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Abstract: Snowmelt in the mid-latitude European mountains is undergoing significant spatiotemporal
changes. Regional snow line elevation (RSLE) is an appropriate indicator for assessing snow
cover variations in mountain areas. To derive regional snow line dynamics during the ablation
seasons 1984-2018, the present study unprecedentedly introduced a readily applicable framework.
The framework constitutes four steps: atmospheric and topographic correction, snow classification,
RSLE retrieval, and regional snow line retreat curve (RSLRC) derivation. The developed framework
has been successfully applied to 8641 satellite images acquired by Landsat, ASTER, and Sentinel-2.
The results of the intra-annual regional snow line variations show that: (1) regional snow lines in
the Alpine catchments preserve the longest; (2) RSLEs are lower in the northern Pyrenees than in
the southern part; (3) regional snow lines persist the shortest in the Carpathian catchments; and (4)
during the end of the ablation season 2018, intermediate snowfall events in the catchments Adda,
Tagliamento, and Uzh are observed. In terms of the long-term inter-annual variations, significantly
accelerating snow line recession is detected in the northern Pyrenean catchment Ariege. In the Alpine
catchment Alpenrhein and Drac, RSLRCs are shifting towards lower accumulated air-temperature
(AT) significantly, with the magnitude of —3.77 °C-a~! (Alpenrhein) and —3.99 °C-a~! (Drac).

Keywords: snow line dynamics; European mountains; ablation season; regional snow line elevation
(RSLE); regional snow line retreat curves (RSLRCs); M-estimation; Landsat; ASTER; Sentinel-2; time-series

1. Introduction

Snowmelt during ablation seasons is essential with regards to runoff generation, winter
sports/tourism, biodiversity, and natural disasters. Due to ongoing climate change, snowmelt
is undergoing significant spatiotemporal variations [1-4]. In the Northern Hemisphere, IPCC [5]
projected with a high confidence that snow cover area (SCA) thereof was continuously decreasing
during the ablation seasons, particularly in mid-latitude mountains [5,6]. In Europe, mountain areas
are one of the most climate-sensitive and vulnerable regions [7]. They are critical habitats and natural
water reservoirs and provide various ecosystem services and economic well-being. It should also be
noticed that the majority of the annual runoff in European mountain areas is snowmelt-dominated [8].
It is challenging to predict snow cover changes in mountain areas at a regional scale, given their
different responses to climate change in temperature and precipitation [5,9]. In these regards, in order
to better understand regional responses and support adaptation strategies in the context of climate
change, reliable information based on long-term time-series analysis of snowmelt processes during the
ablation seasons is important for researchers, decision-makers, and stakeholders.
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Earth Observation (EO) has a long history of application in snow monitoring. To date, different
EO techniques (e.g., optical, radar, passive microwave, altimetry) have provided a timely, promising,
and efficient approach to retrieve snow dynamics, including snowmelt processes [10]. Previous
studies characterized snowmelt processes with several spatial parameters: SCA [11,12], snow line
elevation (SLE) [13-15], or with temporal parameters: snowmelt onset (SMO) [3,16], snow cover
duration (SCD) [17,18], and snow persistence (SP) [19,20]. Besides, to further capture the spatiotemporal
dynamics of SCA throughout an ablation season, snow depletion curves (SDCs) are often utilized [21,22].
Moreover, SDCs can also be employed in calibrating hydrological models (e.g., snow runoff model,
SRM) with regards to discharge forecasting [23,24]. However, it remains challenging to perform
climate-change-related snow studies in complex terrains based on EO data, since long-term records
(>30 years) in detailed spatial resolution (<100 m) are often required [25,26]. To this end, EO is facing
a typical challenge regarding the trade-off between spatial and temporal resolution, since none of
the prevalently employed optical EO archives, i.e., Landsat, MODIS (moderate resolution imaging
spectroradiometer), Sentinel-2, or AVHRR (advanced very high resolution radiometer), could heretofore
satisfy such requirements for snow dynamics monitoring in European mountains.

To date, Landsat has the longest uninterrupted operation history, whose access became
free-of-charge since 2008 [27]. However, cloud obstruction and the near-two-week revisit time reduce
the density of the Landsat time-series, and make it challenging to monitor the long-term snow
dynamics in mountain areas solely using Landsat-based time-series. Firstly, cloud obstruction reduces
the number of valid pixels in Landsat scenes. To reduce the influence of this issue, regional snow
line elevation (RSLE) is introduced as an alternative to frequently-used SCA, since RSLE does not
require fully cloud-free imagery. RSLE is calculated from a dynamic statistical quantile of elevation of
snow/land pixels distribution [15]. Secondly, the near-two-week revisit time increases the uncertainty
in snowmelt observation, given that snowmelt is highly temporal dynamic and RSLE variation is not
always monotonous during an ablation season due to potential intermediate snowfall events. To deal
with this problem, accumulated air-temperature (AT), instead of date, is linked to snow dynamics
to generate modified snow depletion curves (MSDCs) [28]. It is because of the high likelihood that
the relationship between AT and snow dynamic metrics (e.g., SCA) during an ablation season is
monotonous. Ultimately, combining RSLE and MSDCs may provide a potential method to characterize
long-term snowmelt processes during ablation seasons in mountain areas.

The overall objective of the present study is to derive 35-year regional snow line dynamics during
the ablation seasons utilizing (semi-) high-resolution and free-of-charge optical dataset. For this
purpose, a readily applicable framework has been developed. The framework takes advantage of
the 30 m spatial resolution and more than three-decade observation history of the Landsat archive,
which is also the main data source for the present study. Since the Landsat archive alone is limited by
cloud obstruction, RSLE is used for deriving snow line information under partial cloud-covered scenes.
To reduce the effects of near-two-week revisit time, the time domain is replaced by AT to generate
regional snow line retreat curves (RSLRCs). Also, we combined Landsat observations with the images
acquired by optical sensors with similar configuration (i.e., advanced spaceborne thermal emission
and reflection radiometer, ASTER), to further densify the time-series. Finally, the obtained RSLRCs are
then used to illustrate the timing of the ablation season and the speed of regional snow line retreat in
relation to the air temperature.

