
′

, y
′
)
=

(
x′1 · · · x′d1 , y′1 · · · y

′

d2

)
. (6)

After multilayer feature fusion, the feature scale is small, which is unfavorable to network training.
Therefore, a feature scaling process is required, as shown in Formula (7):

z′i = γzi (7)

where γ is the scaling parameter and its value is the L2 norm of the convolutional feature in the
last layer.

In this paper, a pretrained network model VGG16 [26] was employed to transfer learning for
remote sensing data. Therefore, after fusion, the feature size should be consistent with the original
network. In this paper, a 1 × 1 convolution kernel was used to reduce the dimensions and retain the
size of the feature imported to the fully connected layer at 512 × 7 × 7. The 1 × 1 convolution kernel
has been widely deployed in GoogLeNet [27] and ResNet [28]. It not only reduces the dimension while
maintaining the feature scale but also leverages subsequent nonlinear activation functions to increase
nonlinear network features and eventually integrate interchannel features.
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2.2.2. Nonmaximum Suppression Based on Soft Decision

As it is not mandatory that detection networks only produce a single detection box, multiple
detection boxes may occur around the same object. To prevent false detection, nonmaximum
suppression (NMS) [29] was employed to remove extra detection boxes and preserve the optimal
detection box, as shown in Figure 8. Essentially, NMS is an iteration-traversal-elimination process
in which the number of candidate boxes can be reduced through setting the IoU threshold without
affecting the accuracy of airplane detection.
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The NMS process is as follows: (1) The detection boxes in set A are sorted in descending order
based on their classification scores. (2) Detection box M (with the highest score) is moved to set B.
The IoU between detection box M and the other detection boxes is calculated. If IoU exceeds threshold
T, then the detection box with the low score is removed; otherwise, there are multiple objects. (3) Of the
remaining detection boxes in set A, the box with the highest score is preserved. Step 2 is repeated
until there are no detection boxes in set A. Finally, the detection boxes in set B are output. During this
process, if the overlapping area between two detection boxes is overlarge, the detection box for one of
the objects may be removed, which results in a missed detection, as shown in Figure 9.
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Although increasing threshold T alleviates this problem to some extent, false detection increases
significantly, which negates the value of this approach. In conventional NMS, the score of an adjacent
detection box is set to zero, which is a hard decision. Channel decoding algorithms are classified as
hard decision decoding and soft decision decoding algorithms. The error correction capability of soft
decision is significantly superior to that of hard decision. Therefore, in this paper, the principle of soft
decision was leveraged to improve the conventional NMS algorithm, and an NMS algorithm based
on soft decision was proposed. In the pseudocode in Table 1, the conventional NMS algorithm is in
the blue rectangle, and the improved NMS algorithm is in the red rectangle. As the improved NMS
algorithm proposed in this paper only modified the core decision function of the conventional NMS
algorithm and did not increase the network model retraining time, it was simple to implement.
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Table 1. The pseudocode of nonmaximum suppression (NMS) based on soft decision.

Input: B ={bi} is the list of initial detection boxes
S ={si} contains corresponding detection scores
T is the NMS threshold

Output: D ={di} contains all detection boxes
Initial: D is empty
While B , empty do

m = argmax(S);
M = bm;
D = D∪M; B = B−M;
For bi in B do

If IoU(M, b i) ≥ T
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In the conventional NMS algorithm, the adjacent detection box decision function is as follows:

si =

{
si, IoU(M, b i) < T
0, IoU(M, b i) ≥ T

. (8)

In Formula (8), a hard threshold T is set to decide if score si of adjacent detection box bi is
maintained at its original value or set to zero, M represents the detection box with the highest score,
and IoU(M, b i) represents the IoU between adjacent detection box bi and detection box M.

When IoU(M, b i) exceeds the threshold, the zeroing score si is replaced by the method of
attenuating the score si of the detection box bi. Therefore, when bi is surrounded by another object
(different from the object surrounded by M), it is not removed directly. However, if bi does not surround
any other object, the score si should be attenuated sufficiently small. Additionally, the higher the
overlap with M, the more severe the attenuation of the detection box score should be. Therefore, a soft
decision is introduced to improve the decision function. The definition is as follows:

si =

{
si, IoU(M, b i) < T

si(1− IoU(M, b i)), IoU(M, b i) ≥ T
. (9)

When the IoU between adjacent detection box bi and detection box M is under threshold T,
the detection box score is preserved. When it exceeds or is equal to threshold T, the detection box score
attenuates linearly. The formula shows that a larger IoU(M, b i) means a larger overlapping area and
more severe attenuation of the detection box score; a small IoU(M, b i) means a small overlapping area
and the detection box score is unaffected.

