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Abstract: Coastal land cover classification is a significant yet challenging task in remote sensing
because of the complex and fragmented nature of coastal landscapes. However, availability of
multitemporal and multisensor remote sensing data provides opportunities to improve classification
accuracy. Meanwhile, rapid development of deep learning has achieved astonishing results in
computer vision tasks and has also been a popular topic in the field of remote sensing. Nevertheless,
designing an effective and concise deep learning model for coastal land cover classification remains
problematic. To tackle this issue, we propose a multibranch convolutional neural network (MBCNN)
for the fusion of multitemporal and multisensor Sentinel data to improve coastal land cover
classification accuracy. The proposed model leverages a series of deformable convolutional neural
networks to extract representative features from a single-source dataset. Extracted features are
aggregated through an adaptive feature fusion module to predict final land cover categories.
Experimental results indicate that the proposed MBCNN shows good performance, with an overall
accuracy of 93.78% and a Kappa coefficient of 0.9297. Inclusion of multitemporal data improves
accuracy by an average of 6.85%, while multisensor data contributes to 3.24% of accuracy increase.
Additionally, the featured fusion module in this study also increases accuracy by about 2% when
compared with the feature-stacking method. Results demonstrate that the proposed method can
effectively mine and fuse multitemporal and multisource Sentinel data, which improves coastal land
cover classification accuracy.

Keywords: convolutional neural networks; land cover classification; data fusion; Sentinel

1. Introduction

Coastal regions play an important role in social and economic development around the globe [1–5].
According to previous studies [2], about 24% of the world’s population lives in coastal areas. Meanwhile,
coastal regions are home to many valuable wetland ecosystems, which perform various functions
beneficial to the sustainability of human society, including flooding control, water quality improvement,
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biodiversity conservation, maintaining the supply of fisheries and other resources, etc. [2–5]. However,
due to anthropogenic activities and global climate change, coastal regions have experienced rapid land
cover changes over the last few decades [4,5]. Therefore, accurate and timely monitoring of coastal
regions by means of remote sensing is of great significance to regional, sustainable development.

In fact, accurate land cover classification of complex coastal regions is a challenging task [2,6–8].
The challenges are mainly two-fold. On the one hand, the highly fragmented landscape of coastal
regions leads to large variations in the shape and scale of land objects, which increases the interclass
variability and decreases the intraclass similarity. On the other hand, some vegetation classes
(e.g., grassland and cropland) may have overlapping spectral reflectance at peak biomass, which also
raises difficulties in accurate classification.

Many studies have been conducted on accurate coastal land cover classification [2,6–8]. In coastal
areas, although some crops and natural vegetation share similar spectral features during peak growing
season, they may have different seasonal variations and temporal characteristics. Therefore, the inclusion
of multitemporal remote sensing data could improve classification accuracy when compared with
monotemporal data alone. Davranche et al. [6] used multiseasonal SPOT-5 imagery and decision trees
for coastal wetland classification in southern France. Yang et al. [7] adopted seasonal optical imagery for
coastal land cover classification and demonstrated that combining multiseasonal images considerably
improves classification accuracy over any single-date classification. In our previous work [8], we also
utilized multitemporal Landsat data to monitor cropland dynamics of the Yellow River Delta and
justified the role of multitemporal data in classification.

Meanwhile, because of the availability of diverse remote sensors, researchers have started to
integrate multisensor data for better classification of coastal areas [9–13]. Specifically, fusion of optical
and radar data has been widely studied [9–13]. Optical images mainly contain information regarding
reflectance and emissivity characteristics of land surfaces [9], while radar data are associated with
the structural, textural, and dielectric properties of land objects [10]. Therefore, integration of optical
and radar data can complement each other, resulting in an improved coastal land cover classification.
Rodrigues et al. [9] used multisensor data from Landsat-7 and RADARSAT-1 to identify and map
tropical coastal wetlands in the Amazon of northern Brazil. Beijma et al. [10] investigated the uses of
multisource airborne radar and optical data to map natural coastal salt marsh vegetation habitats.

Since the successful implementation of the European Copernicus program created by the European
Space Agency (ESA), Sentinel-1 radar data and Sentinel-2 optical data are now available via open
access, providing new insights for remote sensing applications, especially for large-scale environmental
monitoring [14–19]. For instance, Hird et al. developed a workflow for large-area probabilistic
wetland mapping based on Google Earth Engine (GEE) and Sentinel-1 and 2 data [14]. Mahdianpari
et al. also adopted GEE and multisource Sentinel data to generate the first detailed (category-based)
provincial-level wetland inventory map [15]. Therefore, we are highly interested in integrating
multitemporal and multisensor Sentinel data for accurate coastal land cover classification.

