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Abstract: Fundamental and thematic climate data records derived from satellite observations
provide unique information for climate monitoring and research. Since any satellite only operates
over a relatively short period of time, creating a climate data record also requires the combination of
space-borne measurements from a series of several (often similar) satellite sensors. Simply combining
calibrated measurements from several sensors can, however, produce an inconsistent climate data
record. This is particularly true of older, historic sensors whose behaviour in space was often
different from their behaviour during pre-launch calibration and more scientific value can be derived
from considering the series of historical and present satellites as a whole. Here, we consider
harmonisation as a process that obtains new calibration coefficients for revised sensor calibration
models by comparing calibrated measurements over appropriate satellite-to-satellite matchups,
such as simultaneous nadir overpasses and which reconciles the calibration of different sensors given
their estimated spectral response function differences. We present the concept of a framework that
establishes calibration coefficients and their uncertainty and error covariance for an arbitrary number
of sensors in a metrologically-rigorous manner. We describe harmonisation and its mathematical
formulation as an inverse problem that is extremely challenging when some hundreds of millions
of matchups are involved and the errors of fundamental sensor measurements are correlated.
We solve the harmonisation problem as marginalised errors in variables regression. The algorithm
involves computation of first and second-order partial derivatives using Algorithmic Differentiation.
Finally, we present re-calibrated radiances from a series of nine Advanced Very High Resolution
Radiometer sensors showing that the new time series has smaller matchup differences compared to
the unharmonised case while being consistent with uncertainty statistics.

Keywords: climate data record; fundamental climate data record; calibration; harmonisation;
Advanced Along Track Scanning Radiometer (AATSR); Advanced Very High Resolution Radiometer
(AVHRR); uncertainty propagation; metrology; errors-in-variables; algorithmic differentiation; Earth
observation; remote sensing

1. Introduction

Stable and accurate long-term Fundamental Climate Data Records (FCDRs) are indispensable
for many aspects of climate research and services. Metrological assessment of historical climate
trends and climate variability are feasible, if such FCDRs are harmonised and include quantified
uncertainties per datum [1–4]. Such climate data records are also important for assimilation in a
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reanalysis, as well as for the calculation of statistics that are needed to assess the state of the Earth’s
climate and to analyse climate extremes. Unfortunately, disruption of operational routines (such as
change of equipment or operator personnel, change of receiving station or environment, and change of
observing practices or procedures including changes in the pre-launch analysis) may lead to misleading
artifacts. Such artefacts may affect the results of climate data analyses considerably, in particular the
results of climate trend analyses. In-flight or post-flight sensor calibration must take particular care to
eliminate such artefacts as far as is feasible.

FCDRs usually comprise basic physical quantities such as top of atmosphere (TOA) radiance
marked with geographic location and time. Note that radiance may be expressed as, e.g., radiance,
brightness temperature, or reflectance. It needs also to be acknowledged that disciplines such as,
e.g., altimetry, gravimetry or magnetometry measure signals of a different nature. For convenience,
all such signals are in the following referred to as “radiance” without loss of generality. FCDRs
constitute the basis for deriving Climate Data Records (CDRs) that comprise higher-level geophysical
quantities obtained from combining and transforming FCDR data, with or without an eventual
projection onto some form of global grid [3,4].

This study focuses on the problem of creating a multi-decadal FCDR of Earth radiance
measurements from a series of similar satellite sensors, each of which operates over a relatively short
period of time. Creating a multi-decadal FCDR therefore requires the combination of measurements
from several such sensors. For example, Figure 1 illustrates the timeline of the more recent NOAA
and MetOp satellites, which have all been equipped with a similar suite of sensors, in particular
the Advanced Very High Resolution Radiometer (AVHRR). The thermal channels of AVHRR are
comparable to the thermal channels of the Advanced Along Track Scanning Radiometer (AATSR)
onboard the Envisat satellite, which in its domain was state of the art from 2002 to 2012.

NOAA-11 (n11)

NOAA-12 (n12)

NOAA-14 (n14)

NOAA-15 (n15)

NOAA-16 (n16)

NOAA-17 (n17)

NOAA-18 (n18)

NOAA-19 (n19)

MetOp-A (m02) (

AATSR (aatsr)

���� ���� ���� ����

�������� ����

Figure 1. Timeline of NOAA and MetOp satellites, which have all been equipped with similar sensors,
like, e.g., the AVHRR. The AATSR sensor onboard the Envisat satellite was similar to the AVHRR.

In this example, there is a lot of overlap in the lifetimes of individual satellites, and at any instant,
since 1992, several satellites have been active, such that there are no gaps over time. Earth radiance
data from individually-calibrated sensors may differ more than expected; however, even if they
measure the same spectral interval and view the same Earth target area at the same time and
under similar viewing angles. Simply combining individually-calibrated radiance measurements
from different sensors (even if free from disruptive artefacts) may yield inconsistent and unstable
FCDRs that exhibit jumps and changes in trends, in particular when past satellite instruments are
involved. Small radiance differences are, however, expected because even similar sensors have different
spectral response functions. To produce a harmonised FCDR from a series of similar satellite sensors,
the sensor measurement models must be recalibrated simultaneously while respecting mutual spectral
response differences [1,2]. Some facets of harmonisation resemble standard sensor bias correction
and inter-calibration methodologies [5], but harmonisation implements a higher level of metrological
rigour and traceability.
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Direct Earth observation measurements are telemetry data consisting of digital count numbers
related to the incoming radiance (from Earth, space, and internal calibration targets) and information
on the sensor state like the temperature of an internal calibration target or the temperature of the
instrument and environment. Measurement equations relate these direct observables (usually all
on one side of the equation) to the incoming Earth radiance, which constitutes the measurand
(usually on the other side of the equation). In addition to direct observables and the measurand
itself, the measurement equation includes sensor calibration parameters, which are representative
of the measurement principle and of (qualitatively but quantitatively not well known) systematic
instrumental effects. Sensor calibration parameters are determined before launch, but the prelaunch
calibration is usually not adequate for the full period from launch into space to the end of the mission.
In-flight or post-flight recalibration is often achieved by adjusting sensor calibration parameters
in such a way that the measured Earth radiance agrees with some (internal or external) reference.
A harmonised FCDR then usually refers to a single designated “best” sensor or a series of harmonised
“best” sensors, which provides the reference radiance. Alternatively, by including additional constraints,
the harmonisation can be based on equally-treated sensors.

