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Abstract: Polarimetric synthetic aperture radar (PolSAR) has become increasingly popular in the
past two decades, for it can derive multichannel features of ground objects, which contains more
discriminative information compared with traditional SAR. In this paper, a neural nonlocal stacked
sparse autoencoders with virtual adversarial regularization (NNSSAE-VAT) is proposed for PolSAR
image classification. The NNSSAE first extracts the nonlocal features by calculating pairwise similarity
of each pixel and its surrounding pixels using a neural network, which contains a multiscale feature
extractor and a linear embedding layer. The feature extraction process can relieve the negative
influence of speckle noise and extract discriminative nonlocal spatial information without carefully
designed parameters. Then, the SSAE maps the center pixel and the extracted nonlocal features
into deep latent space in which a Softmax classifier is utilized to conduct classification. The virtual
adversarial training is introduced to regularize the network, which tries to keep the network from
being overfitting. The experimental results from three real PolSAR image show that the proposed
NNSSAE-VAT method has proved its robustness and effectiveness and it can achieve competitive
performance compared with related methods.

Keywords: PolSAR image classification; neural nonlocal feature extractor; virtual adversarial training;
stacked sparse autoencoders; deep learning

1. Introduction

Synthetic Aperture Radar (SAR), as a kind of active imaging sensor, has the ability of monitoring a
wide area without the limitation of lighting condition and weather. One of the SAR-based techniques,
namely Polarimetric SAR (PolSAR), not only inherits the advantages of SAR, but also possesses
multi-polarization characteristic, by which the sensor can extract more spatial information. Due to
these advantages, the analysis of PolSAR images have received extensive attention in past decades.
Combined with machine learning techniques, PolSAR has been proved to be an efficient tool in many
research fields, such as terrain classification, agriculture monitoring [1,2], disaster monitoring [3,4],
target recognition and detection [5], and sea ice monitoring [6], etc. In this paper, we focus on PolSAR
image classification. Many effective machine-learning approaches have been proposed in this field, like
Wishart classifier [7,8], support vector machine (SVM) [9,10], sparse representation based classification
method (SRC) [11,12], random forest [13], and so on.

To obtain terrain identification information extracted by target decomposition techniques,
Lee et al. [7,8] proposed complex Wishart classifier for unsupervised PolSAR image classification
using Cloude-Pottier decomposition [14], and Freeman decomposition [15], respectively. To reduce
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the isolated misclassified pixels, Wu et al. [16] proposed the Wishart Markov random field (WMRF)
model and obtained smoother classification label map. Instead of hand-crafted features, Xie et al. [17]
proposed the Wishart autoencoders to learn the latent features in PolSAR data using Wishart distance
based loss function. SVM is a frequently used supervised machine-learning model in PolSAR image
classification [18], for it has solid theoretical foundations and good generalization performance.
In order to extract more efficient features, Zhang et al. [9] introduced the multiple-component scattering
model [19] to SVM and achieved better classification performance compared with traditional Wishart
classifier. Lardeux et al. [10] proposed using SVM with multifrequency PolSAR data and a set of
polarimetric features to obtain higher classification accuracy. To fully utilize the sparse characteristics
of polarimetric features, Zhang et al. [11] introduced the SRC [20] to PolSAR image classification.
To take spatial information into consideration, Feng et al. [12] performed polarimetric contextual
classification by combining SRC and superpixels. The results show that the method can relieve the
negative influence of speckle noise and obtain smoother classification map. Du et al. [13] proposed
random forest and its variant called rotation forest for PolSAR image classification. Even with limited
training samples, the random forest based classification model can achieve promising performance.

In recent years, with the fast development of deep learning, the deep neural networks have
manifested its significant superiority over the traditional machine learning approaches. Stacked
autoencoders (SAE) [21,22] utilized layer-wise pre-training to learn, unsupervised, latent features
contained in the data, which relieve the gradient vanishing problem and achieve better performance in
PolSAR image classification task [23]. In order to enhance the rubostness of the model, Chen et al. [24]
presented a self-paced learning regularized multilayer autoencoders (SPLMAE). Spatial information is
also widely used in deep learning models designed for PolSAR image classification. Hou et al. [25]
proposed a method combining superpixels and stacked sparse autoencoders (SSAE), which used
superpixels segmentation as a refinement to the classification map. As an alternative, Zhang et al. [26]
introduced local sptial information into SSAE (SSAE-LS), aiming to make SSAE automatically capture
deep spatial information and reduce the negative impact of speckle noise. In recent years, convolutional
neural networks (CNN) [27] have achieved excellent results in many research field. It is designed
to learn the hierarchy of spatial features automatically. Zhou et al. [28] applied CNN to PolSAR
image classification. The visualization results of optimized convolutional kernel shows that CNN
has the capability of extracting discriminative spatial features. To preserve the correlation in the
non-diagonal elements of the coherency matrix, Zhang et al. [29] proposed Complex-valued CNN,
extending parameters of the deep model to complex domain and achieving better results. Despite
CNN has shown promising performance on spatial information extraction and feature representation,
it fails to emphasize the distinctive characteristics of the central pixel. This disadvantage can lead to
ambiguous classification boarder between two different land types.

Recently, several deep learning models, which are capable to extract both discriminative spatial
information and pixel features, have been proposed. Geng et al. [30] proposed a superpixel-restraint
deep neural network (SRDNN). The model concatenates the superpixel-averaged features and the
original features, and conduct pixel-wise classification. Inspried by a denosing method called nonlocal
means filter (NLM) [31], Hu et al. [32] presented an adaptive nonlocal stacked sparse autoencoders
(ANSSAE), which proposed an adaptive nonlocal feature extractor (ANFE) to obtain nonlocal features
by calculating spatial similarities. Both of these two methods are pixel-wise based classification
models. At training stage, they not only learn the characteristics of the original pixel, but also take
mean-based nonlocal spatial information into account, which make them perform better on PolSAR
image classification task compared with local spatial information methods. One defect that may
limit the application of these two models is that they both need parameters to be tuned with expert
knowledge, for instance, the number of superpixel for SRDNN and the value of mask coefficient
for ANSSAE.