In addition, all the above studies are based on handcrafted features and conventional
machine-learning classifiers, which may fail in obtaining high-level features of complex heterogeneous
coastal landscapes. Deep learning [20], on the other hand, has the ability to discover informative
features with multiple levels of representation and has achieved an astonishing performance in
computer vison applications [21–26], such as image classification [21], object detection [23], and
semantic segmentation [24]. Recently, deep learning, especially deep convolutional neural networks
(CNNs), has also been successfully applied in many remote sensing applications [27–37]. Rezaee et
al. [34] applied a pre-trained AlexNet [21] for wetland mapping using monotemporal optical imagery.
Rußwurm et al. [35] utilized sequential recurrent encoders and multitemporal Sentinel-2 optical data for
land cover classification, which achieved state-of-the-art classification accuracies. Ji et al. [36] proposed
a three-dimensional (3D) CNN for crop classification with multitemporal remote sensing images and
concluded that a 3D CNN was suitable in characterizing dynamics of crop growth. Mahdianpari
et al [38]. investigated state-of-the-art deep learning models for classification of complex wetland
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classes and indicated that InceptionResNetV2, ResNet50, and Xception were distinguished as the top
three models.

Despite improvements made by deep learning in the remote sensing field, two challenges of
coastal land cover classification mentioned above still remain and need to be solved. In the context of
deep learning, the two issues can be revisited as follows: (1) how to build a concise and effective deep
learning model that accounts for variations in shapes and scales in fragmented coastal regions, and
(2) how to design a fusion mechanism that adaptively fuses multitemporal and multisensor remote
sensing data.

To address these issues, this study proposes a multibranch convolutional neural network (MBCNN)
for coastal land cover classification using multitemporal and multisensor Sentinel data. First, a single-
branch CNN is proposed to extract representative features from each monotemporal and single-sensor
Sentinel datum. A deformable multiscale residual block is utilized in the single-branch CNN to account
for shape and scale variations. Afterwards, multiple single-branch CNNs are integrated through an
adaptive fusion module, which are inspired by squeeze-and-excitation networks [25], to predict the
final land cover category. The selected study region is the Yellow River Delta, which is the largest
natural delta of China and home to abundant coastal wetlands [39–42].

The rest of the paper is organized as follows. Section 2 introduces the study area and the dataset
used. Section 3 presents the architecture and training details of the proposed multibranch neural
network. Section 4 shows the experimental results and discussion, while Section 5 provides the main
conclusions and suggestions for future work.

The contributions of this study are mainly two-fold. (1) We have designed a concise yet effective
deep learning model for coastal land cover classification, which adopts deformable convolutional layers
to account for variations of scales and shapes of coastal landscapes. (2) We have proposed a feature-level
fusion module based on squeeze-and-excitation networks for multitemporal and multisensor Sentinel
data fusion to boost coastal land cover classification accuracy.

2. Study Area and Dataset

2.1. Study Area

The Yellow River Delta is the largest natural delta of China and is home to many coastal wetlands
(Figure 1). In this study, the Yellow River Delta refers to the Yellow River Delta National Nature
Reserve [39], which is located northeast of Dongying City in Shandong Province in China. Due to
deposition of abundant sediments transported by the Yellow River, the newly created wetland has
increased by 30 km2 per year, making the Yellow River Delta one of the fastest growing sedimentation
areas around the globe [40,41].

The Yellow River Delta belongs to a temperate, continental monsoon climate, which has a hot,
humid summer and a cold, dry winter. It has an annual temperature of about 11.9 ◦C and an annual
precipitation of about 640 mm [41]. The natural vegetation includes reed, tamarisk, Suaeda, and Robinia,
while the main crops include rice, lotus, corn, winter wheat, and cotton [42].

A field survey was conducted in July 2018. A total of 163 sampling sites were visited. Land cover
types, photographs, and global positioning system (GPS) locations were recorded for each sampling
site. According to the field survey and previous studies [8,39–42], there were 11 land cover categories in
this study: forest, grassland, salt marsh, shrubs, tidal flat, bare soil, clear water, turbid water, irrigated
farmland, dry farmland, and built up. Landscape descriptions for each land cover category are shown
in Table 1. Training and testing samples were derived from remote sensing images through visual
inspection based on sampling site GPS locations and recorded land cover types. The spatial distribution
of training and testing samples are depicted in Figure 2a,b, respectively. The number of training and
testing samples (in pixels) are also shown in Table 1. To make the accuracy assessment more objective
and convincing, we doubled the number of testing samples in relation to training samples.
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Figure 1. Study area. (a) Yellow River of China; (b) True color image of Sentinel-2 on 25 August 2018; 
and (c) False color image of Sentinel-1 (Red: VH, Green: VV, Blue: VH) on 26 August 2018. 
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Figure 1. Study area. (a) Yellow River of China; (b) True color image of Sentinel-2 on 25 August 2018;
and (c) False color image of Sentinel-1 (Red: VH, Green: VV, Blue: VH) on 26 August 2018.

Table 1. Classification scheme of the Yellow River Delta.