An important prerequisite for harmonising fundamental climate data is the assessment of
uncertainties associated with the measurement of direct observables and reference radiance [1,2].
Ideally, the assessment associates each datum with an uncertainty. In practice, Earth observation data
are evaluated on the basis of pairwise matchup datasets, each of which consists of measurements
conducted by two satellites viewing the “same” Earth target at the “same” time and under similar
viewing geometries. Harmonisation requires that the uncertainty associated with the matching
is assessed. Ideally, the assessment associates each matchup of radiance (either provided by the
reference or computed from the sensor measurement equation) with an uncertainty. Similarly,
harmonisation requires information about the expected difference in radiances measured by the
two sensors due, e.g., to spectral response differences and their associated uncertainty, as well as due
to any mismatch between the viewing conditions of the two sensors. Finally, though we may assume
that the errors in measurements of the reference radiance are independent, the assumption that the
errors in measurements of the direct observables are independent is not always justified. For instance,
direct observables, like digital count numbers taken for space and internal calibration targets, are often
averaged over time before being put into the measurement equation. Though such averaging reduces
the apparent noise, characteristic error correlation structures are created, which harmonisation must
take into account.

The metric of harmonisation is defined by a cost function, which quantifies the total mutual misfit
of calibrated radiance computed for pairwise matchups, under prescription of expected matchup
radiance differences. Finding the best calibration is mathematically equivalent to minimising the cost
function. Harmonisation considers errors and error correlation structures in all quantities involved
with the harmonisation process. Generic optimisation techniques that implement this paradigm are
referred to as errors-in-variables (EIV) techniques [6]. EIV may be interpreted as a generalisation of
orthogonal distance regression (ODR) techniques that takes account of error correlation structures,
which standard ODR implementations [7] do not.

The harmonisation of the AVHRR series of sensors considers several hundred million
measurements of direct observables and reference radiance. The dimension of error covariance matrices
associated with these measurements reaches some 10 million, which is beyond the capacity of standard
EIV methods. Hunt et al. [8] and Harris et al. [9] have recently developed an EIV implementation
to solve these kind of large and highly covariant optimisation problems. Their EIV implementation
considers each measurement as a variable parameter, which is subject to optimisation. The dimension
of the search space is equal to the number of measurements, which for AVHRR is several 100 million,
plus the number of calibration parameters, which is several 10 s. To reduce the dimension of the search
space, we have developed a marginalised EIV (MEIV) technique that is based on and generalises the
principles of marginalised linear least squares [10]. Like EIV, the MEIV technique takes account of errors
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and error correlation structures in all quantities involved with the harmonisation process, but only
optimises the sensor calibration parameters. MEIV has been applied to the test cases developed by
Harris et al. [9] with similar and consistent results.

This paper puts up the mathematical framework to formulate and solve the harmonisation
problem and presents results from our initial applications of the MEIV technique to the harmonisation
of the AVHRR series of sensors as shown in Figure 1. Section 2 establishes the MEIV cost function,
which is minimised to yield a joint maximum posterior probability estimate of all sensor calibration
parameters. This estimate is expressed in terms of posterior expected calibration parameter values and
the calibration error covariance matrix. Section 3 presents results obtained from applying the MEIV
method to solve the problem of harmonising the AVHRR series of sensors (11 µm channel only) with
respect to the nominal calibrated AATSR TOA radiance as reference. The results are compared with
the nominal AVHRR calibration. Section 4 discusses and concludes this paper.

The nomenclature and notation of quantities like time, radiance, uncertainty and error covariance
follows the example of Merchant et al. [3] unless noted otherwise.

2. Materials and Methods

2.1. Review of the Single-Sensor Calibration Problem

Let x(t) = (x1(t), . . . , xn(t)) denote some measurements of direct observables acquired at time
t, where each xl is one of the n direct observables that appear in the sensor measurement equation,
such as Earth target counts, calibration target counts and measurements of sensor state. Let further
α denote the vector of sensor calibration parameters. Then, the generic measurement equation to
calculate calibrated radiance L(t) can be written as

L(t) = f (t, x, α), (1)

where the measurement function f may (or may not) explicitly depend on time. Now, let L =

(L(t1), . . . , L(tm)) denote m reference measurements of radiance L conducted at chronologically
ordered instants t = (t1, . . . , tm), and let the matrix

M =



L(t1) x1(t1) x2(t1) · · · xn(t1)

L(t2) x1(t2) x2(t2) · · · xn(t2)

...
...

...
. . .

...

L(tm)︸ ︷︷ ︸
L

x1(tm)︸ ︷︷ ︸
X1

x2(tm)︸ ︷︷ ︸
X2

· · · xn(tm)︸ ︷︷ ︸
Xn


∈ Rm×(1+n) (2)

represent the set of chronologically ordered pairwise spatio-temporal matchups between reference
measurements of radiance L and measurements of sensor state x. Any metrologically sound calibration
scheme takes account of the uncertainty of each measurement included with M and, if present,
any correlation of measurement errors. Let the measurements in each column of the matrix M be
independent from all measurements in all other columns, which usually is a valid approximation,
but let the errors of measurements within the same column be possibly correlated. To express the
uncertainty in measurement, the column of reference measurements L(t) is associated with an error
covariance matrix S(L). Likewise, each column Xl of M is associated with an error covariance matrix
S(Xl). Subsuming these matrices under the symbol S(M), the problem of single-sensor calibration is
mathematically equivalent to the problem of minimising a cost function

J(α, M, S(M)) (3)
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that expresses the misfit between reference measurements L(t1), . . . , L(tm) and corresponding values
f (t1, x(t1), α), . . . , f (tm, x(tm), α) of the measurement equation. The foremost prerequisite for solving
the optimisation problem is an adequate representation of the error covariance associated with the
individual columns of the matchup data matrix M.