By introducing the main idea of the nonlocal means filter into deep learning, Wang et al. [33]
presented the nonlocal neural networks (NLN) to capsule space-time relationship for video classification.
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The proposed nonlocal blocks apply nonlocal operation to the feature maps to measure the long-range
correlation on spatial and temporal domains. Inspired by the nonlocal operation, we propose a
PolSAR image classification method based on neural nonlocal stacked sparse autoencoders (NNSSAE).
NNSSAE is composed of a neural nonlocal feature extractor (NNFE) and a SSAE. NNFE is similar in
spirit with adaptive nonlocal feature extractor proposed by ANSSAE. However, all the parameters
related with feature extraction are automatically optimized in the training procedure, which means
no need for expert parameter tuning in feature extraction stage. SSAE is adopted to unfold the
detail-reserved nonlocal spatial features extracted by NNFE and the original features, and map them
into high dimension latent space. Softmax classifier [34] is introduced to conduct classification to the
whole image.

Deep models have strong representing and fitting capabilities. These advantages can become a
double-edged sword, for they often cause degradation on performance and overfitting while they are
applied to small datasets like PolSAR images. To relieve this issue, Miyato et al. [35,36] proposed virtual
adversarial training (VAT), which improves the robustness of the model by introducing prediction
distribution smoothing penalty term into loss function. We introduce the VAT regularization term into
training procedure, and make the model achieve better accuracy.

The main contribution of this paper is demonstrated as follows:

1. We propose the neural nonlocal feature extractor, which introduces neural nonlocal similarity
calculation into PolSAR image classification task to extract nonlocal spatial information around
each pixel. The nonlocal spatial features generated by NNFE are automatically optimized, which
improves the robustness and the classification accuracy of the model.

2. In NNFE, we introduce a multiscale spatial information extractor implemented as convolution
layers, which maps every pixel in image patches into latent space and considers both of their
characteristics and their spatial information.

3. Virtual adversarial training regularization term is introduced into the loss function to further
improve the classification accuracy and the ability of generalization of the model.

The NNSSAE is validated on three real dataset and the results show that our model can achieve
higher performance compared with other related models.

2. Related Works

2.1. Nonlocal Feature Extraction Methods

Nonlocal methods utilize the spatial information of pixels around one center pixel to construct its
characteristics. They have many variants and have wide application. Three nonlocal methods will be
introduced in this subsection. Considering that many symbols are easy to be confused with each other,
we add the lower case of the corresponding abbreviation at the final of the symbol’s subscript to point
out which method the symbol belongs to.

NLM is a widely used noise-reduction method that calculates the weighted sum by measuring
the central pixel and its surrounding pixels’ spatial similarity. To unify the symbols used in the paper,
all terms follow the ANSSAE [32] with minimum modifications. All pixels in the PolSAR image are
centered with three windows: the search window, the central window and the neighborhood window,
which are shown in Figure 1. The circumstance that the search window is centering at the boarder of
three different kinds ground objects is considered in Figures 1 and 2. Different colors of pixels represent
different categories of ground objects.
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Figure 1. The diagram of the nonlocal means filtering (NLM) [31] method. The olive box, the orange
box, and the brown box denote search window, central window and neighborhood window, respectively.
To concisely describe the main idea of NLM, the left-top pixel and the corresponding search window is
taken as an example. Different colors of pixels represent different categories of ground objects.
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Figure 2. The diagram of adaptive nonlocal feature extractor (ANFE) [32]. The olive box, the
orange box and the brown box denote search window, central window, and neighborhood window,
respectively. To concisely describe the main idea of ANFE, the left-top pixel in the central window and
the corresponding search window is taken as an example. Different colors of pixels represent different
categories of ground objects.

Every pixel in search window S(i) is influential to the value of noise-reduction estimation of
the center pixel xi. The central window of xi is denoted as C(i), in which all of the pixels have their
corresponding neighborhood windows N(t), t ∈ C(i). The weighted sum of pixels in C(i) equals the
nonlocal means filtered center pixel x′i,nlm.

x′i,nlm =
∑

j∈C(i), j,i

ωi j,nlmx j, (1)

where the weights ωi j,nlm are simultaneously normalized and have values between 0 and 1, i.e.,∑
j∈C(i), j,i

ωi j,nlm = 1, 0 ≤ ωi j,nlm ≤ 1. (2)

The pixels in neighborhood window N(t), t ∈ C(i) are the fundamental elements participating
weights calculation of the central window C(i). The weights calculation for pixel i and pixel j is
equivalent with calculating the normalized similarity metrics of pixels in N(i) and N( j). The distance
Si j,nlm between N(i) and N( j) is defined by Gaussian weighted Euclidean distance, which is shown in
Equation (3).

Si j,nlm = ‖N(i) −N( j)‖22,σ = exp

−‖N(i) −N( j)‖22
2σ2

, (3)

where j ∈ C(i) and j , i. σ denotes the variance of the Gaussian kernel. Smaller Si j,nlm indicates that
N(i) and N( j) are closer under the Gaussian weighted Euclidean distance criterion, and leads to a
larger value of ωi j,nlm. The calculation of ωi j,nlm is shown in Equation (4).
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ωi j,nlm =
1

Qi j,nlm
exp

(
−

Si j,nlm

h2

)
, (4)

where Qi j,nlm =
∑

j∈C(i), j,i exp
(
−Si j,nlm/h2

)
is the normalization scaling factor, and h denotes the

filtering parameter.
ANFE is the feature extractor of the ANSSAE proposed by Reference [32]. It introduces a

hard-decision vector
→

Mi into the original NLM method. To avoid ambiguities in the illustration of

ANFE, let xk be pixel in N(i), where k ∈ N(i) and k , i. Let mik be the k-th binary elements in the
→

Mi
vector. At the boarder of different land types, pixels in N(i) but having different label with xi are
denoted as x−k . Taking x−k into the weight calculation of NLM can lead to unexpected weight decrease
if pixels are far away from the boarder, but have the same label with xi. To relieve this undesirable

effect,
→

Mi is adopted to exclude singular pixels x−k in N(i) from taking part in similarity calculation,
which is depicted in Figure 2.