2. Data and Study Areas

2.1. Satellite Data and Pre-Processing

In the present study, three different (semi-) high resolution and free-of-charge optical data (see
Table 1) are employed, i.e., (1) Landsat thematic mapper (TM), enhanced thematic mapper plus (ETM+),
operational land imager/thermal infrared sensor (OLI/TIRS) between 1984 and 2018; (2) ASTER
between 2000 and 2007 (since the ASTER/SWIR sensor was defected in late April, 2008, details see:
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https://asterweb.jpl.nasa.gov/swir-alert.asp); and (3) Sentinel-2A/2B multispectral instrument (MSI)
between 2015 and 2018. The processing levels of employed Landsat, ASTER, and Sentinel-2 products
are radiometrically calibrated and orthorectified (i.e., Landsat-L1TP, AST_L1T, and Sentinel-2-L1C).
To obtain physically comparable surface reflectance datasets, atmospheric corrections were performed
with ATCOR-3 [29] for each Landsat, ASTER, and Sentinel-2 scene. Topographic corrections were
also integrated into ATCOR-3 by employing slope and elevation information from the ASTER Global
Digital Elevation Model Version 2 (GDEM V2) [30]. In this study, Landsat and ASTER data are
used for analyzing long-term snow dynamics, since they are of a longer operational time span
than Sentinel-2. Whereas taking advantage of shorter revisit time of combining Sentinel 2A and 2B
data, the Sentinel-2 acquisitions have been used as an independent dataset for cross-validating the
Landsat/ASTER-based RSLRCs.

Table 1. Configurations of utilized bands of the selected earth observation (EO) sensors in this
study: Landsat thematic mapper (TM), enhanced thematic mapper plus (ETM+), operational land
imager/thermal infrared sensor (OLI/TIRS), advanced spaceborne thermal emission and reflection
radiometer (ASTER), and Sentinel-2 (52). CW stands for central wavelength in um, and SR stands for
spatial resolution in meters.

Sensor Landsat Sentinel-2 ASTER
TM/ETM+ CW SR OLTIRS CW SR S2 CW SR ASTER CW SR
Green 2 0.56 30 3 0.56 30 3 056 10 1 056 15
Red 3 0.66 30 4 0.66 30 4 0.67 10 2 066 15
NIR 4 0.83 30 5 0.87 30 8a 083 20 3N 082 15
SWIR 5 1.65 30 6 1.61 3 11 161 20 4 1.65 30
TIRS 6 114 60/120 10 109 100 13 106 90

2.2. Auxiliary Data

For the purpose of accuracy assessment, the snow cover classifications are compared with the
snow depth records from the National Oceanic and Atmospheric Administration - Global Historical
Climatology Network (NOAA-GHCN, https://www.ncdc.noaa.gov/ghcnd-data-access, accessed on
06 March 2019) and the European Climate Assessment & Dataset (ECA&D, https://www.ecad.eu/
dailydata/predefinedseries.php, accessed on 06 March 2019). Therein, the snow depth records between
1984 and 2018 originate from 65 meteorological stations within the selected study areas. Together
with the validated snow cover classification, elevation information is indispensable to determine the
RSLEs. The ASTER GDEM V2 [30] is hence employed to assess the statistical quantile of elevation
of snow/land pixels distribution for RSLEs derivation. To generate RSLRCs, 2 m air-temperature
reanalysis data between 1984 and 2018 are obtained from ERA-Interim [31]. Because glaciers influence
snow line dynamics at a regional scale, it is required to calibrate RSLRCs in glaciated regions with
the elevation information of the glacier(s). This elevation information is derived from the Randolph
Glacier Inventory (RGI) and the ASTER GDEM.

2.3. Study Areas

Snowmelt processes are investigated in 11 montane catchments distributed across the mid-latitude
European mountains (i.e., the Alps, the Carpathian Mountains, and the Pyrenees) during the ablation
seasons (April to June) between 1984 and 2018. The numbers of analyzed Landsat, ASTER, and Sentinel-2
scenes for each catchment are listed in Figure 1. It should be noticed that the horizontal overlapping
area of Landsat footprints is relatively large in mid-latitude regions, and the acquisition time difference
between the two horizontally adjacent Landsat scenes thereof is nearly one week. If the major part of a
catchment is within such an overlapping area, the data available in these catchments could be doubled.
On the other hand, for large catchments that span over several horizontal overlapping footprints,
it would be recommended to divide such catchments into sub-catchments. Otherwise, the mosaicked
images from the Landsat scenes acquired in a one-week time difference may create artifacts in the
retrieved snow dynamics.
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Figure 1. Overview of the study areas and number of available Landsat scenes from TM, ETM+,
OLI/TIRS, ASTER and Sentinel-2 multispectral instrument (MSI) between April and June (1984-2018).

3. Methods

The methods can be categorized into four main steps: (1) pre-processing, (2) snow classification,
(3) RSLE retrieval, and (4) RSLRC, as described in the corresponding subsections (Figure 2). In the first
step, 8641 satellite images were pre-processed, including 3903 Landsat, 726 ASTER, and 4012 Sentinel-2
images. Thereafter, the reflectance of the images was normalized. The pre-processed images were
then classified into four classes: snow, land, cloud, and water/shadow (Section 3.1). The classification
results were subsequently validated against the meteorological station observations. Based on the
validated classification results and the DEM, RSLEs were retrieved catchment-wisely according to the
elevation distribution of the snow and land pixels (Section 3.2). Afterward, the accuracy assessment
was performed based on two quality indices showing the percentage of valid pixels and erroneous
pixels. In the last subsection, RSLRCs were calculated by linking sigmoid-transformed Landsat- and
ASTER-derived RSLEs to the contemporary AT using linear regression. The results are cross-validated
against the corresponding Sentinel-2-based RSLRCs.
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Figure 2. Overall workflow for: (1) pre-processing, (2) snow classification, (3) RSLE retrieval, and (4)
RSLRC derivation.
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3.1. Snow Cover Classification and Validation