2.2. Representation of Uncertainty in Matchup Datasets

The previous section has reviewed the mathematical formalism to calibrate a single sensor and
has introduced the matchup data matrix M, which is our way to represent a reference-to-sensor
matchup dataset. This section generalises this concept, in order to represent arbitrary sensor-to-sensor
matchup datasets.

Let xi(t) = (xi
1(t), . . . , xi

ni (t)) denote some measurements acquired at time t, where each xi
l is one

of the ni direct observables that appear in the measurement function f i(t, xi(t), αi) of a sensor i with
calibration parameters αi. In analogy to Equation (2), let the matrix

Mij =



xi
1(t

ij
1 ) xi

2(t
ij
1 ) · · · xi

ni (t
ij
1 ) xj

1(t
ji
1 ) xj

2(t
ji
1 ) · · · xj

nj(t
ji
1 )

xi
1(t

ij
2 ) xi

2(t
ij
2 ) · · · xi

ni (t
ij
2 ) xj

1(t
ji
2 ) xj

2(t
ji
2 ) · · · xj

nj(t
ji
2 )

...
...

. . .
...

...
...

. . .
...

xi
1(t

ij
m)︸ ︷︷ ︸

X ij
1

xi
2(t

ij
m)︸ ︷︷ ︸

X ij
2

· · · xi
ni (t

ij
m)︸ ︷︷ ︸

X ij
ni

xj
1(t

ji
m)︸ ︷︷ ︸

X ji
1

xj
2(t

ji
m)︸ ︷︷ ︸

X ji
2

· · · xj
nj(t

ji
m)︸ ︷︷ ︸

X ji
nj


∈ Rm×(ni+nj) (4)

represent the set of chronologically ordered pairwise spatio-temporal matchups of telemetry data
acquired by the sensor i with telemetry data acquired by another sensor j. The ordered instants
tij = (tij

1 , . . . , tij
m) and t ji = (tji

1 , . . . , tji
m) may differ within a tolerance prescribed by given matchup

selection criteria. Note that the reference-to-sensor matchup data matrix defined in Equation (2) is a
specialisation of the general sensor-to-sensor matchup data matrix of Equation (4) where the single
telemetry datum of sensor i is radiance and the measurement function f i is the identity function.

Now again, let the measurements in each column of the matchup data matrix Mij be independent
from all measurements in all other columns, but let the errors of measurements within the same
column be possibly correlated. Thus, to describe the uncertainty associated with the matchup dataset
represented by Mij, we may consider any generic column of Mij and our generic description will
apply to all other columns as well. Therefore, let

q =



q(t1)

q(t2)

...

q(tm)


∈ Rm (5)

denote any column of Mij. The description of the error covariance matrix S(q) ∈ Rm×m is
straightforward, but there are several cases to discern.

1. Independent random errors—arise from uncorrelated, i.e., independent, random error effects.
Each measurement included with q exhibits an error that is random and independent from the
errors of all other measurements. The error covariance matrix Si(q) is diagonal with elements
that represent the variance of each error. Let
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U(q) =



u(q(t1)) 0 · · · 0

0 u(q(t2)) · · · 0

...
...

. . .
...

0 0 · · · u(q(tm))


∈ Rm×m (6)

define the diagonal uncertainty matrix; thus, the error covariance matrix Si(q), which is diagonal
and of full rank, is given by

Si(q) = (U(q))2. (7)

2. Common random errors—arise from a fully correlated, i.e., common, random error effect.
All measurements in q exhibit an error that is due to the same random effect e. Let u(e) denote
the uncertainty associated with this effect and let Ce(q) ∈ Rm be the absolute sensitivity of q with
respect to e. Then, the law of propagation of uncertainty [11] states that the uncertainty of the
measurements q which results from each such effect e is

ue(q) = u(e)Ce(q) ∈ Rm (8)

and that the error covariance matrix Se(q), which is dense and of rank one, is given by

Se(q) = ue(q) (ue(q))T. (9)

3. Structured random errors—arise when the measurements in q are not original measurements
but rather result from an operation on an underlying (and usually larger) set of m′ original
measurements of the same quantity q measured at instants t′1, · · · , t′m′ , i.e.,

q′ =



q(t′1)

q(t′2)

...

q(t′m′)


∈ Rm′ , (10)

and these m′ measurements have independent random errors (case 1) associated with them.
A common example operation would be some form of averaging [1,2], but any linear mapping
of measurements from q′ to q is permissible. Let q = Wq′, where W ∈ Rm×m′ is the matrix that
defines the linear operation. Thus, the error covariance matrix Ss(q), which is typically sparse
and of rank min(m, m′), is given by

Ss(q) = W (U(q′))2 WT. (11)

4. Structured common random errors—arise when the measurements in q are not original
measurements, but result from an operation on an underlying set of original measurements
q′ that have both independent random errors (case 1) and systematic errors (case 2) associated
with them. Let

q = Wq′ (12)

as in the third case. Here, the error covariance matrix is dense and given by

S(q) = W
[
(U(q′))2 + ue(q′) (ue(q′))T

]
WT, (13)
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which, because ue(q) = W ue(q′), is equivalent to

S(q) = W (U(q′))2 WT + ue(q) (ue(q))T. (14)

Equation (14) demonstrates that the fourth case is a simple combination of the second and the
third case, and only the first three cases are genuinely different. Indeed, the error covariance matrix
S(q) may always be expressed by any of the basic Equations (7), (9) and (11) or any combination
thereof as, e.g., in Equation (14). Note that knowledge of the sparsity and rank deficiency of the basic
matrices is the key to implement storage and computationally efficient matrix representation schemes
on a computer.