The calculation of mik is shown as follows:

mik =

1, ‖ xi−xk
xi+xk

‖
1
≤ λ · ‖xi + xk‖1

0, ‖ xi−xk
xi+xk

‖
1
> λ · ‖xi + xk‖1

, (5)

where λ is a parameter related to the degree of the singular pixel decision, which needs expert
knowledge to be tuned. The modified similarity calculation is:

Si j,an f e = ‖
→

Mi · (N(i) −N( j))‖
2

2,σ = exp

−‖
→

Mi · (N(i) −N( j))‖
2

2

2σ2

, (6)

where
→

Mi = (mi1, mi2, mi3, . . . , miK), K is the number of pixels in the neighborhood window.
NLN is a kind of neural networks that introduce the main idea of NLM into deep learning,

enabling the networks to capsule the long range correlations in feature maps [33]. As is depicted in
Figure 3, weighted sum of the original features applied in nonlocal neural blocks generally follows the
form of NLM, as is shown in Equation (1), while the weight calculation takes learned features into
consideration, i.e.,:

ωi j,nln =
1

Qi,nln
exp(θ(xi)

T
·φ(x j)), (7)

where xi and x j are features of the previous layer, θ(·) and φ(·) are linear embeddings. Nonlocal
operation is implemented in the form of exponential dot product, which is named as “the embedded
Gaussian form”. Qi,nln =

∑
j∈C(i), j,i exp

(
θ(xi)

T
·φ(x j)

)
denotes the normalization term. Thus, the

equation introduces a softmax operation to θ(xi)
T
· φ(x j). Then, the weighted sum yi,nln equals the

calculated weights multiply the corresponding linear embeddings g(xi), i.e.,

yi,nln =
∑

j

ωi j,nln · g(x j), (8)

The output of the nonlocal operation equals the original feature xi,nln plus the linear embeddings
h(yi,nln) of yi,nln. Figure 3 shows the structure of the Nonlocal block.

zi,nln = h(yi,nln) + xi,nln, (9)
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2.2. Virtual Adversarial Training Regularization

Applying deep models to small size dataset often risks overfitting, which degrades the performance
of the models during validation. Virtual adversarial training (VAT) is proposed to relieve the negative
influence of overfitting and strengthen the robustness of models by making models be insensitive to
virtual adversarial disturbance. A brief implementation method and the solution to virtual adversarial
disturbance rvadv are presented in this subsection. The main idea of the VAT is depicted in Figure 4.
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Virtual adversarial training is derived from adversarial training proposed by Reference [37]. The
loss term of the original adversarial training is presented as follows:

Ladv(xin,θ) = KL
[
q(y

∣∣∣xin), p(y
∣∣∣xin + radv)

]
, (10)

radv = arg max
r;‖r‖≤ε

KL
[
q(y

∣∣∣xin) , p(y
∣∣∣xin + r,θ)

]
, (11)

where q(y
∣∣∣xin) indicates the real label output distribution given by the corresponding input sample xin.

p(y
∣∣∣xin + radv) denotes the distribution of model output given by adversarial disturbed input xin + radv.

KL[·] represents the Kullback–Leibler divergence. The aim of this loss term is to make this output
distribution be close to the real output distribution. However, this distribution is usually unknown.
In [37], q(y

∣∣∣xin) is simplified by the one-hot label vector h(y
∣∣∣xin) , which cannot be applied to unlabeled
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dataset. VAT [35,36] adopts the current estimation of the model output distribution to approximate
q(y

∣∣∣xin) , i.e.,

Lvadv(xin,θ) = KL
[
p(y

∣∣∣xin, θ̂ ), p(y
∣∣∣xin + rvdav,θ)

]
, (12)

rvadv = arg max
r;‖r‖≤ε

KL
[
p(y

∣∣∣xin, θ̂), p(y
∣∣∣xin + r,θ)

]
, (13)

where θ is the model parameters and θ̂ represents the current state of model parameters. rvadv denotes
the virtual adversarial disturbance given by input xin and model parameters θ. [35,36] also proposes
a fast computation method of rvadv. We denote KL[·] as Ddiv for simplification purpose. Assume the
existence of the first and second order derivatives of Ddiv with respect to θ always hold. As Ddiv reaches
its minimum value when r = 0, we can derive that the first order derivative of Ddiv with respect to r
equals 0 at r = 0. Thus, the second order Taylor expansion of Ddiv is shown as follows:

Ddiv(r, xin, θ̂) ≈
1
2

rTH(xin, θ̂)r, (14)

where H(xin, θ̂) denotes the Hessian matrix of Ddiv. Based on the assumption given above, rvadv will be
close to the first dominant eigenvector of H(xin, θ̂) with amplitude ε.

rvadv ≈ arg max
r
{rTH(xin,θ)r} (15)

rvadv = εu(xin, θ̂) (16)

where v = v/‖v‖2 is the direction vector of v. By using power iteration and finite difference method,
the direction vector of this eigenvector can be approximated iteratively using the equation as follows:

d← ∇rDdiv(r, xin, θ̂)
∣∣∣
r=ξd (17)

where d is a random vector before the first iteration and gets updated iteratively for Tpi times, ξ is a
small definite number used in finite difference method. In this paper, 1-time iteration is used to fit
the eigenvector.

Then, the rvadv can be derived by substituting the final d into Equation (16) to replace u(xin, θ̂).
For more details, refer to References [35,36].