To classify snow cover, there are two main processing parts, i.e., using a decision tree based on
multiple thresholds to classify snow, and using masks (i.e., cloud mask, water mask, shadow mask
and/or thermal mask) to exclude misclassifications:

e  Snow classification: In this study, the algorithms developed by Klein et al. [32] and Poon and
Valeo [33] is employed to classify snow. The algorithm is based on a decision tree with multiple
thresholds on the normalized difference snow index (NDSI), the green band, and the near infra-red
(NIR) band. To detect snow in forested areas, the NDSI-NDVI (normalized difference vegetation
index) field is utilized to calibrate the snow cover classification results therein.

e  Cloud mask: Three different types of cloud masks are applied because of different designations of
Landsat, ASTER, and Sentinel-2. Firstly, the Mountainous Fmask (MFmask) [34-37] is deployed to
mask out the clouds in Landsat scenes. Secondly, “s2cloudless” is employed to exclude the clouds
in Sentinel-2 images, which is an automated single-scene pixel-based cloud detector developed by
the Sentinel Hub’s research team (available on GitHub: https://github.com/sentinel-hub/sentinel2-
cloud-detector, accessed on 06 March 2019). Thirdly, the automatic cloud cover assessment
(ACCA) [38,39] is applied to identify the clouds in ASTER scenes.

e  Water mask: High NDSI values usually indicate the presence of the snow in optical EO imagery.
However, such high NDSI values could also be observed in clear water bodies. Therefore,
water bodies must be masked out to avoid misclassification. Because the water bodies commonly
show positive normalized difference water index (NDWI) values, and the reflectance of water
bodies in the green band is relatively low, the water mask is generated based on thresholding
these two values.

e Shadow mask: Shadow-cast areas are normally treated as non-valid pixels. In this study,
the shadow pixels are identified following the methods from the ESA satellite snow product
intercomparison and evaluation exercise (SnowPEX) Team [40]. Thereafter, the shadow-cast pixels
are masked out in the snow cover results.

e  Thermal mask: Both Landsat and ASTER have thermal bands. To filter out bright and warm
surfaces such as warm rocks in the classification results, a thermal threshold (<288 K) introduced
by Metsdmaki et al. [41] is applied to Landsat- and ASTER-based snow classifications. Sentinel-2
does not have any thermal band, which could potentially commit more commission errors over
bright and warm targets.

The workflow chart is displayed in Figure 2, where snow classifier and masks are applied in
sequence to obtain snow classification results. Thereafter, the binary snow classification results are
validated using the contemporary NOAA-GHCN and ECA&D snow depth observations. The validation
is based on the snow depth threshold proposed by Parajka et al. [42], i.e., if the observed snow depth is
no less than 1 cm, the corresponding pixel is regarded as snow-covered, and vice versa.

3.2. Regional Snow Line Elevation Retrieval and Accuracy Assessment

The definition of the snow line elevation may vary according to objectives of the different
applications (e.g., geographical studies, meteorological studies, hydrological studies) as discussed by
Krajci et al. [15]. In this study, we used the term RSLE proposed by Kraj¢i et al. [15] that is originally
designed for remote sensing applications. RSLE is defined as the elevation where there are as few as
possible snow pixels below it, and as few as possible land pixels above it. Methodologically, RSLE can
be determined as the elevation where the minimum value of the sum of two cumulative histograms
(i.e., cumulative histogram of snow pixels elevations and land pixels elevations) is reached (Figure 3).


https://github.com/sentinel-hub/sentinel2-cloud-detector
https://github.com/sentinel-hub/sentinel2-cloud-detector

Remote Sens. 2019, 11, 933 6 of 21

o

&

Total Number of Land Pixels above the Elevation
Total Number of Snow Pixels below the Elevation
0
[}
X
o
k]
@
Q
£
]
z
Regional Snow Line

z

-3

o 1

Min RSLE Max
Elevation [m]

Figure 3. Estimation of regional snow line elevation (RSLE) from the combined cumulative histograms
of the snow-covered pixels (in blue) and land pixels (in orange). In the x-axis, N indicates that there
are N1 land pixels above the RSLE; (N-Nj) there are N; snow pixels below the RSLE, N, alone means
the sum of land pixels above the RSLE and snow pixels below the RSLE, and TP stands for the total
number of pixels.

To assess the accuracy of the retrieved RSLEs, two quality indices are introduced. The first quality
index is representativeness index (RI) measuring the percentage of valid pixels (i.e., labeled as snow or
land) within the spatial extent of a catchment. The calculation of Rl is expressed as:

_F+5

RI
TF’

)
where F and S are the number of snow-free and snow pixels within the catchment extent in classified
images. Tp, represents the total number of all the pixels (i.e., snow, land, cloud, water, and shadow)
within the corresponding catchment extent. The optimal RI value is 100%, which indicates that
there are no invalid pixels (i.e., cloud, shadow, water, missing value) within the catchment for RSLE
retrieval. The second quality index, error index (EI), measuring the percentage of erroneous pixels (i.e.,
the number of the snow pixels below the RSLE, noted as Sp, and the number of snow-free pixels above
the RSLE, noted as L,) according to the corresponding RSLE. EI can be calculated as:

Sb“‘ Lg

El =
Ty

@)

By definition, the obtained RSLE should result in as few erroneous pixels as possible. EI is
introduced as the ratio between the number of erroneous pixels and the total number of pixels (Tp),
hence the best EI value is 0%.