The error covariance matrix may also be expressed in radiance-equivalent form by propagating
the uncertainty associated with each column X ij

1 . . . , X ij
ni and each column X ji

1 . . . , X ji
nj to the

calibrated radiance

Lij(αi) =



f i(tij
1 , xi(tij

1 ), αi)

f i(tij
2 , xi(tij

2 ), αi)

...

f i(tij
m, xi(tij

m), αi)


∈ Rm and Lji(αj) =



f j(tji
1 , xj(tji

1 ), αj)

f j(tji
2 , xj(tji

2 ), αj)

...

f j(tji
m, xj(tji

m), αj)


∈ Rm (15)

of sensors i and j, respectively. Let

Dij
l (α

i) =



∂ f i

∂xi
l
(tij

1 , xi(tij
1 ), αi) 0 · · · 0

0
∂ f i

∂xi
l
(tij

2 , xi(tij
2 ), αi) · · · 0

...
...

. . .
...

0 0 · · · ∂ f i

∂xi
l
(tij

m, xi(tij
m), αi)


∈ Rm×m (16)

designate the sensitivity (i.e., the Jacobian matrix) of the calibrated radiance Lij of sensor i with respect
to the column X ij

l , and let

Dji
l (α

j) =



∂ f j

∂xj
l

(tji
1 , xj(tji

1 ), αj) 0 · · · 0

0
∂ f j

∂xj
l

(tji
2 , xj(tji

2 ), αj) · · · 0

...
...

. . .
...

0 0 · · · ∂ f j

∂xj
l

(tji
m, xj(tji

m), αj)


∈ Rm×m (17)
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correspondingly designate the sensitivity of the calibrated radiance Lji of sensor j with respect to the
column X ji

l . Then, the law of propagation of uncertainty [11] states that the radiance error covariance
matrices S(Lij) and S(Lji) are given by

S(Lij(αi)) =
ni

∑
l=1

Dij
l (α

i) S(X ij
l ) (Dij

l (α
i))T (18)

and

S(Lji(αj)) =
nj

∑
l=1

Dji
l (α

j) S(X ji
l ) (Dji

l (α
j))T. (19)

To express the error covariance matrix of the differences of calibrated radiance Lij − Lji, we must
take account of the fact that any two sensors i and j do not usually observe the same Earth target at
the same time and under the same conditions. Let Kij

m denote the differences between the calibrated
radiances we expect because of these types of matchup differences. In the absence of better knowledge,
we may expect Kij

m = 0, but, even in this case, we must associate an error covariance matrix with this
expectation. Let the errors in our expectation Kij

m be random and independent, thus

S(Kij
m) = (U(Kij

m))2. (20)

In general, even similar sensors i and j will have different spectral response functions and we
cannot expect that the differences Lij− Lji−Kij

m will vanish. Let Kij
s denote the differences of calibrated

radiance we expect because of mutual differences in the two sensors’ spectral response functions. Thus,
we may write

S(Kij
s ) = (U(Kij

s ))
2, (21)

where we again have assumed that the errors in our expectation Kij
s are all independent and random.

Finally, we write

S(dij(αi, αj)− Kij) =
ni

∑
l=1

Dij
l (α

i) S(X ij
l ) (Dij

l (α
i))T +

nj

∑
l=1

Dji
l (α

j) S(X ji
l ) (Dji

l (α
j))T + S(Kij), (22)

where
dij(αi, αj) = Lij(αi)− Lji(αj) (23)

are the differences of calibrated radiance we measure, Kij = Kij
m + Kij

s are the differences of calibrated
radiance we expect because of matchup and spectral response differences in total, and

S(Kij) = (U(Kij
m))2 + (U(Kij

s ))
2. (24)

In the remainder of this paper, we refer to the double differences dij(αi, αj)− Kij as K-residuals.
For a perfect harmonisation, the mean K residual will be zero.

2.3. Formulation of the Harmonisation Problem

Harmonisation describes the joint calibration of a series of sensors that are all manufactured
to make the same measurement, e.g., Earth radiance in a particular spectral band. To formulate the
harmonisation problem in a generic way, let the sensors in our series be enumerated by i and j such
that i = 1 designates the reference sensor and the matchup data matrix Mij with i ≥ 1 and j > i
represents the pairwise spatio-temporal matchups between two sensors i and j as in Equation (4).
Let all sensor calibration parameters be subsumed under the symbol α and let all reference radiance
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and sensor telemetry data be subsumed under the symbol X. Furthermore, let α̌ denote any a priori
expected values of α and let S(α̂) denote the a priori associated error covariance matrix.

2.3.1. EIV Formulation

The EIV technique considers all measurements X as variable parameters, in order to take all
measurement errors and error correlation structures into account, such as the sensor calibration
parameters α. To distinguish (in this subsection only) between variable parameters and invariant
measurements thereof, let X̌ denote the measurements and let X denote the variables. In a Bayesian
context and in analogy to α̌ and S(α̌), the measurements X̌ designate the a priori expected values
of the parameters X while S(X̌) embodies the a priori associated error covariance matrix. Hence,
the harmonisation problem is equivalent to the problem of minimising the cost function

J(α, X) =
1
2 ∑

i
∑
j>i

(dij(αi, αj)− Kij)T
(

S(Kij)
)−1

(dij(αi, αj)− Kij)︸ ︷︷ ︸
K-residual term

+
1
2 ∑

i
∑
j>i

ni

∑
l=1

(X ij
l − X̌ ij

l )
T
(

S(X̌ ij
l )
)−1

(X ij
l − X̌ ij

l )

+
1
2 ∑

i
∑
j>i

nj

∑
l=1

(X ji
l − X̌ ji

l )
T
(

S(X̌ ji
l )
)−1

(X ji
l − X̌ ji

l )︸ ︷︷ ︸
sensor telemetry terms

+
1
2 ∑

i
(αi − α̌i)T

(
S(α̌i)

)−1
(αi − α̌i)︸ ︷︷ ︸

calibration prior term (optional)

, (25)

where the calibrated radiance differences dij(αi, αj) depend on X ij
l and X ji

l in the same outward
form as defined in Equations (23) and (15). The prior calibration term is optional to represent prior
knowledge of the calibration parameters, if there is any. Applied to the AVHRR series of sensors,
the EIV formulation includes several hundreds of millions measurements X̌ and an equal number of
parameters X, which are all subject to optimisation. Harris et al. [9] have recently demonstrated how
such large and structured problems can be solved.