3. Proposed Method

In this paper, an end-to-end deep neural network called NNSSAE is proposed for PolSAR image
classification. The proposed model contains two types of deep modules, i.e., a multiscale similarity
based feature extractor and a stacked sparse autoencoders (SSAE). The feature extractor, named as
neural nonlocal feature extractor (NNFE), is composed of feedforward neural networks and calculates
the weighted sum of the PolSAR image patch. SSAE takes the output of NNFE as input to project
original pixel features and nonlocal features into high dimensional latent space. Softmax classifier is
introduced to conduct the final classification task. Meanwhile, we introduce VAT regularization term
in the loss function to relieve the overfitting and to achieve higher generalization ability. The whole
framework of the model is depicted in Figure 5.
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3.1. Input Feature Preparation

Every pixel in PolSAR data is represented as a 2 × 2 scattering matrix S that indicates the
polarimetric scattering characteristics of the ground objects. The matrix S is given by

S =

[
shh shv
svh svv

]
, (18)

where shv is the element that is horizontal transmitting and vertical receiving polarized, and the
definition of the other three elements can be derived in a similar manner. Under the assumption that
shv = svh, the scattering vector is given by

h = [shh,
√

2shv, svv]
T

. (19)

Followed by Reference [38], a covariance matrix of an n-look image is represented by

C =
1
n

n∑
i=1

hihi
H, (20)

where hi denotes the i-th one-look sample, and H represents the Hermitian transpose. From [38], we
can derive the coherency matrix T from Equation (21).

T =
1
2


1 0 1
1 0 −1
0
√

2 0

C


1 1 0
0 0

√
2

1 −1 0

. (21)

Since the coherency matrix T is known to be a Hermitian matrix, we simply takes the upper
triangular part of the matrix as the input of our model. To avoid introduce complex number
into our model, we separate the real and imagine part of these complex elements, i.e., we have
data = [T11, Re(T12), Im(T12), Re(T13), Im(T13), T22, Re(T23), Im(T23), T33].

3.2. Neural Nonlocal Feature Extractor

Nonlocal methods generally share the same core concept that calculates weighted sum of the
surrounding pixels to extract the nonlocal features of the center pixel. The difference between them is
the different weight calculation criterions. NNFE adopts parameterized model to reveal the spatial
features and uses the dot product of the feature vectors of surrounding pixels and the center pixel as its
weight calculation criterion. The parameters are updated by back-propagation [39] algorithms, which
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relies on mining the information buried in data rather than careful selection adopted by hand-crafted
algorithms. The structure of the NNFE is shown in Figure 6.
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Before neural nonlocal operation, a multiscale feature extraction operation is implemented on the
original image patch S(i) to relieve the degradation effect accompanied with speckle noise. Inspired
by NLN, we use dot product rather than the variants of Euclidean distance, for the computation
complexity of the former one is negligible compared with the latter one.

The multiscale feature extraction operation utilizes 1× 1, 3× 3 and 5× 5 convolutional kernels,
which is inspired by the Inception block [40]. These kernels of various scales can both effectively capture

the discriminative features and substitute the complicated
→

Mi introduced by ANFE. The output of the
1× 1 kernels represent the characteristics of the pixel themselves, which provides the functionality like

a soft version of
→

Mi. Then, features of different scales are concatenated to constitute the input of the
nonlocal operation block, he. Through 1× 1 linear embedding layer, the feature of pixel i and the set of
pixels’ features in the central window

{
he( j), j ∈ C(i) and j , i

}
are used to calculate the corresponding

weight set
{
ωi j,nn f e, j ∈ C(i) and j , i

}
by the exponential dot product:

ωi j,nn f e =
1

Qi,nn f e
exp[he(i) · he( j)], (22)

where Qi,nn f e =
∑

j∈C(i), j,i exp[he(i) · he( j)] denotes the normalization factor. The weight set is then
used for weighted sum feature calculation. Apparently, the nonlocal feature vector x′i,nn f e has the
same dimension with the original pixel vector xi.

x′i,nn f e =
∑

j∈C(i), j,i

ωi j,nn f ex j. (23)

Considering that NNFE is fully parameterized thus need to be optimized, and SSAE need initial
feature vector to conduct unsupervised pre-training, an auxiliary classifier based on Softmax regression
is introduced to train NNFE to reach a proper initial state.

The main improvement of the nonlocal blocks compared with traditional neural networks is that it
is capable with analyzing the pairwise relationship of all the pixels in the feature maps. By introducing
the weights based on adaptive similarity calculation, both NLN and NNFE will have larger vision field
and be enabled to extract nonlocal features. The differences between the nonlocal operation introduced
in NLN and the nonlocal operation proposed in this paper could be summarized in two folds: First,
the similarity calculation of the NNFE focuses on the center pixel of the nonlocal feature maps, rather
than every pixel in the feature maps under the circumstance of NLN. Second, the nonlocal feature
vector extracted by NNFE is simply calculated by applying the weighted sum on the original central
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window, for this could make the nonlocal feature vector have similar distribution compared with the
feature vector of the original pixel.

3.3. Stacked Sparse Autoencoders

A two-layer SSAE is implemented to map the original and the nonlocal features into latent space
and finally conduct classification on optimized features using a Softmax classifier.

The training procedure of SSAE contains two steps: Pretraining and fine-tuning. Assume that
the SSAE model is composed of S autoencoders. The structure of Autoencoder is shown in Figure 7.
At the pre-training stage, the input of the s-th autoencoder is denoted as ms, s = 1, . . . , S. This input is
encoded as a hidden representation hs, and then is decoded as a reconstructed representation ys.

hs = σ(Ws
ems + bs

e) (24)

ys = σ(Ws
dhs + bs

d) (25)

where Ws
e , bs

e are the weight matrix and bias vector of the encoder, and Ws
d, bs

d are the weight matrix
and bias vector of the decoder. σ(·) represents a nonlinear function, here we use the sigmoid function
which has the expression of σ(x) = 1/(1− exp(x)). The loss function of this sparse autoencoder is
shown as follows:

Lrecon(Ws
e , bs

e, Ws
d, bs

d) =
1

2N

N∑
i=1

∥∥∥ys
i −ms

i

∥∥∥2
2 +

γ

2

(
‖Ws

e‖
2
2 + ‖W

s
d‖

2
2

)
+ β

Ks∑
t=1

KL
(
ρ‖ρ̂s

t

)
(26)

where N is the number of the training samples in a mini-batch, γ represents the scaling factor of the
weight regularization term, and β is a scaling factor controlling the strength of the sparse penalty.
ρ is the sparse parameter usually holding a small value. ρ̂s

t denotes the averaged response on this
specific mini-batch of the t-th unit in the s-th autoencoder, and Ks is the number of the units in the s-th
autoencoder. KL(·‖·) represents the Kullback–Leibler divergence of two distribution. Minimizing the
sparse penalty term in the loss function will make the response of units in the hidden layer be close to
zero. When the s-th autoencoder is trained, its hidden representation hs will become the input of the
(s + 1)-th autoencoder ms+1, noted that the input of the first autoencoder m1 is the input of the SSAE.
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When the last autoencoder finishes its pre-training process, a Softmax classifier is connected after
the hidden representation of the last autoencoder to predict the label distribution of every sample.
The expression of the Softmax classifier is:

P
(
l = j

∣∣∣hS+1
)
=

exp(hS+1, j)∑KS+1

k=1 exp(hS+1,k)
(27)
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where KS+1 is the number of categories contained in the dataset.

3.4. Loss Function in the Fine-Tuning Stage and the VAT Regularization Term

At the fine-tuning stage, virtual adversarial training and supervised cross-entropy loss are
combined together to guide the back-propagation algorithm to optimize the parameters of the model.
We denote dataset as {datai} and the set of samples perturbed by VAT as {datar}. The Loss function in
the fine-tuning stage is shown in Equation (28).

L f ine−tuning = Lce({datai}, {li}) + α ·Rvat({datar},θ) = −
1
N

N∑
i=1

li · log
(
l̂i
)
+ α ·

N∑
i=1

Lvadv(datai,θ) (28)

The first term is the cross-entropy term, which represents the difference between the distribution
of the model prediction performed on the training samples and the distribution of the corresponding
labels. In Equation (28), li represents the one-hot label vector and l̂i represents the model prediction
distribution. This term aims to make the predictions be close to the labels, thus yields to better accuracy
performance. The second term is the VAT regularization term, which denotes the flatness of the model
prediction distribution in the high dimensional latent space around each training sample. The purpose
of this term is to smooth the output distribution around input data, and make the model more robust.

The calculation of rvadv is concluded in Algorithm 1.

Algorithm 1. Calculation of Virtual Adversarial Training Disturbance

Input: Mini-batch size N, dataset {datai};
Step 1: Randomly select N samples dataset {datai} to construct a mini-batch.
Step 2: Sample N unit vectors un, n = 1, . . . , N from an i.i.d Gaussian distribution.
Step 3: Calculate rn

vadv using Equation (16) and Equation (17) with respect to r on r = εun on each sample.
Output: Virtual adversarial disturbance rvadv.

3.5. Training Strategy

Algorithm 2 summarizes the details in training processes. The training procedure mainly contains
three stages. First, in order to provide coarse nonlocal features to SSAE, the NNFE is pre-trained using
training samples in a supervised manner. Only samples in the training set are used in this stage. Then
SSAE takes both the center pixels and the initialized nonlocal feature vectors as input and extracts their
latent information by unsupervised layerwise reconstruction training. Finally, the whole framework is
fine-tuned supervisedly using the training samples with the regularization of the VAT.

Algorithm 2. The training strategy of NNSSAE-VAT

Input: PolSAR Image, label map;
Step 1: Select v% of samples per category from the labeled samples to construct training set.
Step 2: Initialize all trainable parameters θ = θinit.
Step 3: Use the auxiliary classifier to pretrain the NNFE with sample-label pairs by BP Algorithm.
Step 4: For the s-th autoencoder in N autoencoders:
Train the autoencoder to reconstruct the input ms, minimize the L2-difference between the input ms and the
reconstructed result ys.
Step 5: Use the main classifier to fine-tune the whole network with virtual adversarial training term in the loss
function.
Output: The trained model θ = θtrained, prediction map.

4. Experiments

In this section, three real PolSAR images are utilized to verify the effectiveness of the proposed
method. The first dataset covering Flevoland, Netherlands, is obtained by AIRSAR platform in 1989.
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The second dataset is the C-band Benchmark dataset acquired by AIRSAR platform in 1991, covering
another part of Flevoland. The third dataset is the full-polarimetric L-band image covering Foulum,
Denmark, which is obtained by EMISAR platform in 1998. To restrain the negative effects brought
by speckle noise, all these three PolSAR image are preprocessed by refined Lee filtering [41], and the
window size of the filter is set to 5 for fair comparison. We use python/Tensorflow to conduct the
experiments, which are implemented on a computer with Inter(R) Core™ i7-4790K CPU, 16G RAM
and NVIDIA GTX960 GPU.

The proposed NNSSAE-VAT is compared with four relevant methods, including SSAE [23],
SSAE-LS [26], SRDNN [30], ANSSAE [32]. Since all methods are AE-based classification models, their
hyperparameters are set as same as the original papers, respectively. The metrics used for comparison
include overall accuracy (OA), average accuracy (AA), and Kappa coefficient (K).

4.1. Experimental Settings

4.1.1. Networks Architecture Settings and Analyses

For SSAE and SSAE-LS, the number of the hidden units in the two hidden layers are both set to
300. For SRDNN, the two hidden layers are set to have 150 and 40 units. As for ANSSAE, it is set
to have five layers and its detailed configuration for each dataset will be illustrated in the following
subsections, respectively. The Softmax classifier is connected after the final hidden layer to conduct
classification task.

For autoencoder-based PolSAR image classification models, the classification accuracy depends
on the effectiveness of their feature extractors. Thus, the architecture of NNFE should be carefully
designed in order to fully utilize the strong representation capability of SSAE and achieve better
performance. To this end, we determine the architecture of NNFE by conducting experiments on all
the three PolSAR data used in this paper. During this experiment, only the auxiliary classifier is used,
which is connected directly to the output of the NNFE. NNFE contains two parts of parameterized
layers, i.e., the multiscale feature extractor layer and the 1× 1 linear embedding layer. The number of
kernels in feature extractor layer is set to 30 and the number of kernels in 1× 1 linear embedding layer
is set to 40. The result of this experiment is shown in Figure 8.
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Figure 8. The results of NNFE architecture search conducted on (a) Flevoland dataset, (b) Benchmark
dataset, and (c) Foulum dataset.

