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Abstract: Accurate estimates of growth and structural changes are key for forest management tasks
such as determination of optimal rotation times, optimal rotation times, site indices and for identifying
areas experiencing difficulties to regenerate. Estimation of structural changes, especially for biomass,
is also key to quantify greenhouse gas (GHG) emissions/sequestration. We compared two different
modeling strategies to estimate changes in V, BA and B, at three different spatial aggregation levels
using auxiliary information from two light detection and ranging (LiDAR) flights. The study area is
Blacks Mountains Experimental Forest, a ponderosa pine dominated forest in Northern California for
which two LiDAR acquisitions separated by six years were available. Analyzed strategies consisted
of (1) directly modeling the observed changes as a function of the LiDAR auxiliary information
(δ-modeling method) and (2) modeling V, BA and B at two different points in time, including a
term to account for the temporal correlation, and then computing the changes as the difference
between the predicted values of V, BA and B for time two and time one. We analyzed predictions and
measures of uncertainty at three different level of aggregation (i.e., pixels, stands or compartments
and the entire study area). Results showed that changes were very weakly correlated with the LiDAR
auxiliary information. Both modeling alternatives provided similar results with a better performance
of the δ-modeling for the entire study area; however, this method also showed some inconsistencies
and seemed to be very prone to extrapolation problems. The y-modeling method, which seems to
be less prone to extrapolation problems, allows obtaining more outputs that are flexible and can
outperform the δ-modeling method at the stand level. The weak correlation between changes in
structural attributes and LiDAR auxiliary information indicates that pixel-level maps have very
large uncertainties and estimation of change clearly requires some degree of spatial aggregation;
additionally, in similar environments, it might be necessary to increase the time lapse between LiDAR
acquisitions to obtain reliable estimates of change.
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Remote Sens. 2019, 11, 923; doi:10.3390/rs11080923 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-2980-6860
https://orcid.org/0000-0001-7480-1458
http://dx.doi.org/10.3390/rs11080923
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/8/923?type=check_update&version=3


Remote Sens. 2019, 11, 923 2 of 31

1. Introduction

Light detection and ranging LiDAR data have been extensively used in forest inventories to
provide auxiliary information that is highly correlated with multiple forest structural attributes [1–3].
This strong correlation allows estimating forest structural attributes more efficiently than if only field
measurements are available [4]. In addition, the spatially explicit nature of LiDAR enables the mapping
of forest attributes at fine resolutions (e.g., [2,5]). Accurate estimates of growth and structural changes
are key for forest management as multiple management tasks such as determination of optimal rotation
times, calculation of site indexes or the identification of areas experiencing difficulties in regeneration.
Estimation of biomass is also key to quantifying greenhouse gas (GHG) emissions/sequestration,
to comply with the International Panel on Climate Change (IPCC) reporting and good practice
guidelines [6], and to develop a correct appraisal of forest resources for carbon markets. The extensively
used area based approach (ABA) [1] provides a way to estimate forest attributes at multiple levels
ranging from single pixels to large areas using LiDAR auxiliary information [7]. Availability of repeated
LiDAR data acquisitions has opened the door to estimation of changes in forest structural attributes
over time (e.g., [8,9]) using the ABA method.

In the ABA, the area under study is covered by a regular grid that will define a population of
pixels or grid cells. In this approach, the field plots used to train models and the grid cells are of the
same size, typically between 400 m2 and 900 m2. A direct application of predictive models will render
predictions for grid units of size too small to be considered of interest for reporting in forest inventories.
Areas of interest (AOIs) (i.e., the areas for which estimates are needed) are typically geographic units
that can vary in size depending on the particular application. For worldwide inventories or inventories
over continents or countries, AOIs are typically administrative or political units such as countries or
municipalities. In forest management applications, AOIs are typically stands, compartments or even
complete forests or landscapes. All these AOIs require spatial aggregation of grid units. However,
validations of predictive models in the ABA literature are typically performed using global metrics of
model fit, such as the sample-based root mean square error or bias, that provide average measures
of uncertainty for predictions made for pixels or plots. These measures of uncertainty derived from
the model fitting stage do not directly translate into measures of uncertainty for predictions for AOIs
composed of multiple pixels (i.e., countries, municipalities, forests, stands, etc.). In addition, even when
considering single pixels, they are not AOI-specific, as they only provide an average value, across the
entire population, of the error that can be expected using a given model.

Thus, it is clear that uncertainty measures used as quality controls in forest inventories need to
be made at the AOI-level and change estimation is not an exception. For large areas holding large
sample sizes, AOI-specific estimates of means or totals and their measures of uncertainty can be
obtained using direct estimators (e.g., [10–12]) that use only use sample data from the AOI under
consideration. However, if the AOI sample sizes are not large enough to support direct estimates with
reliable precision, then they must be regarded as small areas [13].