2.3.2. Marginalised EIV (MEIV) Formulation

The MEIV technique is concerned with optimising sensor calibration parameters only.
Measurement errors and error correlation structures are taken into account by expressing the
error covariance of sensor telemetry data in radiance-equivalent form as defined in Equation (22).
The marginalised harmonisation problem is then equivalent to the problem of minimising the
cost function

J(α) =
1
2 ∑

i
∑
j>i

(dij(αi, αj)− Kij)T
(

S(dij(αi, αj)− Kij)
)−1

(dij(αi, αj)− Kij)︸ ︷︷ ︸
K-residual term

+
1
2 ∑

i
(αi − α̌i)T

(
S(α̌i)

)−1
(αi − α̌i)︸ ︷︷ ︸

calibration prior term (optional)

, (26)

where the prior calibration term is optional to represent prior knowledge of the calibration parameters,
if there is any, or to provide the resolving constraint when the harmonisation is conducted without a
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designated reference sensor. Note that the sensor telemetry terms of Equation (25) have disappeared
because the error covariance associated with these terms is represented here by the error covariance
matrix S as defined in Equation (22). The K-residual term is a sum of quadratic forms, each of which is
like the generic expression

vT S−1 v (27)

with a vector v ∈ Rm and a symmetric and positive definite matrix S ∈ Rm×m. We may rewrite this
expression as

vTw, (28)

where w ∈ Rm is the solution of the linear equation

S w = v. (29)

The error covariance matrix S of the K-residual term in Equation (26) is the sum of positive definite
and positive semi definite matrices and thus itself positive definite. Matrices may be large, with millions
of rows and the same number of columns. Therefore, we represent all matrices that appear in the
equations by matrix-free computer source code that evaluates matrix-vector products without needing
an explicit in-memory instance of each matrix element. In particular, we evaluate matrix-vector
products involving the Jacobian matrices of Equations (16) and (17) by computer source code elements
that have been generated by algorithmic differentiation (AD) [12] of the sensor measurement functions
in forward mode (code generated in forward mode is also known as tangent linear code). Similarly,
we evaluate matrix-vector products involving transposed Jacobian matrices by computer source code
generated by AD in reverse mode (code generated in reverse mode is also known as adjoint code)
by way of generic identities such as

S w = (AB + CD)w = (AB)w + (CD)w = A(B w) + C(D w). (30)

We decompose the product of any vector w with any composite matrix S, namely the error
covariance matrix in Equation (22), into more elementary matrix-vector products. A very costly
computational evaluation of matrix-matrix products is avoided. Rather than evaluate Equation (27),
which requires a computationally expensive inversion of the matrix S, we solve (29) by means of an
efficient preconditioned conjugate gradient algorithm [13] and then evaluate Equation (28). Typically,
about ten conjugate gradient iterations are needed to solve Equation (29) with sufficient accuracy.

The MEIV cost function is minimised using a limited-memory variant of the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [14–16]. Efficient quasi-Newton minimisation
algorithms like BFGS require an accurate evaluation of the cost function gradient. We have generated
the computer source code to evaluate the gradient from the source code of the cost function by means
of AD in reverse mode [17,18]. The adjoint code generated by such source-to-source transformation is
most accurate and most efficient in terms of required computational time and memory resources [19].
For a single given instance of calibration parameters α, the computational time to evaluate the cost
function and its gradient is about five times the computational time required to evaluate the cost
function alone, independent of the number of parameters. Memory resources increase by a factor of
about two.

The harmonised calibration parameters α̂ which minimise the cost function constitute a maximum
posterior probability estimate. The posterior error covariance matrix associated with this estimate is
given by the inverse of the Hessian matrix of the cost function at its minimum

S(α̂) =
(

HJ(α̂)
)−1 . (31)

The Hessian matrix HJ(α̂) is evaluated in vector forward over scalar reverse mode of AD [20],
i.e., the gradient source code generated before in scalar reverse mode of AD is differentiated in
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vector forward mode, which yields the source code to evaluate the second order partial derivatives.
The vector forward mode of AD propagates multiple perturbations simultaneously, which speeds
up the evaluation by exploiting the temporal and spatial locality of data in computer memory [21].
In contrast to the EIV formulation of the harmonisation problem, the number of parameters in the
MEIV formulation is small, making it feasible to invert the Hessian matrix directly.

2.4. Measurement Equation

We have used the same measurement equation for all AVHRR sensors. Let C̄S and C̄ICT denote
the sensor digital count numbers taken for the space view and the internal calibration target (ICT) that
have resulted from a moving average of the respective direct measurements over several scan lines.
Furthermore, let CE denote the sensor digital count number directly taken for an Earth target, let LICT
denote the radiance calculated (by means of Planck’s law and convolution with the sensor spectral
response) from direct measurements of the ICT’s temperature, and let T denote the temperature of the
instrument. Then, for each sensor i with telemetry data xi = (C̄i

S, C̄i
ICT, Ci

E, Li
ICT, Ti), the measurement

equation is

Li(xi, αi) = αi
1 + (ε + αi

2) Li
ICT

Ci
E − C̄i

S

C̄i
ICT − C̄i

S
+ αi

3 (C
i
E − C̄i

S)(C
i
E − C̄i

ICT) + αi
4

Ti − 295 K
10 K

, (32)

where ε is a constant that denotes the nominal emissivity of the internal calibration target. Note that
we have neglected the radiance from space (negligible in comparison with radiance from the ICT) and
that the instrument-temperature dependent term αi

4 Ti implicitly depends on the time of observation
as the instrument temperature evolves over time with changes in the thermal environment. Table 1
summarises the nomenclature of AVHRR telemetry data and associated error correlation structures
that we have assessed. Though in principle the measurements of ICT radiance exhibit all types of error
correlation represented by Equations (7), (9) and (11), we have taken account of independent random
errors only.

Table 1. Nomenclature and error correlation structure of AVHRR telemetry data that has been taken
into account.