No. Land Cover Description Training Testing

1 Forest Broad-leaved trees, mainly Robinia and willow 250 500
2 Grassland Vegetated areas where reed is dominant 500 1000
3 Salt marsh Vegetated areas where sea-blite is dominant 150 300
4 Shrubs Sparsely vegetated shrubs, mainly tamarisks 75 150
5 Tidal flat Non-vegetated foreshore areas 250 500

6 Bare soil Non-vegetated bare land, mainly saline and
alkaline land 250 500

7 Clear water Clear water bodies, including rivers, reservoirs,
aquaculture, and brine ponds 250 500

8 Turbid water Turbid water bodies, mainly the Yellow River 150 300

9 Irrigated farmland Including irrigated farmland, mainly rice and
lotus 500 1000

10 Dry farmland Including non-irrigated farmland, mainly winter
wheat, corn, cotton, and soybean 200 500

11 Built up Artificial surfaces including residential areas,
factories, and oil fields 150 300
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2.2. Dataset Used

Because of the availability of Sentinel-1 and Sentinel-2 data, these data were integrated for various
applications such as vegetation mapping [16], soil moisture monitoring [17], and crop classification [18].
In this study, both multitemporal and multisensor Sentinel data over an entire growing season were
utilized for coastal land cover classification (Table 2).
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Table 2. Multitemporal Sentinel-1/2 data used in this study.

Season Date Source Product Incidence Angle

T1 Spring 16 April 2018 S1 Level-1 GRD 38.01◦

17 April 2018 S2 Level-1C –

T2 Summer 3 June 2018 S1 Level-1 GRD 38.01◦

6 June 2018 S2 Level-1C –

T3 Summer 26 August 2018 S1 Level-1 GRD 38.01◦

25 August 2018 S2 Level-1C –

T4 Autumn 25 October 2018 S1 Level-1 GRD 38.01◦

24 October 2018 S2 Level-1C –

Note. S1: Sentinel-1; S2: Sentinel-2; and GRD: ground range detected.

Specifically, radar datasets were obtained from Sentinel-1 Level-1 ground range detected (GRD)
images with a spatial resolution of 10 m × 10 m [16]. The synthetic aperture radar (SAR) onboard
Sentinel-1 operates at the C-band with a revisit time of six days [17]. Preprocessing of Sentinel-1 SAR
data was implemented using Sentinel-1 Toolbox provided by the ESA [18], including radiometric
calibration, speckle noise reduction, and terrain correction, which outputs geo-coded backscattering
coefficients of VV (for vertical transmit and vertical receive) and VH (for vertical transmit and horizontal
receive) polarizations.

Optical datasets were obtained from Sentinel-2 MSI Level-1C products under cloud-free conditions.
Sentinel-2 MSI has 13 bands ranging from 443 to 2190 nm and a spatial resolution from 10 to 60 m with a
revisit time of five days [18]. In this study, only bands at 10 m (Bands 2, 3, 4, and 8) and 20 m (Bands 5, 6,
7, 8A, 11, and 12) resolutions were selected. Sen2Cor [19] was used to perform atmospheric correction
to get the bottom-of-atmosphere (BOA) 2A product. In order to co-register with Sentinel-1 SAR data,
all bands at 20 m resolution of Sentinel-2 were resampled to 10 m using a bilinear interpolation method.

3. Methods

3.1. Overview of a Multibranch Convolutional Neural Network (CNN)

Figure 3 shows the overview of the proposed multibranch CNN model for coastal land
cover classification.
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As shown in Figure 3, the multibranch CNN model had two major components: (1) a feature
extraction module based on single-branch CNN, and (2) a feature fusion module to aggregate the
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extracted features for final land cover classification. Each single-branch CNN had the same network
structure. Deformable convolutions [23,24] and multiscale residual blocks [22] were introduced to
model the land surface with various shapes and scales. The extracted features from each branch were
fed into an adaptive feature fusion module, through which the multitemporal and multisensor data
were effectively synthesized for final classification.

3.2. Brief Introduction of CNNs

To better understand our proposal, a brief introduction of CNN is provided in this section.
Generally, a typical CNN architecture is alternatively stacked by convolutional layers, pooling layers,
and fully connected layers [29].

3.2.1. Convolutional Layers

Convolutional layers are of great significance in a CNN. High-level representative features can
be extracted through the stacking of multiple convolutional layers. The input into a convolutional
layer is a feature map x with a size of m × n × c, where m × n denotes the spatial size of the feature
map, while c is the number of input channels. Supposing the convolutional layer consists of k filters,
the output would be an m’ × n’ × k feature map with k channels and a spatial size of m’ × n’. The ith
output feature map of the convolutional layer, yi, can be expressed as follows.

yi = wi ∗ x + bi, (1)

where wi and bi denote the weights and bias of the ith filter, and * is the direct convolutional operator.
Afterwards, a nonlinear activation function (e.g., the rectified linear unit [43]) is usually applied to the
output feature map to increase the nonlinear learning ability of the network.