In Formula (9), the score of the detection box whose IoU(M, b i) exceeds the threshold is attenuated
but not set to zero and eliminated. Although the score of this detection box is reduced, missed detection
is prevented effectively. Additionally, the threshold of the detection box score is set to 0.45 to remove
detection boxes with low scores and thus prevent false detection. In this paper, only the decision
function was modified to improve conventional NMS. The algorithm is simple and has no additional
computing cost.
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2.3. Transfer Learning and Network Training

Although remote sensing images have features such as varied scales, multiple orientations,
small objects, and complex backgrounds, when compared with a natural image, they contain similar
object features including low-level semantic features such as edge and color and abstract high-level
semantic features. Similarly, the CNN can learn and extract low- or high-level semantic features from
a remote sensing image. Additionally, the CNN can learn features such as scale variety, multiple
orientations, and background complexity from test data via model training, which is similar to learning
semantic features such as edge and color. Deep learning model-based object detection requires massive
data training. Limited remote sensing data samples and the high labor cost of data marking are the
main reasons that deep learning is rarely applied to remote sensing images. Therefore, remote sensing
images were collected from Google Earth and data were marked manually. Retraining a new CNN
with airplane remote sensing data has low efficiency and results in overfitting. The low convolutional
layer learns low-level semantic features such as edge texture and color. These features are consistent
for airplane remote sensing and ordinary natural images, as shown in Figure 10.
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Therefore, a CNN can be pretrained with a large-scale natural image database [30] and the features
learned by the network can be transferred to the new airplane detection task via transfer learning,
which proves to be very efficient. The weights of the shared convolutional layers were initialized
with the pretrained network VGG16, and the weights of the remaining layers were initialized based
on a Gaussian distribution with a mean of 0 and a standard deviation of 0.01. The basic learning,
momentum, and weight decay coefficients of the network were 0.001, 0.9, and 0.0005, respectively.
VGG16 is one of the structures of VGGNet. It has 13 layers of convolutional layers and 3 layers of fully
connected layers, totaling 16 layers. The structure diagram is shown in Figure 11.

Remote Sens. 2019, 11, x FOR PEER REVIEW  12 of 20 

 

learning, which proves to be very efficient. The weights of the shared convolutional layers were 
initialized with the pretrained network VGG16, and the weights of the remaining layers were 
initialized based on a Gaussian distribution with a mean of 0 and a standard deviation of 0.01. The 
basic learning, momentum, and weight decay coefficients of the network were 0.001, 0.9, and 0.0005, 
respectively. VGG16 is one of the structures of VGGNet. It has 13 layers of convolutional layers and 
3 layers of fully connected layers, totaling 16 layers. The structure diagram is shown in Figure 11. 

 

Figure 11. The schematic diagram of VGG16. 

In Figure 11, pool1–pool5 represent the maximum pooling. The pooling area was 2 × 2, the 
sliding step size was 2, and the probability of the dropout technique was 0.5. The parameters of each 
convolutional layer are shown in Table 2. 

Table 2. The VGG16 network parameters for each convolutional layer. 

 Filters Kernel size Stride Pad 

Conv1_1 64 3 1 1 

Conv1_2 64 3 1 1 

Conv2_1 128 3 1 1 

Conv2_2 128 3 1 1 

Con3_1 256 3 1 1 

Conv3_2 256 3 1 1 

Conv3_3 256 3 1 1 

Conv4_1 512 3 1 1 

Conv4_2 512 3 1 1 

Conv4_3 512 3 1 1 

Conv5_1 512 3 1 1 

Conv5_2 512 3 1 1 

Conv5_3 512 3 1 1 

This paper used an alternate optimization strategy [21] to train the entire network in four steps. 
In the first step, we trained the RPNs. This network was initialized with the pretrained network 
VGG16 and fine-tuned end-to-end for the region proposal task. In the second step, we trained a 
separate detection network using the candidate boxes generated by the step-1 RPNs. This detection 
network was also initialized by the pretrained network VGG16. At this point, the two networks did 
not share convolutional layers. In the third step, we used the detector network to initialize RPN 
training, but we fixed the shared convolutional layers and only fine-tuned the layers unique to RPN. 
Now, the two networks shared convolutional layers. Finally, keeping the shared convolutional 
layers fixed, we fine-tuned the unique layers of detection. As such, both networks shared the same 
convolutional layers and formd a unified network. 