Generic Name Specific Name Descriptive Name Error Correlation Structure

x1 C̄S Space count average structured random
x2 C̄ICT ICT count average structured random
x3 CS Earth count independent random
x4 LICT ICT radiance independent random
x5 T instrument temperature independent random

It is important to note that Equation (32) is invariant under any common random error in the
measurements of instrument temperature Ti because any correction to the instrument temperature
term is already represented by the calibration parameter αi

1. Therefore, Equation (32) must not include
additional calibration parameters to take account of (and estimate) these common random errors,
and harmonisation should not consider them at all.

2.5. Satellite Data

We have considered the series of nine AVHRR sensors on-board the NOAA 11–19 and MetOp-A
satellites to be harmonised with respect to the AATSR on-board Envisat as designated reference.
The time lines of these satellite missions are illustrated in Figure 1. We have considered the period
from 1991 to 2016 throughout which there were always two or more sensors in operation. AVHRR
measures Earth TOA radiance in several wave bands. Here, we have examined the 11 µm channel only
for the AVHRR Global Area Coverage (GAC) data. The spectral response function for this instrument
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ranges from 10.3 µm to 11.3 µm and the resolution is 5 km × 3 km around the sub-satellite point on
ground. For examples of the AVHRR characteristics, see the NOAA KLM Guide [22].

Fundamental AVHRR telemetry data have been taken from the NOAA Comprehensive Large
Array-data Stewardship System’s AVHRR Level 1B data and the AATSR reference TOA radiance data
have been taken from the ESA AATSR Level 1 data. The reference uncertainty at the pixel level from
the AATSR data has been taken to be of order 0.05 K [23]. The associated spatial resolutions have been
assumed to be 1 km × 1 km at the sub-satellite point, and approximately 5 km × 3 km for the AVHRR
GAC data. Note that, because one of the matchup criteria is to enforce a level of spatial uniformity
in the observed field, any error introduced by possible mismatches between the AATSR and AVHRR
footprints will also be included in the matchup uncertainty, which is primarily based on the local
spatial variability.

Sensor-to-sensor matchups have been found automatically [24] under prescription of certain
matchup selection criteria which are based on the criteria from the GSICS project [25]. First, the centre
of each sensor’s field of view has to be concurrent so the two points are spatially consistent within
the associated pixel footprint. Then, to minimise time variable differences between the matchups, we
have used a time window of 300 s. We have also ensured parity in the viewing path length between
the sensors and have used the difference in the path lengths of less than 1% as the selection criterion.
Finally, we have enforced field uniformity to minimise errors due to geolocation errors and/or spatial
inhomogeneity issues and have in this case used a threshold of 0.5 K for the spatial standard deviation
in the AATSR pixels found in and around the AVHRR footprint.

A single matchup dataset has been created for each relevant pair of sensors. Table 2 lists the
number of matchups selected for each pair, adding up to about 40 million matchups in total. Error
covariance information has been added to each matchup dataset in a way that evaluating Equations (7),
(9) and (11) is straightforward. Weight matrices W have been represented in compressed sparse row
format [26].

Table 2. Number of sensor-to-sensor matchups selected for different pairs of satellites. Mnemonic
names (see Figure 1) in the leading column refer to the first sensor i of a matchup dataset Mij while
mnemonic names in the heading row refer to the second sensor j.

Number of Matchups (Million)

m02 n19 n18 n17 n16 n15 n14 n12 n11

aatsr 2.40 0.23 0.61 0.26 0.70 0.19 - - -
m02 - 2.20 2.72 2.13 1.75 1.43 - - -
n19 - - 2.19 1.25 1.50 1.30 - - -
n18 - - - 2.26 2.64 1.45 - - -
n17 - - - - 2.27 1.78 - - -
n16 - - - - - 2.09 - - -
n15 - - - - - - 2.27 - -
n14 - - - - - - - 2.38 -
n12 - - - - - - - - 1.40

For each pair of sensors, the expected radiance differences Kij and associated uncertainties u(Kij
m)

and u(Kij
s ) have been derived using a database of over a million Infrared Atmospheric Sounding

Interferometer (IASI) spectra to represent variations in the observed TOA spectral radiance. For each
instrument, the appropriate spectral response function has been used to integrate the IASI spectra to
derive estimates of the respective infrared (IR) channel radiances. The expected difference in radiance
for the 11 µm channel between any two sensor pairs can then be directly estimated for that particular
top of atmosphere spectrum. These differences are incorporated into a lookup table which is a function
combining all three IR channels for night time matches (where solar scattering is not an issue) and
using the two long wave IR channels during the day. Note that doing it this way ensures estimates of
the channel-to-channel difference under both clear sky as well as cloudy conditions. The lookup table
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elements themselves contain the average 11 µm channel difference together with an estimate of the
standard deviation of the mean using the distribution of all difference estimates contained within that
particular lookup table element. Those lookup table elements where there are insufficient difference
estimates to provide a standard deviation are discarded.

3. Results

This section presents results on the harmonisation of a series of nine AVHRR sensors on-board the
MetOp-A and NOAA 11–19 satellites with respect to the AATSR on-board Envisat as the designated
reference. The MEIV technique has been applied to harmonise AVHRR 11 µm TOA radiance as
computed from sensor telemetry data by means of (32). The cost function includes about 40 million
matchups, which requires less than 30 GB of memory on a single compute node to run the optimisation
and to calculate the calibration parameter error covariance matrix. Exploiting eight concurrent threads
to compute the cost function within each iteration, the optimisation takes less than 40 h on a single
workstation with Intel (Santa Clara, CA, United States) Core i7-6700K CPU at a clock rate of 4.0 GHz.
Calculating the parameter error covariance matrix takes about one hour. Results comprise harmonised
calibration parameters, diagnostic diagrams, and a tentative stability analysis.