In Figure 8, ‘S’, ‘M’, and ‘L’ represents kernels of scale 1× 1, 3× 3, and 5× 5, respectively. Besides,
the symbol ‘+’ indicates the concatenation of multiple scales. From the results, it is apparent that the
NNFE with kernels of all three scales outperforms other variants. In general, NNFEs with kernels of
multiple scales have better performance compared with NNFEs with kernels of single scales. Combined
with kernels of scale 1 × 1, the ‘S+M+L’ module achieves higher accuracy results compared with
original ‘M+L’ module. One possible reason for this is that the 1× 1 kernels represent features of the

pixels themselves, which act like a soft version of
→

Mi. To prove the robustness of the proposed model,
we fix all the hyper-parameters to constant values during the experiments described in Sections 4.2–4.4.
The number of kernels in multiscale feature extractor layer is set to 30 for 1× 1, 3× 3 and 5× 5 kernels,
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and the number of kernels in 1× 1 linear embedding layer is set to 40. We set the SSAE part to γ = 0.005,
β = 0.02, ρ = 0.15, S = 2, and each layer has 220 hidden units throughout the experiments.

4.1.2. Parameter Settings for Virtual Adversarial Regularization Term

According to [35,36], the essential parameters of VAT are regularization weight α, perturbation
length ε, a small value ξ and the number of the power iteration Tpi. In the original papers, the value
of ξ is fixed to 1.0 × 10−6, for it is merely a small value used in finite differential method, which is
a numerical calculation approach. The parameter Tpi represents the number of power iteration is
performed on the random vector to make it fit the most significant eigenvector of the Hessian matrix H.
No significant improvement is observed when we pick Tpi as values larger than 1, for which we fix
the value of Tpi to 1. The regularization weight α denotes the importance of the VAT term compared
with the cross-entropy term in the loss function and the perturbation length ε is the core parameter
controlling the length of VAT perturbation rvadv.

Considering that the intention of combining VAT with NNSSAE is to regularize the model and
relieve the negative effects of overfitting, we simply set α = 1.0 and search for ε to achieve the best
results of the proposed model. The experimental results of the datasets with a different value of ε are
shown in Figure 9.
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From the results we can derive that when ε belongs to [0.5, 3.0] the model is capable to achieve
promising performance. We also observe that when ε is smaller than 0.5 and is larger than 4.0, the
performance is degraded. When ε is smaller than 0.5, the regularization effect is limited because the
perturbed data points are too close to the original data points; This means the regions around data
points are too small to make the corresponding output distribution smooth. When ε is larger than 4.0,
the region around data points are too large and may unexpectedly include data points of other classes.
Hence, we suggest using a general range of ε from 0.5 to 3.0 for NNSSAE-VAT model.

4.1.3. Influences of Different Sizes of the Training Set

We conduct experiments that test different sizes of training set for all three datasets. The sizes we
chosen are 1%, 2%, 3%, 5%, 7%, and 10%. The results are shown in Figure 10. We find that Flevoland
dataset is kind of ‘easier’ compared with the C-band Benchmark dataset and Foulum dataset, because
in general Flevoland dataset doesn’t have classes that are easily confused with each other, although it
does have the largest number of classes. For evidence, from Tables 1–3, we can find that the accuracy
of SSAE is 89.75% in the case of Flevoland dataset only using 1% labeled samples, while the accuracies
become 89.65% and 90.97% using 10% labeled samples when SSAE is applied to the other two dataset.
For this reason, we think 1% is good enough to be the size of the training set of Flevoland dataset, and
we set the size of the training set of the other two datasets to 10%.
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4.2. Flevoland Dataset

The Flevoland image has 750 × 1024 pixels, which are labeled with 15 categories. The number of
labeled pixels is 161,327. Figure 11a shows the Pauli-RGB pseudo color image, Figure 11b,c shows its
corresponding ground truth, and Figure 11d–i are classification results. In the experiment, 1% labeled
samples are randomly selected to construct training set, and the rest is used for testing. For SRDNN,

the number of superpixels is set to 8000. For ANSSAE, the parameter λ controlling the
→

Mi vector is set
to 0.0005, and the hidden units number of each layer is set to 180.
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The accuracy performance is reported in Table 1, from which we can find that the NNSSAE and
NNSSAE-VAT achieve higher accuracy than other methods. In the absence of spatial information, the
SSAE are highly sensitive to the negative effect brought by speckle noise, especially when the size of
training set is limited. The SSAE-LS significantly improves the classification performance, for involving
pixels surrounding the center pixel makes training samples become more discriminable. Nonlocal
methods further improve the accuracy and reduce misclassified spot in the large homogeneous regions.
The SRDNN clusters pixels in the original PolSAR image using the intensity and the spatial distance of
pixels. However, in other words, this means the performance of the model is essentially dependent the
segmentation of superpixels. The ANSSAE achieve better performance compared with SRDNN, for it
extracts nonlocal information in a more precise pixel-wise manner.

Table 1. Classification performance of Flevoland dataset.

Class SSAE SSAE-LS SRDNN ANSSAE NNSSAE NNSSAE-VAT

Stembeans 0.9536 0.9395 0.9458 0.9586 0.9837 0.9801
Rapeseed 0.8151 0.8196 0.9177 0.9613 0.9255 0.9540
Bare soil 0.9421 0.9577 0.9616 0.9966 0.9890 0.9922
Potatoes 0.8649 0.8787 0.9480 0.9237 0.9610 0.9706
Wheat 1 0.8976 0.9358 0.9669 0.9764 0.9659 0.9730
Wheat 2 0.7793 0.8502 0.8712 0.9524 0.9431 0.9539

Peas 0.9404 0.9406 0.9658 0.9878 0.9873 0.9951
Wheat 3 0.9179 0.9609 0.9793 0.9901 0.9876 0.9910
Lucerne 0.9476 0.9633 0.9479 0.9938 0.9867 0.9889
Barley 0.9508 0.9178 0.9544 0.9854 0.9849 0.9860