Small area estimation (SAE) techniques, especially empirical best linear unbiased predictors
(EBLUPs) in combination with the ABA approach have been used to obtain estimates, and their
corresponding measures of uncertainty for subpopulations such as municipalities [14], groups or
management units [15] and stands [4,14,16,17]. SAE techniques allow correcting the potential bias
problems of synthetic predictions (i.e., predictions developed assuming that a general model developed
at the population level holds for all subpopulations) and also permit reducing the large variance
problems of direct estimators when AOIs sample sizes are small [13]. In addition, while EBLUPs have
been extensively used in SAE contexts, they can also be used to produce estimates for subpopulations or
AOIs with large sample sizes and preserve important advantages over other methods. First, they allow
obtaining model-unbiased estimates and their corresponding measures of uncertainty for all AOIs
using a single model that explicitly considers potential variations between AOIs. This is a clear
advantage over synthetic methods that assume that a certain relation derived for the entire population
holds in all AOIs. A second advantage of EBLUPs is that it is possible to reduce the modeling effort
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required by direct model-based or model-assisted methods where a model is needed for each AOI.
It is thus clear that SAE techniques in combination with LiDAR auxiliary information have potential
applications in multiple forest inventories contexts. Unfortunately, to the best of our knowledge,
all studies on SAE and forest inventories have focused on estimation of structural attributes at a given
point in time, and little is known about: (1) their performance when applied to forest structure change
estimation, and (2) about how these techniques compare to other methods used for estimation of
changes in AOIs comprising entire populations [10,12,18,19] and especially subpopulations [20].

In this study, we analyzed the two most commonly used strategies to model changes in structural
forest attributes using repeated LiDAR acquisitions, and analyzed their performance when used to
obtain EBLUPs for AOIs of different size. The first strategy, referred hereafter as the δ-modeling method,
considers the change, δ, over the time between LiDAR acquisitions as the model response. The second
strategy, which we will call y-modeling method, focuses on modeling the structural attributes y,
and their derived change over time. As a novelty, in the y-modeling method, the temporal correlation
of both model errors and AOI random effects were taken into account. We considered changes in
three structural variables, and AOIs at three different spatial aggregation levels in order to provide
insights for future applications where estimates for an entire population and for subpopulations of
different sizes are needed. Variables under study are standing volume (V), above ground biomass
(B) and basal area (BA) and AOIs subject to analysis are (1) an entire forested area or landscape,
(2) subpopulations that in this case are forest stands and (3) pixels as gridded maps are common output
in mapping applications.

2. Materials and Methods

2.1. Study Area

The study area is Blacks Mountains Experimental Forest (BMEF), a 3715 ha forest managed by the
United States Forest Service, located northeast of Lassen National Park in northern California, USA
(Figure 1). Elevation ranges from 1700 m to 2100 m above sea level. Slopes are gentle (<10%) on the
lower parts of the forest and moderate (10%–40%) at higher elevations. Climate is Mediterranean with
a certain degree of continentality, with dry summers and wet and cold winters when precipitation is
in the form of snow. Average precipitation is 460 mm per year with monthly average temperatures
that range from −9 ◦C to 29 ◦C. Soils are developed over basalts with depths that range from 1 to 3
m. Ponderosa pine (Pinus ponderosa Lawson & C. Lawson) dominated forest occupies the majority of
the area. Incense cedar (Calocedrus decurrens (Torr.) Florin), white fir (Abies concolor (Gordon & Glend)
Hildebr) and Jeffrey Pine (Pinus jeffreyi Grev & Balf.) are abundant accompanying species. Forest
structure is relatively open and the canopy cover varies greatly within the forest (see Figure 1). A more
detailed description of the study area can be found in [21,22].
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Figure 1. Study area location map, delineated stands and field plots, and detailed diagram showing 
the light detection and ranging LiDAR field plots grid over the permanent Blacks Mountains 
Experimental Forest (BMEF) grid of permanent makers. 

2.2. Sampling Design and Field Data  

In total, 106 forested stands were delineated in BMEF. Small non-forested patches were masked 
in the study area and hence were not considered part of the population under study. Out of the 106 
forested stands, 24 were selected and sampled in the field. Nine of the remaining 82 unsampled 
stands were subject to thinning during the period between two available LiDAR acquisitions (i.e., 
2009–2015) and all thinning operations were finished by fall 2011. These nine stands are located on 
the southwestern edge of BMEF and were analyzed separately because the sample of field plots used 
to train the LiDAR models did not include any stand subject to similar silvicultural interventions 
(Figure 1). Sampled stands come from a long-term research project initiated in BMEF in 1991 and, 
excluding the nine thinned stands, were representative of the forest structures and forest 
management treatments applied in rest of BMEF. 

Sampled stands were subject to six different types of treatments resulting from crossing two 
different factors. The first factor is the structural diversity. It has three levels referred hereafter as 
low structural diversity (LoD), high structural diversity (HiD) and research natural areas, RNA, or 
controls. Low structural diversity stands are subject to thinning operations aiming to generate 
simplified single-strata structures. High diversity stands are subject to thinning where all canopy 
layers and age groups are preserved, resulting in a multi-storied forest structure with trees of 
different sizes and ages. Neither the HiD stands nor the LoD stands were subject to thinnings during 
the period between the two available LiDAR flights. Finally, RNA stands are not subject to any 
thinning or harvest operation. In total, 10 LoD, 12 HiD and two RNA stands were measured in the 
field. The second factor under consideration was the presence or absence of prescribed forest fires. 
Half of the LoD, HiD and RNA stands sampled in the field had been subject to prescribed fires, but 
only one of the RNA stands was subject to prescribed fires during the period 2009–2015. 