3.2.2. Pooling Layers

Pooling layers are used to generalize the convolved features through down-sampling. The spatial
size of the input feature map is reduced after a pooling operation, which decreases the number of
parameters and computational complexity. Commonly used pooling layers include max pooling
and average pooling, which use the maximum or average operator to extract values for local spatial
regions, respectively.

3.2.3. Fully Connected Layers

The role of fully connected layers is to combine all input features by reshaping them into an
N-dimensional vector. Simple logistic regression is used by the fully connected layers. Finally, the
extracted feature vector is fed into the softmax classifier [43] to generate the probability distribution.

3.3. Single-Branch CNN for Feature Extraction

Accurate coastal land cover classification requires a set of well-established and representative
features. In this study, to account for complex and fragmented coastal landscapes, we first proposed a
single-branch CNN based on both deformable convolutions and multiscale residual blocks (Figure 4).

Figure 4 illustrates that the input of the proposed single-branch CNN is an image patch centered
on the labeled pixel with a size of k × k × c, where k is the patch size and c is the number of channels.
The proposed network consisted of several convolutional layers, max pooling layers, and deformable
multiscale residual blocks; detailed information is listed in Table 3.
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Table 3. Detailed information of the single-branch CNN.

Layer Name Input Size Output Size Kernel Size Filter Number Stride

Input 11 × 11 × 10 – – – –
Conv1 11 × 11 × 10 11 × 11 × 64 3 × 3 64 1
Conv2 11 × 11 × 64 11 × 11 × 128 3 × 3 128 1

Max-pooling1 11 × 11 × 128 6 × 6 × 128 – – 2
Deform res-block A1 6 × 6 × 128 6 × 6 × 128 – – –
Deform res-block A2 6 × 6 × 128 6 × 6 × 128 – – –

Max-pooling2 6 × 6 × 128 3 × 3 × 128 – – 2
Conv3 3 × 3 × 128 3 × 3 × 256 3 × 3 256 1

Deform res-block B1 3 × 3 × 256 3 × 3 × 256 – – –
Deform res-block B2 3 × 3 × 256 3 × 3 × 256 – – –

The deformable multiscale residual block was inspired by both deformable convolution [23,24]
and a multiscale residual block [22]. Specifically, the multiscale residual block was borrowed from
Bulat et al. [22], which had the merits of extracting hierarchical and multiscale features and improving
gradient flow at the same time. By introducing deformable convolution into the multiscale residual
block, the receptive field and sampling locations were trained to be adaptive to the shapes and scales
of land objects, which enabled extraction of robust and representative features. Figure 5 shows the
structure and parameters of the deformable multiscale residual blocks.
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The mechanism of deformable convolution is illustrated in Figure 6. The offset field was derived
from input feature maps, and the deformable kernel had the same resolution as the current convolutional
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layer [23]. Both the kernels and offsets were learned simultaneously during the training process.
Therefore, the output feature y at location p0 can be formalized as follows:

y(p0) =
∑

w(pi) ∗ x(p0 + pi + ∆pi), (2)

where w refers to the weights of the sampled points, x refers to the input feature map, pi means the ith
location, and ∆pi represents the offset to be learned [23,24].
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Additionally, a series of experiments were done to find the optimal patch size k from 9 to 29.
It was found that the best classification accuracy was achieved when k = 11.

3.4. Adaptive Feature Fusion

The sequence of features extracted from each single-source (i.e., both single-date and single-sensor)
Sentinel dataset was utilized in the proposed feature fusion module to make the final land
cover prediction. As for the fusion method, many previous studies [29,33] simply stacked and
concatenated all the input features without considering the importance of each feature. Inspired by
squeeze-and-excitation networks (SENets) [25] and our previous work [30], this study proposed a
fusion mechanism for feature aggregation of multibranch CNNs, which took the importance of each
feature into consideration (Figure 7).
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As shown in Figure 7, the feature fusion module was used to recalibrate (or reweight) all the
features extracted from each single-branch CNN through a series of squeeze-and-excitation (SE)
blocks [25]. First, any input features from each branch were passed through a global average pooling
(GAP) layer to generate a channel descriptor. Next, the channel-specific weight was learned with
two successive fully connected layers and a sigmoid layer. After all the features from each branch
were reweighted, informative features were emphasized and less useful ones were suppressed, which
provided a more effective and rational method to achieve feature-level fusion of multitemporal and
multisensor Sentinel data.

Finally, all the reweighted features were flattened and concatenated to generate the fused feature
vectors. Then, the fused features were fed into a fully connected layer and a softmax layer to calculate
conditional probabilities of each land cover category.

3.5. Details of Network Training

Data augmentation was utilized in this study to overcome the limited amount of training data.
All the training patches were flipped up and down, left and right, and rotated 90◦, 180◦, and 270◦ to
enlarge the training datasets.