Grasses 0.8429 0.8803 0.9469 0.9601 0.9518 0.9557
Beet 0.9408 0.8850 0.9512 0.9533 0.9921 0.9935

Building 0.8326 0.7892 0.7710 0.8093 0.8676 0.8054
Water 0.9745 0.9774 0.9939 0.9987 0.9947 0.9953
Forest 0.8756 0.9264 0.9553 0.9324 0.9629 0.9712

OA 0.8975 0.9164 0.9511 0.9665 0.9706 0.9772
AA 0.8984 0.9082 0.9385 0.9586 0.9656 0.9671
K 0.8885 0.9090 0.9468 0.9641 0.9680 0.9752

The proposed NNSSAE shows even better accuracy performance than the two previously
mentioned nonlocal methods. Using deep neural embedding features, NNSSAE extracts more robust
nonlocal information for every pixel in the image, which is proved to have better discriminative
capability than ANSSAE. Furthermore, the proposed NNSSAE-VAT improves the accuracy about 0.6%
compared with NNSSAE, which proves the effectiveness of the VAT regularization under the situation
that the amount of training data is limited.

4.3. Benchmark Dataset

The C-band Benchmark dataset is 700 × 750 with 7 labeled categories. The number of labeled
pixels is 203,223, which indicates that this dataset has the smallest image size but has the largest
number of labeled samples. Figure 12a shows the Pauli-RGB pseudo color image and Figure 12b shows
its corresponding ground truth. In the experiment, 10% labeled samples are randomly selected to
construct training set, and the rest is used for testing. For SRDNN, the number of superpixels is set to
6500. For ANSSAE, λ is set to 0.0005, and the hidden units number of each layer is set to 150.

The classification performance is presented in Table 2, and the corresponding classification results
are shown in Figure 12c–h, respectively. From Figure 12c, it is apparent that SSAE misclassified a
considerably large part of barley into wheat. Besides, the classification result of Lucerne is quite
confused with Beet, and the pea is highly confused with potato. The result of SSAE indicates that
the spatial information is crucial when classes that can merely be discriminated by analyzing the
context of spatial regions. The SSAE-LS significantly improved the accuracy performance, while
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the result is inferior to nonlocal methods, for its vision field size is still insufficient to capsule more
discriminative features and it uses fixed isotropic decaying weights instead of adaptive feature-driven
weights. The ANSSAE achieves better accuracy than SRDNN, for the reason that rather than calculating
averaged value in a superpixel, ANSSAE calculates similarity-based averaged value for each pixel.
The NNSSAE obtains the best result among other methods used for comparison, which shows that
the nonlocal features extracted by NNFE are more efficient. Regularized by VAT, the NNSSAE-VAT
further improves the performance, indicating that VAT is capable to make neural networks become
more robust.
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Table 2. Classification performance of Benchmark dataset.

Class SSAE SSAE-LS SRDNN ANSSAE NNSSAE NNSSAE-VAT

Wheat 0.9078 0.9430 0.9638 0.9818 0.9852 0.9877
Rapeseed 0.9970 0.9950 0.9989 0.9979 0.9984 0.9997

Barley 0.8322 0.9242 0.9474 0.9724 0.9751 0.9785
Lucerne 0.8514 0.9182 0.9741 0.9596 0.9780 0.9908
Potatoes 0.9600 0.9731 0.9940 0.9807 0.9920 0.9978

Beet 0.7916 0.8958 0.9709 0.9410 0.9802 0.9883
Peas 0.8579 0.8955 0.9863 0.9752 0.9985 0.9991
OA 0.8965 0.9448 0.9697 0.9779 0.9850 0.9886
AA 0.8852 0.9350 0.9765 0.9727 0.9868 0.9917
K 0.8652 0.9282 0.9638 0.9713 0.9805 0.9852

4.4. Foulum Dataset

The Foulum image has 750 × 1100 pixels, which are labeled with 6 categories. The number of
labeled pixels is 169,386. Figure 13a shows the Pauli-RGB pseudo color image and Figure 13b shows
its corresponding ground truth. In the experiment, 10% labeled samples are randomly selected to
construct training set, and the rest is used for testing. The experiment results are shown in Figure 13c–h
and Table 3. In Table 3, dense crops, broad leaves crops and small stem crops are denoted as D.c,
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B.l.c, and S.s.c, respectively. For SRDNN, the number of superpixels is set to 9000. For ANSSAE, the
parameter λ is set to 0.00055, and the hidden units number of each layer is set to 80.

As is shown in Table 3, the proposed NNSSAE model achieves higher overall accuracy than
the methods, which do not use NNFE as their feature extractor. Noted that the SSAE takes the
original image pixels as input, its performance is considerably degraded by the speckle noise. From
the classification result shown in Figure 13c it can be observed that the buildings, forest and some
part of dense crop can be easily confused without the presence of spatial information. As a result
of involving local spatial information, the SSAE-LS performs better than the SSAE, improve the
OA about 5%. Furthermore, nonlocal methods extract spatial features based on various similarity
calculations. Besides, NNSSAE and ANSSAE show comparable results, which indicate the robustness
of the NNSSAE, for it can achieve competitive performance without carefully selecting parameters.
With the regularization of the VAT, the NNSSAE-VAT further improves the OA and AA compared
with the NNSSAE.

Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 22 

 

Potatoes 0.9600 0.9731 0.9940 0.9807 0.9920 0.9978 
Beet 0.7916 0.8958 0.9709 0.9410 0.9802 0.9883 
Peas 0.8579 0.8955 0.9863 0.9752 0.9985 0.9991 
OA 0.8965 0.9448 0.9697 0.9779 0.9850 0.9886 
AA 0.8852 0.9350 0.9765 0.9727 0.9868 0.9917 
K  0.8652 0.9282 0.9638 0.9713 0.9805 0.9852 

4.4. Foulum Dataset 

The Foulum image has 750 1100×  pixels, which are labeled with 6 categories. The number of 
labeled pixels is 169,386. Figure 13(a) shows the Pauli-RGB pseudo color image and Figure 13(b) 
shows its corresponding ground truth. In the experiment, 10% labeled samples are randomly 
selected to construct training set, and the rest is used for testing. The experiment results are shown 
in Figure 13(c-h) and Table 3. In Table 3, dense crops, broad leaves crops and small stem crops are 
denoted as D.c, B.l.c, and S.s.c, respectively. For SRDNN, the number of superpixels is set to 9000. 
For ANSSAE, the parameter λ  is set to 0.00055, and the hidden units number of each layer is set to 
80. 