3.3. Regional Snow Line Retreat Curve (RSLRC) Derivation and Validation

Once the RSLEs during each ablation season are retrieved, RSLRCs can be calculated,
which describe the recession of the regional snow line over the ablation season. The RSLRC links the AT
and RSLEs using the robust M-estimation [43]. The typical shape of a RSLRC is sigmoid, and therefore
a logistic link function is firstly applied (Equation (3)). The robust regression is then implemented
using the ‘rlm’ library in R. The formulas of the RSLRC can be expressed by Equations (3)-(5):

RSLEmgx

RSLE; = 1+ kAT 4D

®)
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where the RSLE,;;x is the highest RSLE, which equals to the highest elevations from the DEM. In case
of the glaciated areas, RSLE,4y is estimated by the 95th percentile of the elevations in delineated glacier
outlines from the RGI. The slope (k) is always a negative value, whose absolute value represents
the steepness of the RSLRC. The ratio between the intercept (b) and —k (Equation (4)) is a coefficient
indicating the AT of the mid-ablation season (ATya, the mid-point of the RSLRC). The generalized
behavior of the RSLRC in relation to the coefficients is illustrated in Figure 4. AT; represents the AT
at the ith day within the ablation season, which is the integral of the daily temperature above the
base temperature (Ty) added by the AT from the previous month (ATy). This calibrates the shift of
consecutive temperatures below 0 °C at the beginning of an ablation season. In this study, AT; is
approximated by the daily average of four 2 m air-temperature measures at a 6-h interval, and the base
temperature is equal to the melting point 0 °C for snow/ice (Equation (5)).

£
@ 7
w
E End of the Ablation Season
e .
%) s
14
E
w
%) Middle of Snowmelt
N ,” Intercept |
i Slope 1
- —— Standard
------ Slope |
---- Intercept t
o i i 1
ATmln AT MA ATMA' ATMA" ATEA ATmax

Accumulated air-Temperature (AT) [°C]

Figure 4. Theoretical regional snow line retreat curve (RSLRC) based on the accumulated air-temperature
(AT) and RSLE. ATg, is the AT at the end of the ablation season, whose RSLE is the RSLE 5. ATpin and
ATmax are the minimum/maximum AT observed within the ablation season. ATya is the mid-point of
the RSLRC, which is the AT of mid-ablation season. The solid line represents the standard situation,
and the dash lines are the RSLRCs with different regression coefficients. The dash lines and dot-dash
lines represent the behaviors of the RSLRCs in different slope and intercept values.

To guarantee the quality of the input RSLESs, a threshold of RI > 20% has been set to filter out RSLE
results that may not be representative due to the lack of valid observations. Moreover, an end-ablation
snow line correction is involved in the processing chain. It detects all input RSLEs within the maximum
+ 10% of the elevation range in the catchments. If the number of end-ablation RSLEs is more than 80%
of the total observation amount, then the RSLRCs would not be generated as too few observations of
the regional snow line retreat are captured. If the number of end-ablation RSLEs is more than 50%
of the total observation amount, only half of the RLSEs are included in the RSLRCs. This is because
the breakdown point of the robust M-estimation is approximately 0.5, meaning more than 50% of
end-ablation RSLEs would provide erroneous weights to the observations.
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With regards to the accuracy assessment, the corrected coefficient of determination (corrected-R?)
for robust regression [44], mean absolute error (MAE) and root mean square error (RMSE) are
calculated to evaluate the retrieved RSLRCs. To date, since the Sentinel-2 data only cover the
ablation seasons 2016-2018, it does not bring a significant improvement to the 35-year time-series.
On the other hand, given that the Sentinel-2 archive has the best data availability within its available
years, Sentinel-2-derived RSLRCs constitute a valuable independent dataset to cross-validate the
Landsat/ASTER-derived RSLRCs.

4. Results

The present study aims to characterize regional snow line dynamics during the ablation seasons.
Within this context, two aspects of the regional snow line dynamics are presented in the following
subsections, i.e., intra-annual and inter-annual variations of regional snow lines. Also, a comprehensive
accuracy assessment is provided in the last subsection.

4.1. Intra-Annual Variations of Regional Snow Lines during the Ablation Season 2018

To demonstrate the intra-annual variations of the regional snow lines, RSLEs during the ablation
season 2018 are displayed in Figure 5. The RSLEs are derived from the Landsat OLI/TIRS and
ETM+ observations, representing the general situation when dual Landsat/ASTER sensors are in
orbit. Given that the acquisition dates of Landsat images vary spatially, an ablation season is divided
into nine categories (i.e., early/middle/end of April/May/June) in a 10-day time interval for better
demonstration. Moreover, to better visualize the spatiotemporal distribution of the RSLEs, an overview
of the Alpenrhein catchment is additionally illustrated in Figure 5. Spatially, in the northern Pyrenees
(i.e., Ariege) RSLEs are lower than in the southern part (i.e., Serge). Besides, the regional snow line in
the northern part of Pyrenees is preserved longer compared to the southern part. In the two Carpathian
catchments, particularly in Uzh, the RSLEs last much shorter than in other investigated catchments
during the ablation season 2018. In contrast, the regional snow lines are still preserved at the end of
the ablation season 2018 in most of the Alpine catchments.
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Figure 5. Snow lines based on RSLEs during the ablation season (April to June) 2018 within the
investigated catchments: (a) Adda, (b) Alpenrhein, (c) Drac, (d) Maira, (e) Salzach, (f) Tagliamento,
(g) Var, (h) Ariege, (i) Serge, (j) Tysa, and (k) Uzh. The right part is an overview of RSLEs in Alpenrhein.
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Regarding the temporal pattern, the occurrence of the reddish color indicates the snow line at
the end of the ablation season (i.e., the end of June), which should be located around the highest
elevation. Otherwise, once the regional snow lines in reddish color are located in lower elevation
zones compared with previous ones, it indicates the occurrence of an intermediate snowfall event.
Therefore, these results could help identify anomalies, such as intermediate snowfall events observed in
Figure 5, where reddish/yellowish regional snow lines are of lower elevation than bluish/greenish ones.
For example, the yellow-colored (end of May) regional snow line appears in Adda and Tagliamento,
and the coral-colored (end of June) regional snow line is observed within Uzh. In addition, within the
Carpathian region, regional snow lines are rarely observed at the end of the ablation season.

4.2. Inter-Annual Variations of Regional Snow Lines during the Ablation Seasons 1984-2018

To demonstrate the inter-annual regional snow line variations, the time-series of the ATys and
steepness from RSLRCs are shown in Figure 6 for each study area. In terms of the amount of the usable
RSLRC:s after the quality controls (Section 3.3), the Alpine catchments, as well as the northern Pyrenean
catchments, are of the highest RSLRC quantity (29 years in average). Fewer RSLRCs are available
for the catchments in the Carpathian Mountains and the southern Pyrenees (16 years on average).
RSLRCs’ scarcity appears mostly in the 1990s, particularly with the severest scarcity in the Carpathian
Mountains. With such few RSLRC results, it is difficult to carry out statistically trustable analysis.
Yet in most of the Alpine catchments and northern Pyrenean catchments, performing statistical analysis
is still feasible.