All the parameters of the MBCNN should be trained. Specifically, all the weights were initialized
using He normalization [43], while biases were initialized by zero. As for the optimization method,
Adam [44] was utilized with a starting learning rate of 10−5. An early-stop strategy was used to select
the best model. Only the model with the minimum validation loss was saved.

Focal loss [26] was adopted instead of cross-entropy loss to further boost classification performance.
Focal loss played the role of online hard example mining, which down-weighted loss assigned to the
well-classified examples and prevented the vast number of easy examples from overwhelming the
classifier during training.

In this study, about 90% of training samples were randomly selected to optimize the parameters of
the proposed model. The remaining 10% of training samples were used as a validation set to evaluate
classification performance during the training process. The testing set was only used to calculate final
overall accuracy and the confusion matrix after the model was well trained.

The proposed MBCNN was trained with the TensorFlow library [45] on the Ubuntu 16.04 operation
system with Intel CORE i7-7800 @ 3.5 GHz CPU and an NVIDIA GTX TitanX GPU with 12 GB memory.

3.6. Accuracy Assessment

To justify the effectiveness of the proposed method, both visual evaluation and a confusion matrix
were utilized in this study. Visual evaluation was used to check obvious classification errors, while a
confusion matrix derived from the testing samples was used to quantitatively evaluate classification
performance through the following metrics: overall accuracy (OA), producer accuracy (PA), user
accuracy (UA), and Kappa coefficient.

4. Results and Discussion

4.1. Results of Coastal Land Cover Classification

Figure 8 illustrates classification results of the Yellow River Delta using the proposed multibranch
CNN and multitemporal, multisensor Sentinel data. From the perspective of visual inspection, the
results showed good visual effect, and the spatial distributions of each classified land cover were close
to field survey records. Moreover, few obvious omission and commission errors could be found in
Figure 8, which also justified the effectiveness of the proposed method.
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To quantitatively evaluate performance of the proposed method, the confusion matrix, OA, and
Kappa coefficient were calculated from the testing samples. The results are shown in Table 4.

Table 4. Confusion matrix of the proposed method.

Class
Ground Truth

1 2 3 4 5 6 7 8 9 10 11 UA%

1 445 27 0 10 0 0 0 0 3 0 0 91.75
2 40 931 0 14 0 0 0 0 44 0 8 89.78
3 0 0 294 1 0 3 0 0 0 0 0 98.66
4 0 38 0 99 0 5 0 0 16 0 5 60.74
5 0 0 5 26 500 29 12 0 0 0 0 87.41
6 8 0 1 0 0 453 14 0 0 0 0 95.17
7 0 0 0 0 0 0 474 0 0 0 0 100
8 0 0 0 0 0 0 0 300 0 0 0 100
9 0 3 0 0 0 2 0 0 932 6 0 98.83
10 0 1 0 0 0 0 0 0 4 490 0 98.99
11 7 0 0 0 0 8 0 0 1 4 287 93.49

PA% 89.00 93.10 98.00 66.00 100 90.60 94.80 100 93.20 98.00 95.67
OA 93.78% Kappa 0.9297

Note. 1: forest; 2: grassland; 3: salt mash; 4: shrubs; 5: tidal flat; 6: bare soil; 7: clear water; 8: turbid water;
9: irrigated farmland; 10: dry farmland; 11: built up; PA: producer accuracy; UA: user accuracy; and OA:
overall accuracy.

Table 4 indicated that the proposed multibranch CNN achieved good performance with an OA of
93.78% and a Kappa coefficient of 0.9297. Almost every class demonstrated producer accuracy of more
than 89%, except for shrubs, whose PA was only 66.00%. Several shrub pixels were misclassified as
forest, grassland, and tidal flat. This was understandable, because the radar backscattering properties
of the shrub land cover category were similar to those of the forest category. Meanwhile, shrubs (mainly
tamarisks) were sparsely distributed in the coastal wetlands surrounded by tidal flats, which caused
spectral confusion between shrubs and tidal flat categories. In addition, because of the limited spatial
resolution, there were hardly no pure shrub pixels, leading to spectral confusion between shrubs and
grassland categories, which could also account for classification errors.
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In addition, other classification errors mainly occurred between forest, grassland, and irrigated
land categories as well as bare soil and tidal flat categories. This was because of the similarity of
spectral and backscattering characteristics between these land cover types.