As is shown in Table 3, the proposed NNSSAE model achieves higher overall accuracy than 
the methods, which do not use NNFE as their feature extractor. Noted that the SSAE takes the 
original image pixels as input, its performance is considerably degraded by the speckle noise. From 
the classification result shown in Figure 13(c) it can be observed that the buildings, forest and some 
part of dense crop can be easily confused without the presence of spatial information. As a result of 
involving local spatial information, the SSAE-LS performs better than the SSAE, improve the OA 
about 5%. Furthermore, nonlocal methods extract spatial features based on various similarity 
calculations. Besides, NNSSAE and ANSSAE show comparable results, which indicate the 
robustness of the NNSSAE, for it can achieve competitive performance without carefully selecting 
parameters. With the regularization of the VAT, the NNSSAE-VAT further improves the OA and 
AA compared with the NNSSAE. 

 
(a) 

 

(b) 

 

(c) 
 

(d) 

 
(e) 

 

(f) 

 

(g) 
 

(h) 

 
Figure 13. Classification results of Flevoland dataset. (a) PauliRGB image; (b) Ground truth image;
(c) SSAE; (d) SSAE-LS; (e) SRDNN; (f) ANSSAE; (g) NNSSAE; and (h) NNSSAE-VAT.

Table 3. Classification performance of Foulum dataset.

Class SSAE SSAE-LS SRDNN ANSSAE NNSSAE NNSSAE-VAT

Forest 0.9122 0.9595 0.9924 0.9966 0.9891 0.9904
D.c 0.8709 0.9688 0.9765 0.9834 0.9896 0.9910

Bare soil 0.9955 0.9967 0.9942 0.9967 0.9992 0.9993
B.l.c 0.9590 0.9828 0.9769 0.9791 0.9953 0.9945
S.s.c 0.9102 0.9719 0.9608 0.9670 0.9878 0.9896

Buildings 0.8140 0.8810 0.9620 0.9745 0.9697 0.9751
OA 0.9097 0.9582 0.9779 0.9838 0.9883 0.9898
AA 0.9103 0.9601 0.9771 0.9829 0.9884 0.9900
K 0.8918 0.9495 0.9733 0.9805 0.9859 0.9904
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5. Discussion

Feature extractor and classifier are two essential modules for PolSAR image classification.
Efficient feature extractor and robust classifier have a strong link with good classification performance.
The proposed NNSSAE-VAT method uses NNFE to capsule multiscale spatial features and use similarity
based weighted sum to calculate the discriminative nonlocal feature vector without manually designed
expert parameters. The experimental results have shown the effectiveness of NNFE. SSAE is utilized
as the classifier of the proposed method, for it can project the input features into deep latent space and
achieve good classification performance.

VAT term is also introduce in the proposed method to regularize the model, because the strong
capability to fit training data of deep learning models can also cause overfitting when the training
data is insufficient. This circumstance is consistent with PolSAR image classification. For evidence,
in Figure 10, we notice that applying VAT will achieve relatively larger accuracy improvement when
the size of the training set is small. Another significance of applying VAT to NNSSAE is that we can
achieve similar performance with smaller size of training set using same architecture of the model,
which could be derived in Figure 10 as well. This means VAT could further reduce the workload of
manually labeling the ground objects.

The time consumption during training procedures for all six method are shown in Table 4, where
“Prep” denotes the time used for pre-processing, “Train” denotes the training time, and “Total” denotes
the time used during the whole training procedure.

Table 4. Time consumption of the three PolSAR image with different methods (sec).

Methods
Flevoland Benchmark Foulum

Prep Train Total Prep Train Total Prep Train Total

SSAE – 20.4 20.4 – 163.6 163.6 – 112.7 112.7
SSAE-LS – 28.2 28.2 – 214.1 214.1 – 145.6 145.6
SRDNN 44.6 24.0 68.6 32.9 179.6 212.5 57.4 128.1 185.5
ANSSAE 1441.1 23.7 1464.8 1090.4 183.9 1274.3 1871.5 123.6 1995.1
NNSSAE – 72.3 72.3 – 519.8 519.8 – 395.8 395.8

NNSSAE-VAT – 81.8 81.8 – 593.5 593.5 – 440.7 440.7

From Table 4, we could also find that the time required by the pre-processing stage of the ANSSAE
model is quite long, which could be a limitation in real applications. The training time of the proposed
NNSSAE and NNSSAE-VAT are higher compared with other methods, because the former two models
have neural network based feature extractors, which need to be trained. Moreover, applying VAT to
NNSSAE introduces more time in training procedure, for implementing VAT will increase the amount
of computation. More competent structure of NNFE and more efficient calculation algorithm for the
virtual adversarial perturbation term rvadv could be further investigated in the future. Considering the
advantages of NNFE, we also plan to combine the NNFE with fully convolutional network (FCN) [42]
to further improve the classification accuracy and reduce the time consumption in our future work.

6. Conclusions

In this paper, we propose a method called NNSSAE-VAT for PolSAR image classification.
The NNSSAE-VAT mainly contains three parts: The neural nonlocal feature extractor (NNFE), the
SSAE, and the virtual adversarial training regularization terms. The NNFE uses a neural network
calculating pairwise similarity between each pixel and its surrounding pixels in a pairwise manner as
the filtering weights to extract nonlocal features. The SSAE takes the combination of the original pixel
and its neural nonlocal features to perform classification and the VAT regularization term is introduced
to make the model be more robust. The experimental results derived from three real PolSAR images
shows that the proposed method achieves better results compared with previous methods.
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