3. Results 

3.1. Computational Platform and Evaluation Index 

Figure 11. The schematic diagram of VGG16.



Remote Sens. 2019, 11, 1062 11 of 18

In Figure 11, pool1–pool5 represent the maximum pooling. The pooling area was 2 × 2, the sliding
step size was 2, and the probability of the dropout technique was 0.5. The parameters of each
convolutional layer are shown in Table 2.

Table 2. The VGG16 network parameters for each convolutional layer.

Filters Kernel Size Stride Pad

Conv1_1 64 3 1 1
Conv1_2 64 3 1 1
Conv2_1 128 3 1 1
Conv2_2 128 3 1 1
Con3_1 256 3 1 1

Conv3_2 256 3 1 1
Conv3_3 256 3 1 1
Conv4_1 512 3 1 1
Conv4_2 512 3 1 1
Conv4_3 512 3 1 1
Conv5_1 512 3 1 1
Conv5_2 512 3 1 1
Conv5_3 512 3 1 1

This paper used an alternate optimization strategy [21] to train the entire network in four steps.
In the first step, we trained the RPNs. This network was initialized with the pretrained network VGG16
and fine-tuned end-to-end for the region proposal task. In the second step, we trained a separate
detection network using the candidate boxes generated by the step-1 RPNs. This detection network
was also initialized by the pretrained network VGG16. At this point, the two networks did not
share convolutional layers. In the third step, we used the detector network to initialize RPN training,
but we fixed the shared convolutional layers and only fine-tuned the layers unique to RPN. Now,
the two networks shared convolutional layers. Finally, keeping the shared convolutional layers fixed,
we fine-tuned the unique layers of detection. As such, both networks shared the same convolutional
layers and formd a unified network.

3. Results

3.1. Computational Platform and Evaluation Index

The experimental environment included an i7-7700 processor running at 3.6 GHz, 16G of memory,
and an NVIDIA GTX1060 (graphics card). The deep learning framework in this paper was open source
Caffe, which is based on the Ubuntu14.04 operating system and a Python interface. The structure,
performance, and code quality of the Caffe framework are outstanding, which significantly reduces
the difficulty of deep learning research and development. First, the Caffe model structure is very
stable and has excellent version compatibility. Next, Caffe has a well-written tutorial, which makes it
easy for users to learn. Additionally, Caffe can be used in tandem with cuDNN and has a significant
speed advantage. Finally, Caffe is such an open deep learning framework that users can obtain code
of a required model easily and communicate with other users. Therefore, Caffe was selected for this
study as the deep learning framework.

The evaluation indexes included accuracy (AC), false positive rate (FPR), missing ratio (MR), error
ratio (ER), and average processing time (T) [14,31]. These indexes are defined as follows:

AC =
number o f detected airplane

number o f airplane
× 100% (10)

FPR =
number o f f alsely detected airplane

number o f detected airplane
× 100% (11)
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MR =
number o f missing airplane

number o f airplane
× 100% (12)

ER = FPR + MR. (13)

In this paper, the threshold of IoU was set to 0.5. If the threshold was exceeded, it meant that the
object was detected. In addition, the average processing time was the average of five experiments.