4.2. Impact of Multisensor Data on Classification

As stated earlier, inclusion of both optical and radar data would be expected to improve the
accuracy of coastal land cover classification. In this section, comparison between single-sensor
and multisensor classifications will be discussed. Specifically, experiments were performed for the
following cases:

(1) radar-only classification: using only multitemporal radar data from Sentinel-1 for classification;
(2) optical-only classification: using only multitemporal optical data from Sentinel-2 for classification;
(3) feature-stacking classification: using multitemporal radar and optical data and feature stacking

for classification; and
(4) proposed MBCNN model: using multitemporal radar and optical data and the proposed

MBCNN for classification.
The classification maps for each experiment are illustrated in Figures 9 and 10.
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Both Figures 9 and 10 illustrated that inclusion of multisensor data yielded a better classification
map with fewer errors when compared with single-sensor classification. Meanwhile, it was difficult
to get an accurate classification map by using Sentinel-1 radar data alone. There were many errors
among various land cover categories, especially between grassland and irrigated farmland as well as
between shrubs and grassland. Nonetheless, using Sentinel-2 optical data alone could achieve a much
better classification map. Similar spatial patterns were found among classification maps yielded by
optical-only and feature-stacking methods and the proposed MBCNN model.

In addition, Figure 10 indicated that the proposed MBCNN could effectively reduce classification
errors between forest and shrubs as well as between dry farmland and forest when compared with
optical-only and feature-stacking methods.

Table 5 shows detailed class-level classification accuracies (i.e., producer accuracy) for each
experiment. It indicated that the proposed MBCNN achieved the highest classification accuracy with



Remote Sens. 2019, 11, 1006 14 of 22

an OA of 93.78% and a Kappa of 0.9297, which verified the effectiveness of the proposed model.
Radar-only classification had the lowest OA of 64.00%, which was consistent with Figures 9 and 10.
The following land cover categories had low accuracies in radar-only single-sensor classification: salt
marsh, shrubs, and bare soil. Meanwhile, optical-only classification demonstrated better performance
than radar-only classification. This was mainly because Sentinel-2 could provide distinctive spectral
characteristics, which were essential in separating different coastal land cover categories, especially
with respect to confusing vegetation types.

Table 5. Class-level classification accuracy.

No. Class Name Radar-only (%) Optical-only (%) Feature-Stacking (%) Proposed (%)

1 Forest 70.00 85.40 84.80 89.00
2 Grassland 76.70 90.00 96.20 93.10
3 Salt marsh 14.00 85.67 97.00 98.00
4 Shrubs 2.00 61.33 45.33 66.00
5 Tidal flat 61.80 100 100 100
6 Bare soil 48.60 81.20 77.80 90.60
7 Clear water 74.00 94.20 96.00 94.80
8 Turbid water 89.33 100 100 100
9 Irrigated farmland 66.40 91.30 91.30 93.20
10 Dry farmland 64.60 95.40 96.00 98.00
11 Built up 71.00 94.00 90.33 95.67

OA (%) 64.00 90.54 91.50 93.78
Kappa 0.5919 0.8932 0.9037 0.9297

Table 5 also indicated that the synthetic use of Sentinel-1 and Sentinel-2 data led to an increase
in classification accuracy for almost every coastal land cover category. This was rational, because
integration of optical and radar features could enhance between-class separability [10,13]. Compared
with Sentinel-2 data alone, inclusion of Sentinel-1 data increased OA by 0.96% and 3.24% through
feature stacking and the proposed multibranch CNN, respectively.

The adaptive feature fusion method in this study outperformed the feature-stacking method by
increasing OA from 91.50% to 93.78% with an improvement of 2.28%. This was because, when simply
stacking features together, the information carried by each feature may not be equally represented [30].
Nonetheless, introduction of a squeeze-and-excitation module can automatically learn the weight of
each feature according to its importance, fusing multiple features in a more reasonable and effective way.

Besides, Table 5 also indicated that when using SAR data alone, it was difficult for the classification
model to separate shrubs from other land cover types, which meant that image features learned
from shrubs were very weak. However, those weak SAR features of shrubs still existed and were
enhanced by the adaptive feature fusion method in this paper, which in turn contributed to accuracy
improvement when combined with optical data.

4.3. Impact of Multitemporal Data on Classification

The role of multitemporal data in coastal land cover classification should also be verified. In this
section, we conducted a series of experiments for monotemporal classification. In each single-date
experiment, radar data from Sentinel-1 and optical data from Sentinel-2 were involved. The classification
maps and overall accuracy for each single-date dataset are illustrated in Figure 11, Figure 12, and
Table 6, respectively.
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Table 6. Accuracy comparison between mono- and multitemporal classifications.

T1 (2018.04) T2 (2018.06) T3 (2018.08) T4 (2018.10) Multitemporal

OA (%) 81.93 88.68 92.63 84.50 93.78
Kappa 0.7957 0.8719 0.9165 0.8248 0.9297

Both Figures 11 and 12 show that when compared with single-date classification, the inclusion of
multitemporal data improved classification performance. The multitemporal classification map showed
fewer obvious mistakes, especially between forest and shrubs, irrigated farmland and grassland, and
dry farmland and bare soil. This was because phenological information conveyed by multitemporal
data enhanced separability among different vegetation types [8]. This was in accordance with the
quantitative evaluation shown in Table 6. By introducing temporal information, classification accuracy
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was boosted by 1.15%–11.85%, with an average increase of 6.85%, which justified the importance of
multitemporal data in coastal land cover classification.