The steepness of the RSLRC represents the velocity of regional snow line retreat because the AT is
related to the day-of-year in the ablation season. Among the investigated catchments, only in Ariege
(in the northern Pyrenees) a statistically significant (p-value = 0.036) negative trend of the RSLRCs’
steepness has been observed, based on the 28-year observations. It indicates that the snow line is
retreating significantly faster in this northern Pyrenean catchment. The 35-year AT time-series (see
Figure 7) is indicating a tendency of increasing AT during the ablation seasons. It is thus also necessary
to investigate the timing of the snow-clearance process. ATy4 illustrates how much AT is required for
a regional snow line to reach the middle of the RSLE. Significant negative trends of ATyt are detected
in some Alpine catchments distant to the Mediterranean sea, i.e., Alpenrhein (p-value = 0.038) and
Drac (p-value = 0.052). It indicates that lower than 3.77 and 3.99 Celsius per year are needed for the
regional snow lines to reach the middle of the RSLRC in the Alpenrhein and Drac, respectively. As in
these two catchments, no significant trend of RSLRCs’ steepness is observed, it also suggests higher
RSLEs in early April, and the disappearance of snow line retreat occurs earlier.
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Figure 6. Steepness and accumulated air-temperature of the mid-ablation season (ATya) of the
RSLRCs of the investigated catchments: (a) Adda, (b) Alpenrhein, (c) Drac, (d) Maira, (e) Salzach,
(f) Tagliamento, (g) Var, (h) Ariege, (i) Serge, (j) Tysa, and (k) Uzh, between 1984 and 2018.
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Figure 7. Box-whisker plots presenting max, min, median as well as 25th and 75th percentiles of the
ATs between April and June of the investigated catchments (1984-2018): (a) Adda, (b) Alpenrhein,
(c) Drac, (d) Maira, (e) Salzach, (f) Tagliamento, (g) Var, (h) Ariege, (i) Serge, (j) Tysa, and (k) Uzh,
add by the AT in March for calibration purpose.

4.3. Accuracy Assessment

The uncertainties of the derived RSLRCs and the corresponding parameters are mainly caused and
propagated by four sources: (1) misclassifications in the SCA maps, (2) errors of the employed DEM,
(3) uncertainties of the RSLE results, and (4) imperfect model fit. Given that the accuracy of ASTER
GDEM has been reported by several previous studies (e.g., [30,45,46]) and would stay systematic in
the analyses, we only assess the three remaining error sources.
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4.3.1. Accuracy Assessment of the Snow Classification Results

The overall accuracy (OA) of the SCA maps has been reported as 96.71% and the Kappa coefficient
is 0.72, according to 7720 ECA&D and NOAA-GHCN snow depth observations. In addition, based on
the confusion matrix (Table 2), precision and recall are calculated. Precision equals to 83.25%, indicating
that 83.25% of the classified snow pixels are truly snow-covered. The recall is 65.41%, meaning that
65.41% of the snow-covered pixels have been detected. Regarding the accuracies of the SCA maps
derived from the acquisitions from different sensors, the OAs are reported as 94.38% (ASTER), 97.08%
(Landsat), and 95.22% (Sentinel-2).

Table 2. Confusion matrix relating satellite-derived snow classifications and ground snow-depth

observations.
Snow Depth Observations
Snow Snow-Free User’s Accuracy
Snow 348 70 83.25%
Classification Snow-free 184 7118 97.48%
Producer’s Accuracy 65.41% 99.02% OA =96.71%

4.3.2. Accuracy Assessment of the Regional Snow Line Elevations (RSLEs)

The accuracy assessment is implemented by investigating two quality indices (i.e., Rl and El in
Figure 8) introduced in Section 3.2. The median percentages of the valid pixels within each catchment
are above 60%, and the upper and lower quantiles thereof are near 90% and 40%, respectively. From the
boxplots of the Els, in general, the obtained RSLEs are of low (<5%) erroneous pixels percentage, i.e.,
the snow pixels below the corresponding RSLE and the land pixels above the corresponding RSLE.

Il
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Figure 8. Accuracy assessment of the retrieved RSLE per catchment: Adda, Alpenrhein, Drac, Maira,
Salzach, Tagliamento, Var, Ariege, Serge, Tysa, Uzh based on the representativeness index (RI) and
error index (EI).

4.3.3. Accuracy Assessment of the Regional Snow Line Retreat Curves (RSLRCs)

To assess the performance of the robust M-estimation of the derived RSLRCs, the corrected-R?
for robust estimation, MAE, and RMSE are calculated for each fitted RSLRC (Figure 9). The three
metrics summarize the fit of the RSLRC to the RSLE inputs. Within the Alpine catchments (excluding
Tagliamento), the median corrected-R? is around 0.90. Therein, more than 90% of the variance in
the RSLEs can be explained by the variation of AT. According to the median, the RSLRCs explain
approximately 10% less variation in the RSLEs in the Pyrenean catchments than the aforementioned
Alpine catchments. In the Carpathian Mountains and Tagliamento, most of the RSLRCs are only
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able to predict 65% of the RSLE variability according to their comparably small median corrected-R?
(near 65%). Apart from Maira, the upper-quantile, median, and low-quantile of MAEs are generally
below 30 m, 15 m, and 10 m, respectively. Most of the RMSEs are lower than 300 m. Maira is the
catchment showing a comparably higher MAE and RMSEs than the other investigated catchments.
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Figure 9. Accuracy assessment of the retrieved RSLRCs per catchment: Adda, Alpenrhein, Drac, Maira,
Salzach, Tagliamento,Var, Ariege, Serge, Tysa, Uzh based on the corrected coefficient of determination
(corrected-R?), mean absolute error (MAE), and root mean square error (RMSE).