Figure 1. Study area location map, delineated stands and field plots, and detailed diagram showing the
light detection and ranging LiDAR field plots grid over the permanent Blacks Mountains Experimental
Forest (BMEF) grid of permanent makers.

2.2. Sampling Design and Field Data

In total, 106 forested stands were delineated in BMEF. Small non-forested patches were masked
in the study area and hence were not considered part of the population under study. Out of the 106
forested stands, 24 were selected and sampled in the field. Nine of the remaining 82 unsampled
stands were subject to thinning during the period between two available LiDAR acquisitions (i.e.,
2009–2015) and all thinning operations were finished by fall 2011. These nine stands are located on
the southwestern edge of BMEF and were analyzed separately because the sample of field plots used
to train the LiDAR models did not include any stand subject to similar silvicultural interventions
(Figure 1). Sampled stands come from a long-term research project initiated in BMEF in 1991 and,
excluding the nine thinned stands, were representative of the forest structures and forest management
treatments applied in rest of BMEF.

Sampled stands were subject to six different types of treatments resulting from crossing two
different factors. The first factor is the structural diversity. It has three levels referred hereafter
as low structural diversity (LoD), high structural diversity (HiD) and research natural areas, RNA,
or controls. Low structural diversity stands are subject to thinning operations aiming to generate
simplified single-strata structures. High diversity stands are subject to thinning where all canopy
layers and age groups are preserved, resulting in a multi-storied forest structure with trees of different
sizes and ages. Neither the HiD stands nor the LoD stands were subject to thinnings during the period
between the two available LiDAR flights. Finally, RNA stands are not subject to any thinning or harvest
operation. In total, 10 LoD, 12 HiD and two RNA stands were measured in the field. The second factor
under consideration was the presence or absence of prescribed forest fires. Half of the LoD, HiD and
RNA stands sampled in the field had been subject to prescribed fires, but only one of the RNA stands
was subject to prescribed fires during the period 2009–2015.
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A sample of 151, 16 m radius plots (804 m2) were measured in the field during the summer of 2009
and then remeasured during the summer of 2016. All field plots were located on nodes of the 100 m
by 100 m grid of monumented markers at BMEF. Coordinates of the makers were determined using
traverse methods and survey grade GPS observations and have an accuracy of 15 cm or better (see [23]).
For each of the 26 stands selected for sampling, a node of the BMEF 100 m grid was randomly selected
and used as a starting node for a 282 m by 282 m grid formed by selecting every other plot of the 100 m
grid moving in the diagonal directions. Field measurements were taken on the nodes of the 282 m by
282 m grid (see Figure 1).

Within each field plot all live trees with DBH larger than 9 cm, and all dead standing trees with
DBH larger than 12 cm, were stem mapped and measured for DBH and height. Plot basal area (BA)
was derived directly from the field measurements. Volume (V) and above ground biomass (B) were
computed as the sum of the individual tree volumes and biomasses of all standing trees. Individual
tree volumes and biomasses were estimated using species-specific allometric models included in the
national volume estimation library (NVEL) and in the national biomass estimation library (NBEL).
To account for the one-year difference between acquisition of field measurements in 2016, and the
second LiDAR data acquisition obtained in 2015; plot-level values of the variables under analysis were
computed for 2015 by linearly interpolating between the values obtained for 2009 and 2016. Finally,
for each field plot we computed the change of V, B and BA on a per year basis, as the difference of
the plot-level values in 2009 and 2015 divided by 6. For two plots close to the southeastern boundary
of the forest, changes in V were extremely large, more than three standard deviations away from the
mean value for the change in volume. These anomalous plots were removed from the analysis because
such large changes seemed to be derived from edge effects. Plot-level values for 2009, 2016 and per
year increments for the period, 2009-2015, for V, B and BA, in the remaining 149 plots are summarized
in Table 1.

Table 1. Minimum (Min), mean (Mean), standard deviation (Sd), and maximum (Max) of the plot-level
values for 2009, 2015 and yearly increments for the period 2009–2015. Values of volume V, basal area
BA and biomass B are expressed on a per-hectare basis.

Variable (Units) Period Min Mean Sd Max

V(m3 ha−1)
2009

19.87 166.93 119.66 619.43
BA(m2 ha−1) 3.81 23.43 12.02 66.54
B(Mg ha−1) 8.31 83.65 61.55 323.30

V(m3 ha−1)
2015

17.20 175.52 117.04 644.30
BA(m2 ha−1) 3.42 25.45 12.01 67.47
B(Mg ha−1) 8.34 89.38 60.29 335.03

V(m3 ha−1year−1)
Increment
2009–2015

−10.89 1.43 3.88 11.19
BA(m2 ha−1year−1) −0.91 0.34 0.45 1.74
B(Mg ha−1year−1) −5.81 0.95 1.97 5.99

For the nine unsampled stands thinned during the period 2009–2015 all thinning operations were
completed by fall 2011. In total 427.40 hectares were thinned with prescriptions that varied among
stands. Approximately 80% of the area was thinned from below, leaving a residual basal area of
17.22 m2 ha−1 to 25.25 m2 ha−1. For the remaining 20% of the area, approximately one quarter was not
thinned while the other three quarters were thinned to a residual BA that ranged from 6.89 m2 ha−1

to 13.77 m2 ha−1. Fresh weight of total extractions for the 427.40 hectares subject to thinning was
11,009.38 Mg of logs and 23,164.32 Mg of chipped material.