3.2. Test Data

All test data in this paper were remote sensing airport images from Google Earth, including
300 airports such as Beijing Capital International airport and Boston International airport in the
United States, with a spatial resolution of 1.19 m. The image sizes were in the range of 375 × 375
to approximately 400 × 400, and there were a total of 1500 images. To prevent overfitting and to
learn the rotation-invariant features of an airplane, the existing 1500 images were expanded via data
enhancement. After being rotated by 90◦, 180◦, or 270◦ randomly and flipped horizontally or vertically
with a probability of 0.5, the 1500 images were expanded to 5000 images, of which 2500 were randomly
selected as training sets, and the remaining 1500 were verification sets. The image sizes were in the
range of 900 × 800 to approximately 1000 × 900, and there were a total of 150 images, which were used
as the test set. All the image labels were marked manually. Figure 12 shows an example of the data.Remote Sens. 2019, 11, x FOR PEER REVIEW  14 of 20 
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3.3. Comparison of Results

To prove the superiority of the proposed method, it was compared with existing airplane detection
methods. Based on open source code of competing methods from the Internet, a simulation test was
performed in the test environment described in this paper. The AC, FPR, MR, ER, and T of each
method against the test set were recorded and compared (Table 3). The DBN-based method is a method
based on a deep belief network [11]; BING+CNN is a method based on BING and CNN [12]; Faster
R-CNN is the original method without multilayer feature fusion or NMS improvement; and YOLOv2
is a one-stage object detection method based on CNN [32].
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Table 3. Results comparison of different methods.

Method AC (%) FPR (%) MR (%) ER (%) T (s)

DBN-based 79.54 24.13 20.46 44.59 171.25
BING+CNN 84.25 18.68 15.75 34.43 6.41

Faster R-CNN 86.28 8.76 13.72 22.48 0.15
YOLOv2 90.05 6.26 9.95 16.21 0.03

Our method 94.25 5.59 5.75 11.34 0.16

The AC, FPR, MR, and ER of the proposed method were significantly superior to other methods,
and our method also had better computational efficiency (Table 3). The DBN-based method remains
based on a manual feature design plus a classifier, while the original simple classifier is replaced by
a deep belief network. It continues to have problems such as insufficient capability to represent features
manually and a redundant slip window; therefore, the accuracy and time performance remained
inferior. The BING+CNN method first produces candidate regions via BING technology and then
detects airplanes via a CNN. However, the quality of the candidate regions produced by BING was
not as high as the quality of the regions produced by the RPN; additionally, BING had a longer
execution time. Faster R-CNN and YOLOv2 integrate candidate region generation, feature extraction,
object classification, and boundary regression into a deep CNN framework and fully leverage the
powerful feature expression capability of a CNN to implement end-to-end airplane detection. Therefore,
the accuracy and speed of Faster R-CNN, YOLOv2, and the proposed method were superior to those of
the previous two methods. In this paper, multilayer feature fusion and a soft decision NMS algorithm
were integrated to further improve the airplane detection performance of Faster R-CNN. Additionally,
the improved method did not significantly increase the execution time. Therefore, our method was
comparable in speed to Faster R-CNN, and the AC, FPR, MR, and ER were superior to those of Faster
R-CNN and YOLOv2. However, compared with YOLOv2, this method was still unable to achieve
real-time processing.

4. Discussion

4.1. Analysis of Multilayer Feature Fusion

To analyze the effect of multilayer feature fusion on detection results when other conditions are
fixed, a control variable comparison test was performed. The results are listed in Table 4.

Table 4. Combining features from different layers.

Layer2 Layer3 Layer4 Layer5 AC/%
√

86.28
√ √

90.30
√ √ √

91.90
√ √ √ √

91.90

As Table 4 shows, the AC of multilayer feature fusion was superior to the AC of a single-layer
feature (line 1), which demonstrates the effectiveness of multilayer feature fusion. After multilayer
convolution and pooling, the feature scale of an airplane in a convolutional feature image in the
last layer or the fifth layer was small, which is unfavorable for airplane positioning. The rough and
high-level semantic in the high layer feature is favorable for object classification, while precise and
high-resolution in the low layer feature is favorable for object positioning. Therefore, multilayer
feature fusion can leverage the advantages of different layers to improve network detection capability,
especially for small objects such as airplanes. A gradual increase in the fused layers can continually
improve the AC; however, when increasing the fusion beyond the third layer, does not further improve
the AC. This finding means that the fusion of features in layers 3, 4, and 5 has an optimal AC,
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while the fusion of more features in other layers does not provide additional useful information, and
network performance improvement is saturated. In the following tests, unless specifically mentioned,
the features of layers 3, 4, and 5 were fused by default.