To cross-validate the RSLRC steepness and ATyp obtained from the Landsat/ASTER-based
RSLRCs in the past 35 years, Sentinel-2 data are employed to calculate the contemporary RSLRC
steepness and ATy4 following the same workflow (Figure 2) between 2016 and 2018. The performance
of each RSLRC using cross-validation is displayed in Figure 10. The cross-validation shows a high
agreement between the RSLRCs calculated from Landsat/ASTER imagery and Sentinel-2 imagery.
Regarding the bias of the estimated RSLRC steepness, Landsat/ASTER has an approximately 2.5%
overestimation than the Sentinel-2. Yet near 3.5% underestimation is made by Landsat/ASTER-derived
RSLRCs with regard to ATya. The coefficient of correlation (r) regarding the RSLRC steepness
and ATysa between Landsat/ASTER-based RSLRCs and Sentinel-2-based RSLRCs are 0.75 and 0.88,
respectively, indicating a good agreement.
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Figure 10. Comparison of estimated steepness of the RSLRCs and the ATyp obtained from
Landsat/ASTER imagery and Sentinel-2 imagery.
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5. Discussion

In this section, we first discuss the challenges in accurately deriving RSLEs and RSLRCs with
regards to data availability, data reliability, and method efficiency. Afterward, the limitations and
difficulties concerning the validation data and validation scheme are summarized. Lastly, we discuss
the observed regional snow line variations and the potential applications of our results.

5.1. Challenges in Accurately Deriving Regional Snow Line Elevations (RSLEs) and Regional Snow Line
Retreat Curves (RSLRCs)

The uncertainties of the retrieved RSLEs mainly come from the accuracies of snow classifications
and the involved DEM. The accuracies of snow classifications are affected by 1) cloud contamination,
2) signal saturation, 3) thermal-band absence, and 4) snow-in-forest detection. Among these factors,
cloud contamination is the most influential. Commission errors are often recognized over bright targets
including snow/ice [39,47,48] when applying the cloud masks (e.g., MFmask, ACCA). The misclassified
pixels near the snow lines could potentially bias the statistics/distribution of the combined cumulative
histograms of the snow and land pixels (Figure 3). Signal saturation (e.g., in Landsat 4/5 TM, Landsat
7 ETM+, ASTER [49,50]) could lead to poor accuracy in snow classification because the visible
bands are often used to separate snow/cloud from other bright surfaces [51]. It is in line with the
accuracy assessment results in Section 4.3.1. Moreover, it should be noticed that the thermal band
is absent in Sentinel-2 data. It potentially leads to more commission errors when detecting snow
in regions surrounded by warm bright land covers. Besides, detecting snow-in-forest using optical
satellite data is challenging, since forest canopy covers up the snow beneath and casts shadow on
its surroundings [32,52]. Obtaining accurate DEM in mountain areas are problematic for either
interferometric method or photogrammetric method based on spaceborne satellite data. Often,
the correlation algorithm for photogrammetric DEM generation fails over snow-covered areas [53,54],
while an interferometric DEM has the problems of the voids in the original data [55]. In the present study,
the errors induced by the employed DEM stay systematic, since they are largely counteracted. Given that
airborne LiDAR can produce a DEM with high accuracy, further studies with regards to accuracy
improvement should consider airborne LiDAR DEMs as valuable alternatives to interferometric or
photogrammetric DEMs.

The accuracies of the derived RSLRCs depend on the availability and the representativeness of
the input RLSE data, as well as the efficiency of the regression model. Data availability of spaceborne
optical images varies spatiotemporally (especially in high mountain regions), due to cloud cover,
acquisition plans (e.g., “commercialization era” [56]), sensor anomalies (e.g., Landsat 7 ETM+ SLC-off
issue [57]) and footprint patterns [13]. Therein, cloud obstruction is the major issue, as clouds usually
persist for a long time during the winter in European mountains. The resultant missing observations
lead to the failure in RSLRC derivation, as shown in Figure 6. Moreover, footprint pattern is strongly
influencing the data availability at a catchment scale. Taking Landsat as an example, the acquisition
date difference of two horizontally adjacent footprints is often one week, thus data availability therein
can be potentially doubled. In terms of the representativeness of the input data, apart from the
accuracy of input RSLEs (Section 5.1), the accuracy of RSLRCs is also associated to the intermediate
snowfall events, which create anomalously low RSLEs that are often treated as the ‘outliers’ in the
RSLRCs. Since there is a high probability of intermediate snowfall events during accumulation seasons
and the beginning of the ablation seasons, the present method is more suitable for middle-to-late
ablation seasons. Furthermore, the heterogeneous geographical settings (e.g., aspects, solar irradiation,
slopes, climate characteristics) are influential, as RSLEs are regional products. However, due to cloud
cover, splitting a catchment into several sub-zones can result in insufficient cloud-free pixels for RSLE
derivation, especially around the cloud-prone windward slopes. Regarding the representativeness of
the climate reanalysis data, the original spatial resolution of the applied ERA-Interim is 80 km. It can
potentially induce problems for catchments with a large proportion of plain areas (e.g., Maira catchment)
because the obtained AT is, in fact, more representative for the snow-free areas. Such coarse resolution
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also results in the omission of temperature variation in complex terrains. Further researches employing
higher resolution climate reanalysis data, e.g., ERA-5 reanalysis dataset (32 km), COSMO-REAG®6 (6 km),
COSMO-REA2? (2 km), are desirable. Noteworthily, these higher resolution climate reanalysis data are
often only available for a limited time or spatial extent.