2.3. LiDAR Data Acquisitions

Two LiDAR acquisitions are available for BMEF. The first LiDAR dataset was acquired during
the summer of 2009 using a Leica ALS 50 discrete return sensor. Flying altitude was 900 m, side-lap
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between adjacent flight lines was at least 50% and scanning angle was ±14◦. The LiDAR data vendor
generated digital terrain models (DTMs) with an accuracy of 15 cm at 95% confidence level. Additional
details on the LiDAR data collection for the 2009 acquisition can be found in [24]. The same vendor
in the study area performed a second LiDAR acquisition during the summer of 2015 using the same
sensor, flying altitude and side-lap specifications. DTMs were also created for 2015 by the vendor.

Four sets of auxiliary variables were considered in this study. The first two sets are composed of 42
LiDAR predictors computed for each acquisition date. Set 1 will represent the predictors for 2009 and
Set 2 the predictors for 2015. These predictors are descriptors of the point cloud height distributions
and were all relative quantities to avoid introducing noise due to local differences in the point cloud
densities of 2009 and 2015 [25]. The third set of predictors, Set 3, was computed as the differences
between the 2009 and the 2015 LiDAR predictors. Finally, the fourth set of predictors, Set 4, included
the incoming solar radiation computed using the Environmental Systems Research Institute (ESRI)
ArcGIS Area Solar Radiation tool [26] with the 2009 digital surface model (DSM) as input; and two
treatments: (1) single- or multi-story structural diversity and (2) presence or absence of prescribed
fires. All predictors were computed for each field plot and for a grid with a cell size of 805 m2 covering
the entire BMEF. The cell size matched the field plot size and each cell of the grid was considered a
population unit, equivalent to the field plots. Predictors and their corresponding acronyms used in
further sections are summarized in Table A1.

2.4. AOIs, Target Parameter and Overview of Modelling Strategies

Two different types of subsets of population units will be repeatedly used throughout the
manuscript in remaining sections. These subsets and their corresponding notation are: the sample
of plots measured in the field, denoted using sub-index s and the target AOIs represented by pixels,
denoted using sub-index α.

Three different groups of AOIs representing different levels of spatial aggregation were analyzed.
The first group represents the largest level of spatial aggregation and represents the entire population
under study. Within this group, we considered the set of all sampled stands, SS, and the entire BMEF
study area after removing the nine thinned and unsampled stands, SA (i.e., sampled and unsampled
but not thinned stands). The second group consists of the 106 forested stands in BMEF. In this group,
we considered separately the unsampled and thinned stands (nine stands), unsampled and not thinned
stands (73 stands) and sampled and not thinned stands (24 stands). Finally, the third group is the set of
all pixels of the LiDAR grid covering the forested area in BMEF.

The main objective of this study was to analyze AOI-specific estimates of the change between 2009
and 2015 for three different structural variables, (V, B and BA). We will use the generic term variable of
interest and the letter y to refer to the forest structural variables, and the term target parameter and
Greek letter ∆ to refer to the quantities that we seek to estimate. Hereafter, target parameters will
always refer to changes over time for the totals of the variables of interest in the considered AOIs, and
will be expressed in a per hectare and year basis.

Considering that all pixels have the same area, the target parameter ∆α for a generic AOI or subset
of population units, α, can be expressed as:

∆α =

Nα∑
i=1

Kyα(yiα15 − yiα09) =

Nα∑
i=1

Kδαδiα, (1)

where Nα is the number of population units (i.e., pixels) in the AOI. The terms yiα15 and yiα09 respectively
represent the value of the variable of interest for 2009 and 2015 for the ith population unit of α, and δiα
is the change, for the ith pixel of α, in the variable of interest during the period 2009 to 2015. Finally,
for comparability with previous studies, the variables of interest will be expressed in a per unit area
basis, and the increments δiα will be expressed in a per unit area and year basis. Thus, to ensure that
∆α is expressed in the correct units, it is necessary to introduce the factors Kyα and Kδα. When yiα15
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and yiα09 are expressed in a per unit area basis Kyα = 1
6Nα

and for δiα in a per unit area and year basis
Kδα = 1

Nα
.

We calculated AOI estimates using two different methods. The first, δ-modeling method,
for estimation of change uses models similar to those in approach A5 of Poudel et al. [8]. In this
approach, the change in a structural variable at the plot/pixel-level (δiα) is directly modeled as a
function of the LiDAR auxiliary variables available for the study area. The second, the y-modeling
method, uses a modified version of approach A4 of Poudel et al. [8] to obtain AOI-specific estimates of
change. Models in this approach jointly relate structural variables (yα15 and yα09) and LiDAR auxiliary
information at a given point in time and account for the correlation between errors obtained for the
same plot/pixel at different times. For both methods, variability between stands was accounted by
considering them as small areas. Thus, stand-level random effects were included in the models.