To illustrate the importance of feature fusion more intuitively, detection results of different methods
were compared, as shown in Figure 13. Figure 13a shows the detection result using the feature of the
fifth layer, and Figure 13b shows the detection result based on the fusion of features in layers 3, 4, and 5.
Figure 13 shows that, after multilayer feature fusion, the network can detect additional small objects,
which improves the AC.
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4.2. Analysis of NMS Algorithm Improvement

To demonstrate the effectiveness of the improved NMS algorithm, the airplane test set was used
for a comparative test (Table 5).

Table 5. Results of different methods.

Method AC/%

NMS 91.90
Our method 94.25

The soft decision NMS algorithm in this paper improved the AC by 2.35% over the test set
(Table 5) because in the conventional NMS algorithm, all detection frames whose overlapping areas
with detection frame M exceeding the threshold were removed, which could cause some adjacent
objects to be missed. By contrast, the improved NMS algorithm attenuated the adjacent detection
frame classification score via an overlapping area function, which is different from forcing the adjacent
detection frame to zero, as done by the conventional NMS algorithm, effectively reducing missed
detection. Figure 14 shows the detection results before and after NMS improvement. The NMS
algorithm incorrectly suppressed the adjacent detection frame, while the proposed method could
detect the object accurately.
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Figure 14. Airplane detection results. (a): results with traditional NMS; (b): results with improved NMS.

4.3. Method Analysis

Chen et al. [33] also carried out similar research on airplane detection using transfer learning in
remote sensing images. Their airplane detection framework was based on the single shot multibox
detector (SSD), and a method was proposed to solve the size restrictions of the input images. A big
disadvantage of the SSD algorithm [34] is that it is not robust enough for small object detection,
but Chen et al. did not mention this issue. Aiming at the problem of the insufficient representation
ability of weak and small objects and overlapping detection boxes in airplane object detection, we carried
out related research that has provided an original contribution to the field. We have done similar
work before [2,35]. In the literature [2], we proposed an airport detection method combining cascade
region proposal networks and multithreshold detection networks, which aimed to deal with the
problems of complex background and inaccurate positioning. In the literature [35], we proposed
an airplane detection method to deal with the issue of small objects, which used multilayer feature
fusion in fully convolutional neural networks. This research fused multilayer features by adding
a maximum pooling layer, a deconvolutional operation, and a convolutional layer, but it increased the
time cost of the algorithm. From further analyzing and studying the Faster R-CNN structure, we found
a simpler and more effective way to achieve multilayer feature fusion. As described in Section 2.2,
we started with fixed feature vectors from different convolutional layers via the RoI pooling layer.
Next, L2 norm normalization, connection of the features in each layer, scale transformation, and feature
dimension reduction were performed in sequence. Finally, the fused features were imported into
the fully connected layer. The proposed method has almost no additional time cost and is very
simple to implement. At the same time, this paper also proposed the improved NMS method to solve
the problem of overlapping detection boxes, which has always been ignored by previous aircraft
inspection methods.

4.4. Application to Airports

To illustrate the generalization capabilities of the method, the proposed method was applied to
an airport dataset. As shown in Figure 15, the proposed method can be applied to airport detection,
which shows that the method can solve other object detection problems well.
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5. Conclusions

In this paper, a remote sensing image airplane detection method based on the Faster R-CNN
framework that combines multilayer feature fusion and soft decision was proposed. Region extraction,
feature extraction, object classification, and positioning regression were integrated into an end-to-end
deep network framework. L2 norm normalization, feature connection, scaling, and feature dimension
reduction were applied in sequence to integrate multilayer features, which improved the network’s
ability to detect small objects such as airplanes. Soft decision was introduced to improve the
conventional NMS method, which reduced network missed ACs when there was significant object
overlap. The effectiveness of the proposed method was confirmed by a simulation test. Compared
with other airplane detection methods, our method significantly improved all the metrics; thus, it has
theoretical and practical value for real-time and high-precision airplane detection.

With the continuous exploration and development of deep learning theory, some new model
frameworks have emerged. Therefore, the next step is to enhance and improve the existing network
method and architecture. Additionally, with the increase of the number of layers in the network,
the model parameters and training time also increase sharply. How to optimize the network structure
to balance the contradiction between performance and efficiency is a key issue to be considered next.
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