It must be noticed that the main objective of generating RSLRCs in the present study is not to
predict intermediate RSLEs between two ATs (or two dates), but rather to characterize the regional snow
line behavior during an ablation season. Therefore, the most crucial aspects of the regression models
are breakdown point and goodness of model fit. Robust regression models (i.e., robust M-estimation)
often have a higher breakdown point, meaning they could handle a larger amount of contaminated
observations (e.g., RSLEs after an intermediate snowfall event) than conventional ordinary least squares
(OLS) regression. Therefore, they can reduce the influences of high leverage outliers (e.g., intermediate
snowfall events), and avoid biased-steepness from the logistic curve. In addition, to further alleviate
the impacts of intermediate snowfall and temperature anomalies, the time-domain in RSLRCs is
replaced by AT. To eliminate contaminated input data, RSLEs are filtered based on RI. To address the
second concern (i.e., the goodness of model fit), a threshold of corrected-R? > 0.4 is chosen to exclude
the RSLRCs that predict less than 40% of the variability of the regional snow line retreat. Section 4.3.3
further confirms that the involved RSLRCs are mostly of a corrected-R? > 0.85 in Alpine catchments,
indicating a good fit of the applied regression models. Given that it is not appropriate to evaluate the
model fit solely with the coefficient of determination, we have processed the Sentinel-2 time-series in
the last three years to carry out a cross-validation to check the robustness of the RSLRCs. The high
agreement between Sentinel-2-based and Landsat-based RSLRCs indicates that the method is valid for
catchments where RSLRCs can be obtained under the abovementioned constraints.

5.2. Challenges of Validation

Validating long-term RSLEs and RSLRCs from (semi-) high-resolution optical satellite data is
extremely challenging due to the lack of data and validation techniques. Conventionally, the validation
of snow-related products can be realized using field measurements or satellite data of higher resolution.
For instance, Kraj¢i et al. [15] combined the automatic weather station (AWS) with snowfield
measurements to validate the MODIS-derived RSLE results. However, the elevation interval is
100 m and the study area is regional. For a larger spatial extent and finer resolution, a considerable
amount of field measurements are required, which is unpractical due to intensive labor and material
requirements and low accessibility in mountain areas. In addition, meteorological station data may not
be dense enough to validate RSLEs results retrieved from (semi-) high-resolution data. Also, neither
historical field measurements nor meteorological station data can reach back to 1980s. Regarding the
satellite data with higher spatial resolution, the drawbacks are: (1) they are usually not free-of-charge;
(2) they only have visible/near-infrared (Vis/NIR) or even only visible bands, leading to great difficulties
to separate snow and other bright targets; (3) The swath is much smaller than a Landsat footprint;
(4) The satellite often follows an acquisition request and the revisit-time is much longer than Landsat;
(5) the operational time-span rarely reaches back to 1980s. More importantly, such data are often
acquired by optical sensors, which would have relatively similar cloud obstruction at a catchment
extent at the same time. Therefore, the uncertainties below the cloud can be hardly revealed by
such dataset.

Unmanned aerial vehicle (UAV) imagery is a potential dataset to validate the RSLE and RSLRC
results independent of cloud obscurations. UAVs are flexible to deploy in the aspects of mounted
sensors (e.g., multispectral, hyperspectral, thermal, microwave, LIDAR), acquisition date, and operation
periods. The spatial resolution of UAV images is often higher than those acquired by satellites. Therefore,
UAYV imagery holds a great potential to provide highly detailed information about the snow cover,
especially for cloud-covered areas. Alternatively, WebCAM data have the advantages of (1) cloud
cover independence, (2) low-cost, (3) very high observation interval, and (4) relatively long history
in observing some mountain regions. Apart from a relatively high demand in pre-processing, it is



Remote Sens. 2019, 11, 933 16 of 21

so far a unique potential dataset for validation. To homogenously produce such a WebCAM dataset,
it requires a great collaboration among countries and institutes. Besides, spaceborne synthetic aperture
radar (SAR) data can penetrate the cloud cover, thus revealing the snow cover condition under the
clouds. Based on the current method [58-60], total snow cover areas could be derived from the SAR
observation with an accuracy of up to 98.1%. However, due to the data access policy, it would be very
costly to apply for these data for long-term research at a large spatial scale.

It should be noticed that the present work provides an exploratory framework to produce a
long-term and (semi-) high-resolution-based snow line product with a fundamental validation process.
We have noticed that the presented validation scheme is imperfect, but it is the maximum of what
researchers can do using the free-accessible data. In this context, further studies in relation to the
validation are urgently desirable.

5.3. Observed Regional Snow Lines Dynamics

In term of the intra-annual variations, the RLSEs between April and June illustrate the snow
clearance in the studied catchments during the ablation season 2018. However, the number of retrieved
RSLEs strongly depends on the elevation range and the number of valid pixels. In some catchments,
the number of RSLE observations is limited, particularly in the Carpathian Mountains. Taking the
Carpathian catchment Uzh as an example, its maximum elevation is around 1500 m while the elevations
of the rest catchments range from 2200 m to 4100 m. The regional snow lines are seldom persevered
after May in Uzh, due to such relatively low maximum elevation. Although it would be logical to
switch the observation period towards mid-winter, the chance of intermediate snowfall events is high
during that time, leading to very high uncertainty. Also, the high cloud persistence in mid-winter [13]
would further decrease the data usability. Thus, for such catchment of lower elevation, the method
is not well-suited. Meanwhile, as presented in Section 4.1, we have identified intermediate snowfall
events in three catchments: Adda (end-of-May), Tagliamento (end-of-May), and Uzh (end-of June).
To confirm these three observed snowfall events, we have checked the SCA conditions from global
snow pack (GSP), a MODIS-based daily gap-filled SCA product [56], at a catchment scale. From GSP
results, three snowfall events have been confirmed.

Inter-annual variations results indicate that there is a significant negative trend of the regional
snow line retreat in the northern Pyrenean catchment Ariege. In the context of the increasing AT,
it would result in a shortened ablation season, which is in line with the results from Buisan et al. [57].
On the other hand, temporal shifts of RSLRCs have been observed. Based on our linear trend
analysis on ATyq4, there are significant negative trends in the Alpine catchment Alpenrhein and Drac.
It indicates a tendency of a shortened ablation season, and higher RSLEs in April. The results are in
line with previous studies [16,61,62]. Meanwhile, we discovered an obvious RSLRC scarcity in the
Carpathian catchments compared to the other investigated catchments. It indicates that our method
is not well-suited for deriving RSLRCs for the Carpathian Mountains, as the robust M-estimation
failed to predict the majority of the regional snow line recession represented by the low corrected-R?
values. There are two main reasons, i.e., insufficient valid RSLE inputs and intermediate snowfall
events [13]. Besides, snow can be completely melted in the early months due to the low maximum
elevation. The factors above make the RSLEs noisy and difficult to fit by a simple curve.