2.5. δ-Modeling Method

2.5.1. Model δ-modeling Method

Models in the δ-modeling method relate the change (per year) of the variable of interest in a
population unit to the auxiliary variables for the population unit. To indicate that these models consider
change in the variables of interest directly, model parameters, stand-level random effects and model
errors will include the subscript δ. Three different types of auxiliary variables were considered as
potential predictors in the δ-modeling method. First, changes in the LiDAR auxiliary variables for the
period 2009-2015, Set 3, were considered following Poudel et al. [8] as changes in LiDAR predictors are
expected to correlate with growth or changes in forest attributes. Forest structure relates to growth.
Thus, the LiDAR auxiliary variables for 2009, Set 1, were also considered as potential predictors that
act as proxies for forest structure at the beginning of the period 2009-2015. Finally, the incoming
solar radiation and the structural diversity factors and presence of prescribed fires, Set 4, were also
considered as potential predictors.

For the jth population unit in the ith stand, models of the δ-modeling method have the form:

δi j = xt
δi jβδ + vδi + εδi j, (2)

where t indicate the transpose operator and xt
δi j is a vector of auxiliary variables in which the first

element takes the value 1 for the intercept. The term βδ is a vector of model coefficients where the
first element is the intercept of model (2). Selection of auxiliary variables included in the model
was performed using the method described in [27]. Stand-level random effects vδi are assumed to
be independently and identically distributed (i.i.d.) normal random variables vδi ∼ N(0, σ2

δv) for all
i = 1, . . . , D, where D is the total number of stands in the study area. Model errors are i.i.d. normal
random variables εδi j ∼ N(0, σ2

δε) independent of the stand-level random effects (i.e., Cov(εδi jvδ,k) = 0,
for all i, j and k). Models with spatially correlated errors and with non-constant error variances were
initially considered but discarded in the model selection stage, as they were not found to be significant
(see Section 2.5.3).

For a generic set of population units denoted by subscript ξ (which can represent either s or α),
the relation in matrix notation between vector of changes of structural variables δyξ, and the auxiliary
variables included in the model (Xδξ), is expressed as:

δξ = Xδξβδ + Zδξvδ + εδξ, (3)

where δξ = (δ1, . . . , δNξ)
t, with δk being the yearly change for the forest structural variable y, in the kth

unit of ξ, and Nξ is the number of elements in the set ξ. The kth element of ξ will be an element of
a given stand. To explicitly indicate this membership we will use, when necessary, the sub-indexes
ith and jth to respectively indicate the stand and index of the element within the stand. The kth row
of the matrix Xδξ is xt

δk. The vector vδ = (vδ1, . . . , vδD)
t is a vector of stand-level random effects with
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variance covariance matrix Gδ = σ2
δvID, where ID is the identity matrix of dimension D. The matrix

Zξδ is a Nξ x D incidence matrix that describes stand membership for each population unit. The rth

row of Zξδ have zeros at all positions except at position i, where i is the index of the stand to which
the kth unit of ξ belongs. Finally, εξδ is a vector of Nξ model errors with diagonal variance covariance
matrix Rξδ = σ2

δεINξ .
To simplify the notation, hereafterθδ = (σ2

δε, σ
2
δv), will represent the vector of variance parameters.

The variance covariance matrix of δξ is:

Vδξ(θδ) = ZδξGδ(θδ)Zt
δξ + Rδξ(θδ). (4)

Model (3) is a linear mixed effect model and a special case of the basic unit-level described in [28]
(pp. 174).

2.5.2. Target Parameter δ-modeling Method

Under model (2) the target parameter (1) for a generic AOI α can be expressed as:

∆α =
1

Nα

Nα∑
i=1

δiα =
1

Nα
1tδα =

1
Nα

1t(Xδαβδ + Zt
δαvδ + εδα) = lt

δαβδ + mt
δαvδ + qt

δαεδα, (5)

Thus, the target parameter is a linear target parameter similar to the one considered in [4] where 1t

is a vector of ones and lt
δα = 1

Nα
1tXδα, mt

δα
= 1

Nα
1tZt

δα and qt
δα

= 1
Nα

1t are vectors of known constants
for the target AOI α.

2.5.3. Model Selection and Estimator δ-modeling Method

The target parameter ∆α was estimated for all considered AOIs using ∆̂α the empirical best linear
unbiased predictor (EBLUP) described in [29]. For each variable of interest, auxiliary variables included
in Xδα were preselected using the best subset selection procedure described in [29] (pp. 179–180).
When models with similar values of model root mean square error or coefficients of determination
were compared, the preferred option was to select the model with smallest values of σ2

δv. This criterion
is appropriate to minimize the leading term of the AOI specific mean square errors [29] (pp. 176).
Pre-selected models considered constant model error variances and no spatial correlation of model
errors were fitted using maximum likelihood (ML). In a subsequent stage, models were re-fitted using
ML including: (1) an exponential spatial correlation model for the model errors and (2) a non-constant
error variance where εδi j ∼ N(0, σ2

δεk
2wδ
i j ). The term ki j is the value of the predictor included in

the model most correlated to δ and wδ is an additional parameter to account for heteroscedasticity.
For all variables, no clear patterns of spatial correlation or non-constant variances were observed,
which supports the model form described in Section 2.5.1.