Table 6 also indicated that the classification accuracy for date T1 (April 2018) was notably lower
than that of other dates, with an OA of 81.93% and a Kappa of 0.7957. This was also consistent
with Figures 11 and 12. This was mainly because most of the vegetation, except for winter wheat,
started to turn green in April. The differences among vegetation were not distinct from either
the spectral or backscattering perspectives, which resulted in low between-class separability and
classification performances.
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4.4. Impact of Deformable Convolution on Classification

In contrast with previous land cover classification methods based on deep learning [29,30,33–37],
we introduced deformable convolution to model fragmented coastal landscapes. To better interpret
the impact of deformable convolution for classification, a contrast experiment was conducted in this
section. In the experiment, all the deformable convolutional layers in the MBCNN were replaced by
standard convolutional layers. Accuracy comparisons between standard and deformable convolution
is shown in Table 7.

Table 7. Accuracy comparison between standard and deformable convolutions.

Method OA (%) Kappa

Standard convolution 91.69 0.9060
Deformable convolution 93.78 0.9297

Table 7 indicated that when compared with standard convolution, introduction of deformable
convolution improved the OA from 91.69% to 93.78% with an increase of 2.09%, which verified the
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effectiveness of deformable convolution. In fact, in complex heterogeneous landscapes such as coastal
areas, a big challenge in land cover classification is the variations in the shapes and scales of land
objects. Because of the fixed kernel shape, standard convolution could not capture these variations,
which resulted in an inferior performance. However, by utilizing deformable receptive fields [23,24],
which were adaptive to the shape and scale of input remote sensing data, deformable convolution
extracted more representative features, showing better performance in complex coastal land cover
classification when compared with standard convolution.

4.5. Comparison with Machine Learning Methods

As is known, machine learning-based methods have long been used for land cover mapping in
the remote sensing field, such as in maximum likelihood classifier (MLC), random forest (RF), support
vector machine (SVM), etc. To further justify the performance of the proposed method, it should be
compared with those widely used machine learning methods. Specifically, with respect to RF [46], we
involved 200 decision trees with a max depth of 13 and utilized the Gini coefficient [46] as the indicator
for feature selection. With respect to SVM [47], we used radial basis function [47] as the kernel function
with a gamma [47] of 0.01 and a penalty coefficient C [47] of 100. As for determining the parameters
of RF and SVM classifiers, a grid-search method was utilized to find the optimal values. Specifically
for RF, the number of trees were set between 100 and 300, while the max depth was between 3 to 15,
respectively. For SVM, gamma was set between 0.001 to 0.1, while C had a range of 20 to 200.

In addition, all the above methods were trained and tested using the same training and testing
samples as the proposed multibranch CNN in this study to maintain objectiveness. The results of
accuracy comparisons are listed in Table 8.

Table 8. Accuracy comparison with machine learning methods.

Method OA (%) Kappa

Maximum Likelihood Classifier 74.65 0.7153
Random Forest 84.98 0.8301

Support Vector Machine 87.51 0.8541
Our Multibranch CNN 93.78 0.9297

Table 8 indicated that the traditional machine learning methods showed inferior performance
to the proposed method in coastal land cover classification. The proposed multibranch CNN
outperformed MLC, RF, and SVM with an increase in OA of 19.13%, 8.80%, and 6.27%, respectively.
This was mainly because the proposed deep convolutional neural network could learn high-level and
discriminative representations of complex and fragmented coastal landscapes, outperforming machine
learning-based methods.

4.6. Comparison with Other Land Cover Classification Methods

Because the main objective of this study was to propose a deep learning-based method for coastal
land cover classification, it was necessary to compare our proposed method with other classification
methods (Table 9) to further demonstrate both the merits and limitations of the proposed method.
It should be noted that because of the differences in the study area, number of training samples,
and classified categories, it was difficult to directly compare these methods based on classification
accuracies alone. Therefore, we mainly focused on the merits and shortcomings of each method.
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Table 9. Overview of recently published land cover/use classification methods.

Approach Data Multi
temporal

Multi
sensor Model Accuracy Number of Classes

This work S1, S2 Yes Yes MBCNN 93.78 11
Rezaee et al. [34] RE No No AlexNet 94.82 8
Huang et al. [29] WV-3 No No STDCNN 91.25 11

Mahdianpari et al. [38] RE No No Inception-
ResNetV2 et al. 96.17 8

Rußwurm et al. [35] S2 Yes No RNN 90.00 17
Ji et al. [36] GF-2 Yes No 3D CNN 94.70 4

Xu et al. [33] HSI, LiDAR No Yes CNN 87.98 15
Scarpa et al. [37] S1, S2 Yes Yes CNN – –

Note. S1: Sentinel-1; S2: Sentinel-2; RE: RapidEye; GF-2: GaoFen-2; WV-3: WorldView-3; HSI: Hyperspectral Image;
LiDAR: Light Detection and Ranging; L5: Landsat-5; RAST-2: RADARSAT-2; ALOS: Advanced Land Observing
Satellite; MBCNN: multibranch CNN; RNN: recurrent neural networks; and STDCNN: semitransfer deep CNN.