The presented results can be further used in applications with regards to snow cover phenology,
climate change, winter tourism/sport, as well as flora and fauna. Snow cover phenology is a vital
perspective of snow cover dynamics, which includes snow accumulation onset (SAO), snowmelt onset
(SMO), snowmelt end (SME), snow cover duration, to name a few. However, given the revisit time
and intermediate snowfall event occurrence, (semi-) high-resolution optical EO sensors like Landsat
is rather for monitoring snow dynamics in middle-to-late ablation season. Since RSLEs indicate
the spatial snow cover in the altitudinal direction, it could better illustrate the dynamics of snow
clearance rather than the whole snowmelt process. This is because of the lower snowfall frequency and
cloud coverage in the late ablation season. Furthermore, quantitate analyses linking RSLE dynamics
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with other ECVs is beneficial to enhance the comprehension of regional response climate change.
Thereby, better adaptation strategies could be made accordingly. Snowmelt run-off is vital to water
management and disaster warning in snowmelt-dominant catchments. Run-off can be predicted by
calibrating hydrological models using spatial snow coverage derived from the RSLRCs. It would be
intriguing to compare the performance using (semi-) high-resolution-based snow information and
medium-resolution-based information [63] in mountain areas. Winter tourism/sport management
requires detailed spatial snow cover data for hiking routine planning, artificial snow planning, as well
as the operation period length. Flora and fauna in high mid-latitude mountain regions are influenced
by the snowline dynamics. The spatiotemporal snow dynamics affect the plant phenology [64-66],
and animal activity [67-69].

6. Summary and Conclusions

This paper presents a readily applicable framework for retrieving regional snow line elevations
(RSLEs) and their dynamics based on free-of-charge optical remote sensing and climate reanalysis
datasets. Snow cover areas (SCAs) are firstly classified using a multi-threshold decision tree and
corrected with cloud/shadow/water/thermal masks. The overall accuracy of the SCA results are around
96.71% according to 7720 meteorological snow-depth observations. The RSLEs are subsequently
determined by the spatial distribution of the classified snow-covered and snow-free areas. The majority
of the RSLEs are based on satellite images with more than 60% valid pixels (cloud-free and non-shadow)
and are representative (>95% of the snow/land pixels) of the spatial distribution of snow in the altitudinal
direction. Then the RSLEs are combined with accumulated air-temperatures (AT) to derive regional
snow line retreat curves (RSLRCs) in a sigmoid shape. Based on the robust M-estimation, the RSLRC
steepness and ATys (AT of mid-ablation season) are derived to characterize the regional snow line
dynamics during the ablation seasons 1984-2018. The applied robust M-estimation models predict
approximately 90% (Alps), 80% (Pyrenees), and 65% (Carpathian Mountains) of the regional snow
line retreat variations during the ablation seasons 1984-2018, according to the corrected coefficients of
determination. Finally, the Landsat-derived results are cross-validated against the Sentinel-2-derived
RSLRCs (2016-2018). The cross-validation shows that the Landsat-derived RSLRC steepness and ATya
have only 2.5% overestimation and 3.5% underestimation, respectively, indicating good agreement
with those derived from Sentinel-2 (r = 0.75 for the RSLRC steepness, r = 0.88 for ATyja).

This framework has been applied to 11 mid-latitude catchments in Europe. The results with
regards to the intra-annual variation illustrate the recession of the regional snow line during the ablation
season. The highest RSLRC quantity (29 years in average) is obtained in the investigated Alpine and
northern Pyrenean catchments. The missing RSLRCs occur mostly in the 1990s, particularly in the
Carpathian Mountains. Regarding the intra-annual variations, the results show that: (1) The Alpine
catchments preserve regional snow lines longer than the other investigated catchments; (2) RSLEs are
lower in the northern Pyrenees than in the southern part; (3) RSLEs last the shortest in the Carpathian
catchments; and (4) intermediate snowfall events occurred in Adda and Tagliamento during the end of
May 2018, and in Uzh during the end of June 2018. Meanwhile, significantly (p-value = 0.036) fastened
snow line retreat is detected in the northern Pyrenean catchment Ariege. In the Alpine catchment
Alpenrhein and Drac, there are statistically significant trends of the RSLRC shift towards lower AT,
in the magnitude of —3.77 °C-a~! (Alpenrhein) and -3.99 °C-a~! (Drac).

The applicability of the presented framework is mainly constrained by data availability
and intermediate snowfall events. The framework performs well in the Alpine catchments but
problematically in the Carpathian catchments, where historical cloud-free Landsat data are scarce,
and intermediate snowfall events occur frequently. The sparse observations and weak model
performance also lead to difficulties in interpreting the statistical results. To address these problems,
the next step would be to increase the number of EO data, and to involve climate reanalysis data
with improved spatial resolution. The introduced RSLRCs are able to ingest snow classification
results from other optical sensors, e.g., CBERS (China—-Brazil Earth Resources Satellite program), SPOT
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(Satellite Pour I’Observation de la Terre), IKONOS; and SAR (synthetic aperture radar) sensors, e.g.,
ERS (European remote sensing satellites), Envisat-ASAR, Sentinel-1. Therefore, further studies of
ingesting such datasets could improve the data availability, and reduce the impacts of cloud obscuration.
Also, SAR could provide additional information about the snow cover, e.g., snow wetness, snow depth,
snow water equivalent [70,71]. Such information is beneficial for advancing the comprehension with
regards to regional snow line dynamics during ablation seasons. Besides, to account for more detailed
spatial temperature information, the ERA-5 reanalysis dataset (32 km), COSMO-REA6 (6 km) and
COSMO-REA2? (2 km) could be explored. Last but not least, the validation scheme could be improved
using UAV (Unmanned Aerial Vehicle) and WebCAM data.
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