Final estimates θ̂δ of the variance parameters θδ were obtained using restricted maximum
likelihood (REML) with the R [30] package nlme [31]. REML estimates β̂δ(θ̂δ) of βδ were functions of
the estimated variance parameters (6):

β̂δ(θ̂δ) = {Xt
δsV̂δs(θ̂δ)

−1Xδs}
−1

Xt
δsV̂δs(θ̂δ)

−1
δs. (6)

Matrices V̂δs(θ̂δ), Ĝδ(θ̂δ) and R̂δs(θ̂δ) are obtained replacing the estimated variance parameters
θ̂δ in Vδs(θδ) Gδ(θδ) and Rδs(θδ), by their REML estimates θ̂. EBLUPs ∆̂α are also functions of γ̂ and
are obtained using Equation (7):

∆̂α(θ̂δ) = lt
δαβ̂δ(θ̂δ) + mt

δαv̂δ(θ̂δ), (7)
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where v̂δ(θ̂δ) equals:
v̂δ(θ̂δ) = Ĝδ(θ̂δ)Zt

δsVδs(θ̂δ)
−1
{δs −Xδαβ̂δ(θ̂δ)}. (8)

It is important to note that for AOIs in unsampled stands (i.e., pixels in unsampled compartments
or the unsampled stands themselves), estimation will be made assuming that the model fit for the
sampled stands also holds for the unsampled stands. Under that assumption, mt

δα
v̂δ(θ̂δ) = 0 and

∆̂α(θ̂δ) = lt
δαβ̂δ(θ̂δ) is a synthetic predictor.

2.5.4. MSE Estimators for the δ-modeling Method

For all AOIs, the mean squared error of the EBLUP was estimated using the estimator provided
by [32] and extended in [4] to account for the fact that AOIs can contain a small number of population
units. This estimator is the sum of three components where the last one, 2g3,α(θ̂δ), is a bias
correction factor:

ˆMSE{∆̂δα(θ̂δ)} = g1δα(θ̂δ) + g2δα(θ̂δ)+2g3,α(θ̂δ), (9)

The first term of (9) equals:

g1δα(θ̂δ) = mt
δα{Ĝ(θ̂δ) − Ĝ(θ̂δ)Zt

δsV̂δα(θ̂δ)
−1ZδsĜ(θ̂δ)}mδα + qt

δαRδα(θ̂δ)qδα. (10)

The second term of (9) is:

g2αδ(θ̂δ) = dt
δα{X

t
δsVδs(θ̂δ)

−1Xδs}
−1

dδα (11)

with dt
δα = lt

δα −mt
δα

Ĝ(θ̂δ)Zt
δsV̂δs(θ̂δ)

−1Xδs. The term g1δα(θ̂δ) of ˆMSE{∆̂δα(θ̂δ)} accounts for the
uncertainty due to the estimation of the random effects while g2δα(θ̂δ) accounts for the uncertainty
due to estimating βδ.

For model (2), it is possible to compute a bias correction factor for the mean square error estimator,
that accounts for the uncertainty due to estimating θδ. This correction factor equals:

g3δα(θ̂δ) = tr


 ∂bt

δα

∂θδ

∣∣∣∣∣∣
θ̂y

Vδs(θ̂δ)
−1

 ∂bt
δα

∂θδ

∣∣∣∣∣∣
θ̂δ

t

Vδs(θ̂δ)

, (12)

where, bt
δα = mt

δα
G(θδ)Zt

δsVδs(θδ)
−1 and Hδs(θ̂) is the Fisher information matrix for the fitted model.

Explicit formulas for g3δα(θ̂δ) are provided [29] (pp. 179–180). This bias correction factor was used as
a reference in comparisons with the y-modeling method.

All estimators of the mean square errors for AOIs in unsampled stands were made assuming
that the model fitted for the sampled stands holds in the unsampled stands. Under this assumption,
the leading term g1δα(θ̂δ), of ˆMSE{∆̂δα(θ̂δ)} will be larger than if the stand containing the AOI was
sampled. This occurs because the negative term mt

δα
Ĝ(θ̂δ)Zt

δsV̂δs(θ̂δ)
−1ZδαĜ(θ̂δ)mδα makes the term

g1δα(θ̂) smaller as the stand sample size increases.

2.6. y-Modeling Method

2.6.1. Model y-modeling Method

Models in the y-modeling method relate the forest structural variables in a population unit at
different points in time with the auxiliary variables for that population unit. To indicate that these
models directly consider the variables of interest, model parameters, stand-level random effects and
model errors will include the subscript y. Auxiliary variables considered in the y-modeling method
include the LiDAR auxiliary variables for 2009 and 2015, (i.e., Set 1 and Set 2, respectively) plus the
incoming solar radiation and the factors structural diversity and presence of prescribed fires, Set 4 for
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both 2009 and 2015. The modeling for the method started obtaining models for the variable of interest
for 2009 and models for the variable of interest in 2015.