Specifically, both Rezaee et al. [34] and Huang et al. [29] achieved good accuracies using CNN-based
models and monotemporal, single-sensor data for wetland land cover and urban land use classification.
Meanwhile, Mahdianpari et al. [38] investigated well-known deep learning models (e.g., ResNet,
DenseNet, InceptionResNet, etc.) for wetland mapping and demonstrated that InceptionResNetV2
showed the best accuracy (96.17%). They concluded that CNN outperformed traditional machine-learning
methods (e.g., random forest) in the context of complex heterogeneous landscapes, which was consistent
with our findings. However, neither multitemporal nor multisensor datasets were incorporated, meaning
that these methods lacked the ability to comprehensively characterize the land surface.

From the perspective of multitemporal classification, Rußwurm et al. [35] utilized recurrent
neural networks (RNNs) and multitemporal Sentinel-2 data for land cover classification, and they
achieved good performance. They concluded that RNN was appropriate for modeling the relationship
of sequential remote sensing data, and that it showed high accuracy in multitemporal classification.
Different from Rußwurm et al. [35], the MBCNN in this study utilized a feature fusion module that
directly learned the importance of each temporal feature to classification performance in order to fuse
temporal features. Ji et al. [36] utilized 3D CNN to learn spatio-temporal features for crop classification
based on multitemporal optical data—a method that also showed high accuracy. However, when
compared with MBCNN, which was based on two-dimensional (2D) convolution, 3D CNN had
the drawbacks of requiring high computing complexity and having gradient vanishing along the
depth channel.

In the context of multisensor fusion and classification, Xu et al. [33] adopted a two-branch CNN
for urban land use classification based on hyperspectral, light detection, and raging (LiDAR) data.
As for the method of data fusion, Xu et al. [33] simply used feature stacking without considering the
importance of each feature. Scarpa et al. [37] studied the fusion of Sentinel-1 and Sentinel-2 data based
on deep learning. They first stacked all multitemporal Sentinel-1 and Sentinel-2 data and utilized
a CNN to extract features from the stacked data. Apparently, their fusion method was more on the
data-level and less on the feature-level, which may lead to a weak robustness of the fused features.
Compared with these studies, we constructed a feature-level fusion method that took the importance
of each feature into consideration, which could increase the representativeness and robustness of the
output features.

Moreover, the above previous studies did not consider variations in shapes and scales of land
objects, which was one of the most important reasons for improving limited land cover classification
accuracy. To tackle this issue, deformable convolution, which could extract robust features regardless
of shape and scale variations, was introduced in this study.

Overall, Table 9 indicated that the proposed MBCNN could achieve good classification performance
when compared with state-of-the-art methods. Additionally, the proposed method could be used for
crop type mapping through joint use of Sentinel-1 and Sentinel-2 data for crop growth monitoring and
yield estimation on the regional scale [48–51].
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5. Conclusions

This paper proposed a multibranch convolutional neural network for fusion of multitemporal and
multisensor Sentinel data for coastal land cover classification. The proposed neural network leverages
a series of single-branch CNNs for feature extraction from single-date and single-sensor Sentinel data.
Deformable convolutions and multiscale residual blocks were introduced to account for the variations
in shapes and scales of coastal land objects. Features extracted from each branch were then aggregated
using an adaptive fusion module to make the final land cover predictions.

The experiments were performed in the Yellow River Delta, which is the largest natural delta
in China. The results indicated that the proposed multibranch CNN achieved good performance
with an overall accuracy of 93.78% and a Kappa coefficient of 0.9297. The introduction of deformable
convolutions increased the OA by 2.09%, which justified its role in modeling complex and fragmented
coastal landscapes. Meanwhile, inclusion of multitemporal data improved the OA by 1.15%–11.85%,
with an average increase of 6.85%, which justified the importance of temporal information in coastal
land cover classification. Moreover, when compared with optical data alone, the inclusion of radar
data increased the OA from 90.54% to 93.78% with an improvement of 3.24%, which indicated that the
fusion of multisensor Sentinel data could enhance the separability of coastal land cover types. However,
using radar data alone cannot achieve an accurate classification result. The proposed adaptive fusion
method improved the OA by an increase of 2.28% when compared with the feature-stacking method,
which also justified its effectiveness in multisource data fusion.

This paper demonstrates that the proposed multibranch CNN can effectively extract and integrate
features from multitemporal and multisensor Sentinel-1 and Sentinel-2 remote sensing data, which
achieves good performance in coastal land cover classification. In addition, the proposed network
architecture can be considered as a general framework for multitemporal and multisensor data fusion.
Future work should consider more study cases to further verify the effectiveness of the proposed MBCNN.
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