3.1. Harmonised Calibration Parameters

The harmonisation procedure optimised 36 calibration parameters α, four calibration parameters
for each AVHHR instrument considered, and calculated the calibration parameter error covariance
matrix. Table 3 lists the harmonised calibration parameter values α̂. Uncertainties have been obtained
from the square root of the diagonal elements of the error covariance matrix. Note that the constraints
on the calibration parameter α4 of the AVHRRs on board MetOp-A and NOAA-19 are relatively weak
because the temperature of these instruments is very stable, i.e from 285.9 K to 286.4 K and from 286.9 K
to 288.3 K, respectively. The harmonised values of the calibration parameters α1 and α4 (and their
errors) are therefore strongly correlated in the cases.

Table 3. Values of harmonised calibration parameters.

Satellite Abbreviation Calibration Coefficients

α̂1 α̂2 α̂3 α̂4
mW m−2 sr−1 cm 10−2 10−5 mW m−2 sr−1 cm

MetOp-A m02 4.4858± 0.0164 0.1287± 0.0009 1.2690± 0.0014 3.5116± 0.0181
NOAA-19 n19 −1.1419± 0.0102 0.9817± 0.0010 1.5570± 0.0016 −2.9937± 0.0136
NOAA-18 n18 2.9475± 0.0017 0.9371± 0.0010 1.5083± 0.0014 2.4684± 0.0017
NOAA-17 n17 1.4091± 0.0012 0.2653± 0.0010 2.0562± 0.0013 0.0930± 0.0007
NOAA-16 n16 1.2093± 0.0010 −1.2083± 0.0010 0.5737± 0.0013 0.4956± 0.0004
NOAA-15 n15 1.8321± 0.0009 −0.5223± 0.0010 1.0827± 0.0015 0.4625± 0.0004
NOAA-14 n14 2.0368± 0.0025 1.6397± 0.0016 1.1948± 0.0021 1.4038± 0.0024
NOAA-12 n12 1.3174± 0.0024 0.3173± 0.0020 1.5838± 0.0025 0.0863± 0.0009
NOAA-11 n11 1.8684± 0.0027 0.9456± 0.0029 3.1294± 0.0041 0.4772± 0.0010

Figure 2 illustrates the posterior error correlation matrix of the harmonised calibration parameters,
which has been derived from the error covariance matrix S(α̂). The figure visualises intra- and
inter-sensor error correlations. While the former emanate from the measurement equation itself,
the latter originate from matchups of an AVHRR sensor with any other AVHRR sensor. The inter-sensor
error correlation structure shown in Figure 2 is a direct implication of the structure and number of
pairwise reference-to-sensor and sensor-to-sensor matchups listed in Table 2. Due to the sparse
temporal overlapping between the later and the earlier AVHRRs (i.e., on board NOAA-11 to NOAA-14)
the respective inter-sensor error correlations are relatively weak. Because the errors in the harmonised
calibration parameters are strongly correlated, the full error covariance matrix (and not the mere
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diagonal variance elements only) must be considered in order to propagate calibration uncertainty to
harmonised FCDR radiance.
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Figure 2. Error correlation matrix of harmonised calibration parameters. Thin horizontal and vertical
lines separate the symmetric matrix into blocks of four by four pixels. Each block is associated with
different sensors as indicated by mnemonic labels along the horizontal and vertical axis. Pixels inside
diagonal blocks represent intra-sensor error correlations, whereas pixels inside off-diagonal blocks
represent inter-sensor error correlations. Each off-diagonal pixel indicates how the errors in two
different calibration parameters are correlated.

3.2. Diagnostic Diagrams

Figure 3 illustrates how the optimisation procedure (which initially started from α = 0) reduced
the value of the cost function and after 1000 iterations converged at the harmonised calibration α̂. If the
measurement equation were a perfect representation of the instrument and errors in all matchup data
were distributed normally and characterised perfectly well, the statistically expected value of the cost
function at its minimum would be half the number of matchups, i.e., about 20 million. Figure 3 reveals
that the actual minimum is less, i.e., about 13 million, which indicates that matchup data uncertainties
may have been overestimated.

Figure 4 illustrates the mean and the standard deviation of the harmonised K-residual distribution
for each sensor pair. If there were an issue with a certain sensor, this type of diagram would reveal
it. Note that the magnitude of K-residuals (here and in other figures expressed in mW m−2 sr−1 cm)
is approximately the same as the magnitude of corresponding brightness temperature difference
(expressed in K). That is to say most mean K-residuals differ by less than 0.02 K and all differ by less
than 0.06 K from zero, the value expected if the calibration of each instrument were without fault.
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Figure 3. Minimisation of the cost function.
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Figure 4. Mean and standard deviation of the harmonised K-residual distribution for each
matchup dataset.

Figure 5 depicts the probability distribution of harmonised K-residuals for all sensor pairs.
This type of figure would reveal if the matchup data were affected by outliers or largely non-normal
error statistics. The top panel of Figure 5 demonstrates that the distribution of K-residuals is a
reasonable combination of a normal and a Laplace distribution and does not exhibit a significant
fraction of statistical outliers. The mean of the K-residual distribution of −0.004 mW m−2 sr−1 cm is
virtually zero, which would be expected if the harmonisation were perfect. The standard deviation of
the K-residual distribution is 0.238 mW m−2 sr−1 cm, i.e., when expressed in brightness temperature,
the dispersion of K-residuals is less than 0.3 K. The bottom panel of Figure 5 shows that the distribution
of uncertainty-normalised K-residuals is more compact than a standard normal distribution, which
they would be expected to follow if the overall uncertainty analysis were flawless. The more compact
distribution of K-residuals seen may be explained by an overestimation of the uncertainties.
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Figure 5. (a) top panel: distribution of harmonised K-residuals for all sensor pairs. The solid and
dashed lines mark normal and Laplace distributions, which have the same mean and the same
dispersion as the distribution of K-residuals; (b) bottom panel: as above but showing the distribution
of uncertainty-normalised K-residuals. The dotted curve marks the standard normal distribution.