For given time t, the variable of interest in the jth population unit in the ith stand is expressed as:

yi jt = xt
yi jtβyt + uyit + eyijt, (13)

where xt
yi jt is a vector of auxiliary variables, specific for time t, in which the first element takes the

value 1. The term βyt is a vector of time-specific coefficients with the first element representing the
model intercept. The random components of model (13) are the stand-level random effects uyit and the
model errors eyijt. To account for heteroscedasticity, model errors eyijt were of the form eyijt = εyijtk

ωyt

i jt

with εyijt ∼ N(0, σ2
yεt); the term ki jt, the predictor included in the model for time t, is most correlated to

yt, and ωyt is a parameter to model the change in the error variance. The stand-level random effects
uyit were assumed to be independently and identically distributed (i.i.d.) normal random variables
uyit ∼ N(0, σ2

yut) for all i = 1, . . . , D, where D is the total number of stands in the study area. Model
errors were assumed independent of the stand-level random effects (i.e., Cov(eyijt, uykt) = 0, for all
i, j and k). Finally, model errors were consider independent with Cov(εyijt, εyklt) = 0 if i , k or j , l
for both t = 2009 and t = 2015. Models with spatially correlated errors were initially considered, but
discarded for both years in the selection stage as no clear spatial correlation patterns were observed in
the residuals. Auxiliary variables included in the model were selected following the same procedure
used in the δ-modeling method, using the best subsets selection procedure described in [27].

To account for expected correlations, models for 2009 and 2015 were combined into a single model
where stand-level random effects and model errors for 2009 and 2015 were allowed to be time correlated.
Then for the jth population unit in the ith stand the two-dimensional vector yi j = (yi j09, yi j15)

t of
variables of interest was related to the auxiliary variables through the following model:

yi j = Xi jβy + Bi jvyi + eyij (14)

with:

Xi j =

 xt
yi j09 0t

p15

0t
p09 xt

yi jt15

,βy =

(
βy09

βy15

)
, Bi j =

(
1 1 0
1 0 1

)
, vyi =


vyi

vyi09

vyi15

, eyij =

(
eyij09

eyij15

)
, (15)

where 0t
p2009 and 0t

p2015 are, respectively, row vectors of zeroes of dimensions equal to xt
yi j09 and xt

yi j2015.
As with the time-specific models, to account for heteroscedasticity in the combined model, model

errors eyijt were of the form eyijt = εyijtk
ωyt

i jt with εyijt ∼ N(0, σ2
yεt). The parameters ωyt were updated

when fitting the combined model. Spatial correlation of model errors was not found to be significant
when considering each year separately, therefore, no spatial correlation patterns were considered in the
combined model. The only source of correlation of model errors present in the combined model was
temporal correlation. For a given location, the variables εyijtyi j09 ∼ N(0, σ2

yε09) and εyij15 ∼ N(0, σ2
yε15)

were allowed to be correlated random variables. The correlation between εyij2009 and εyij2015 is ρε and
the variance-covariance matrix of eyij is:

Cov
(

eyij09

eyij15

)
= Ryij =

 σ2
yε09k

2ωy09

i j09 ρεσ09k
ωy09

i j09 σ09k
ωy15

i j15

ρεσ09k
ωy09

i j09 σ09k
ωy15

i j15 σ2
yvk

2ωy15

i j15

. (16)

To model correlation between stand-level random effects, three random components vyi, vyi2009

and vyi2015, independent of each other, were considered. These random components had distributions
vyi ∼ N(0, σ2

yv), vyi09 ∼ N(0, σ2
yv09) and vyi15 ∼ N(0, σ2

yv15). Stand-level random effect for a given point,
at time t, uyit, are the sum of a pure stand effect, independent of time t, vyi, and a time-specific stand
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random effect vyi09 or vyi15. The term Bi jvyi = uyi =

(
vyi + vyi09

vyi + vyi15

)
=

(
uyi05

uyi09

)
represents these sums.

The variance covariance matrix of vyi is diagonal, therefore, the variance covariance matrix of uyi is:

Cov
(

uyi09

uyi15

)
= Gyi =

 σ2
yv + σ2

yv15 σ2
yv

σ2
yv σ2

yv + σ2
yv15

 (17)

The fact that the random effect vyi is present for both 2009 and 2015 results in a positive correlation

of the terms of uyi, with a correlation coefficient ρu =
σ2

yv

(σ2
yv+σ

2
yv09)(σ

2
yv+σ

2
yv15)

. In a last step, models with a

simpler structure of random effects were fitted and compared to the original models using a likelihood
ratio test. Simplified models contained only random effects vyi that did not depend on time (i.e., models
did not contain time-specific random effects vyi09 and vyi15). For simplified models uyi09 = uyi15 = vyi.