Figure 6 depicts the distribution of K-residuals over time. This type of diagram reveals when
the matchup data are affected by temporary outliers and other particular error statistics, which do
not appear in Figure 5. For instance, Figure 6 reveals some seasonal variations and demonstrates that
the increase of dispersion of K-residuals in the years 2008 and 2009 arises from temporary issues in
matches between the NOAA-16 and -15 satellites.
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Figure 6. Probability density (indicated by logarithmic colour scale) of harmonised K-residuals over
time. (a) top panel: for all sensor pairs; (b) bottom panel: for a specific sensor pair (here NOAA-16
and -15).

3.3. Stability of the Calibrated Radiance Data Record

The distribution of K-residuals over time (see Figure 6) may be used to infer the stability of the
harmonised radiance data record. The top panel of Figure 7 illustrates the K-residuals for a subsample
of matchups between all possible sensor pairs, with different sensor pairs marked by different colours.
The subsample has been selected randomly from the distribution illustrated in Figure 6. The bottom
panel of Figure 7 shows the K-residuals for the same matchups, but calculated from the nominal
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AVHRR calibration instead of the harmonised calibration. The mean K-residuals obtained from the
nominal calibration exhibit mutual differences of 1–2 radiance units. Depending on the sensor pair
considered, trends of mean K-residuals over time are sometimes positive and sometimes negative.
The bottom panel of Figure 7 reveals the deficiencies of the nominal radiance calibration, which lead
to highly unstable radiance data records that do meet climate data requirements. In contrast, the top
panel of Figure 7 demonstrates that mutual differences of the mean harmonised K-residuals and their
temporal trends are small, indicating a much better stability.
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Figure 7. Random sample of 10,000 matchups from all sensor pairs. (a) top panel: K-residuals calculated
from the harmonised calibration; (b) bottom panel: the same samples, but calculated from the nominal
AVHRR calibration.

Figure 8 illustrates the trend of the mean harmonised K-residual from all sensor pairs over
time, which is 0.0145 mW m−2 sr−1 cm decade−1. Remembering that the magnitude of K-residuals is
approximately the same as the magnitude of the corresponding brightness temperature difference,
this trend roughly translates into 0.015 K decade−1 which is half the value tolerated by the requirement
of the Global Climate Observing System (GCOS) on the stability of the Sea Surface Temperature
essential climate variable [27]. Please note that this tentative stability analysis is based on matchup
pairs, which are for the most part located in Arctic (Greenland) and Antarctic regions and do not
constitute a globally-representative sample. The radiance samples from the selected matchups do,
however, cover almost the complete range of observed radiances.
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Figure 8. Trend of the mean harmonised K-residual from all sensor pairs over time. Dashed lines
roughly indicate the requirement of GCOS on the decadal stability of the Sea Surface Temperature
essential climate variable, which is 0.03 K decade−1 [27].

4. Discussion

We have presented a metrologically rigorous marginalised errors-in-variables (MEIV) approach to
achieve a harmonised calibration of sensors onboard a series of Earth observation satellites. We have
applied the method to harmonise TOA radiance from nine AVHRR sensors on board of NOAA and
MetOp satellites with the AATSR reference. The harmonised calibration constitutes a significant
improvement when compared to the nominal calibration in terms of stability over time, being roughly
in the region of GCOS requirements. Matrix-free computations within the MEIV method allow for
matchup datasets including several hundred million measurements, which enables calibration on
the basis of even the noisiest telemetry. Most accurate and efficient computations involving first and
second order partial derivatives have been enabled by means of advanced AD techniques [17–21],
namely Transformation of Algorithms in Fortran [28]. The use of AD techniques enables quick trials of
measurement equations with different or additional calibration parameters without the need to put
any effort on programming partial derivative codes manually.

The mathematical framework presented in this paper is fully developed, but the harmonisation of
the AVHRR series of sensors is ongoing. The Fidelity and Uncertainty in Climate data records from
Earth observation (FIDUCEO) project [29] is refining the measurement equation, based on ongoing
analyses of instrument characteristics and the results of the initial harmonised calibration presented
in this study. Application of the MEIV method to harmonise the High-resolution Infrared Radiation
Sounder (HIRS) series of sensors and the microwave sounders onboard NOAA and MetOp satellites
is an ongoing activity within the FIDUCEO project too. Eventually, the harmonised calibration
parameters will be used to produce new harmonised FCDRs, which include metrologically sound
associated uncertainties per datum.

The MEIV framework is very generic. It may be configured to use a single reference sensor as in
this study, but may readily use multiple reference sensors, which have already been harmonised too.
Configuring calibration prior terms for designated reference sensors even allows for a harmonisation
where the nominal calibration of the reference is updated with new information. Though the framework
considers instrument channels individually, an obvious future extension of the framework may
consider the calibration of multiple instrument channels in one go, e.g., to quantify inter-channel
error correlation. On the other extreme, the framework may be configured to improve existing bias
correction schemes (or sensor-equivalent calibration activities like GSICS [30]) which work on the basis
of nominally calibrated radiance. Here, the improvement will be a (formally) correct consideration
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and propagation of radiance and bias correction uncertainty (which will not be an as complete and
metrologically rigorous treatment as harmonisation, however).

With SI traceable satellites planned and launched in the future, harmonisation will have the
potential to establish SI traceability for even heritage instruments, with the ultimate objective to
produce SI traceable FCDRs extending over decades, ideally back to the beginning of Earth observation
from Space.
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Abbreviations

The following abbreviations are used in this manuscript:

AATSR Advanced Along Track Scanning Radiometer
AD Algorithmic Differentiation
AVHRR Advanced Very High Resolution Radiometer
BFGS Broyden–Fletcher–Goldfarb–Shanno
CDR Climate Data Record
EIV Errors-in-Variables
ESA European Space Agency
FCDR Fundamantal Climate Data Record
FIDUCEO Fidelity and Uncertainty in Climate Data Records from Earth Observations
GAC Global Area Coverage
GCOS Global Climate Observing System
GSICS Global Space-based Inter-Calibration System
HIRS High Resolution Infrared Radiation Sounder
IASI Infrared Atmospheric Sounding Interferometer
IR Infrared
MEIV Marginalised Errors-in-Variables
NOAA National Oceanic and Atmospheric Administration
SI International System of Units
TOA Top-of-Atmosphere
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