For a generic set of population units ξ, the combined model can be expressed in matrix notation as:

yξ = Xyξβy + Zyξvy + eyξ, (18)

where yξ, eyξ, and Xyξ, are obtained stacking the vectors yi j, eyij, or the matrices Xi j of all units in ξ. As no
spatial correlation patterns were found, the variance covariance matrix of eyξ is, Ryξ = diagi, j∈ξ(Ryij),
a block diagonal matrix of dimension 2Nξx2Nξ with 2x2 blocks equal to Ryij. The vector of stand-level
random effects v = (vt

i1, vt
i2, . . . , vt

iD)
t and the matrix Zyξ is an incidence matrix of dimension 2NξxD

for the simplified models and 2Nξx3D for the models with time-specific random effects. The variance
covariance matrix of yξ can be expressed as:

Vyξ(θy) = ZyξGy(θy)Zt
yξ + Ryξ(θy). (19)

In Equation (19), it is explicitly indicated that matrices Vyξ(θy), Gy(θy) and Ryξ(θy) depend

on the vector of variance-covariance parameters θy = (σ2
yv, σ2

yv09, σ2
yv15, σ2

yε09, σ2
yε15,ρε)

t. For the
models with simplified random effects the vector of variance covariance parameters reduces to
θy = (σ2

yv, σ2
yε09, σ2

yε15,ρε)
t. Model (18) is a special case of linear mixed effect model with block

diagonal covariance structure.

2.6.2. Target Parameter y-modeling Method

Under model (18) the target parameter (1) for a generic AOI, α is a linear combination of the form:

∆α =
1

6Nα

∑
Nα
i=1(yiα15 − yiα09) = lt

yαβδ + mt
yαuy + qt

yαeyα, (20)

where lt
yα = qt

yαXyα, mt
yα = qt

yαZyα and qt
yα are vectors of known constants for the target AOIα, with qt

yα

a vector of dimension 2Nα where the kth element equals (−1)k

6Nα
. It is important to remark that for models

with a simplified structure of stand random effects, the target parameters do not depend on uy. For
these models, yi j15 − yi j15 = (xt

yi j15βy15 − xt
yi j09βy09) + (eyij15 − eyij09), and uyi09 − uyi15 = vyi − vyi = 0.

For these type of models, one can expect significant gains in accuracy because it is not necessary to
estimate random effects.

2.6.3. Estimator y-modeling Method, and Estimator of the MSE

Model (18) is a linear mixed effects model with block diagonal structure and ∆α a linear model
parameter; thus, after [29] (pp. 108–110), the EBLUP ∆̂y(θ̂y) of ∆α is:

∆̂yα(θ̂y) = lt
yαβ̂y(θ̂y) + mt

yαv̂y(θ̂y), (21)



Remote Sens. 2019, 11, 923 12 of 31

where β̂y(θ̂y) equals:

β̂y(θ̂y) = {Xt
ysV̂ys(θ̂y)

−1Xys}
−1

Xt
ysV̂ys(θ̂y)

−1ys. (22)

Matrices V̂ys(θ̂y), Ĝy(θ̂y) and R̂ys(θ̂y) are obtained by replacing the estimated variance parameters
θy in Vyξ(θy), Gy(θy) and Ryξ(θy), by their REML estimates θ̂y. EBLUPs ∆̂α are also functions of γ̂
and are obtained using formula (7), where v̂δ(θ̂δ) equals:

v̂y(θ̂y) = Ĝy(θ̂y)Zt
ysVys(θ̂y)

−1
{ys −Xyαβ̂y(θ̂y)}. (23)

As with the δ-modeling method, estimates for AOIs in unsampled stands were made assuming
that the model fit for the sampled stands also applied in the unsampled stands, which leads to
mt

yαv̂y(θ̂y) = 0 and ∆̂yα(θ̂y) = lt
yαβ̂y(θ̂y) is a synthetic predictor.

For all AOIs, the estimator of the mean square error of the EBLUP under the y-modeling method,
ˆMSE{∆̂yα(θ̂y)}, is:

ˆMSE{∆̂yα(θ̂y)} = g1yα(θ̂δ) + g2yα(θ̂y). (24)

The terms g1yα(θ̂y) and g2yα(θ̂y) in (24) are analogous to those in (10) and (11) and have similar
interpretation. To compute g1yα(θ̂y) and g2yα(θ̂y), matrices Ĝδs(θ̂δ), R̂δs(θ̂δ), V̂δs(θ̂δ) and R̂δα(θ̂δ)
must be replaced by Ĝys(θ̂y), R̂ys(θ̂y), V̂ys(θ̂y) and R̂yα(θ̂y). For the y-modeling method we did not
compute the second-order correction factors.

2.7. Comparison of Methods

Methods were compared using three different criteria. First, we used general measures of accuracy
providing the average error or uncertainty of prediction at the pixel-level (2.7.1); then, we compared
methods using AOI-specific estimates and measures of uncertainty (2.7.2). Finally, we assessed the
risk of generating biased predictions when using the δ-modeling method and y-modeling method in
unsampled stands (Section 2.7.3).

2.7.1. General Accuracy Assessment

To compare the δ-modeling method and y-modeling method, a fist assessment was made using
the cross-validated model mean squared error, mRMSE, and the model bias mBias:

mRMSE =

√∑n
i, j∈s (δi j − δ̂i j)

2

n
, (25)

mBias =

∑
i, j∈s (δi j − δ̂i j)

n
, (26)

where δi j is the observed value of change for the jth plot included in the ith sampled stand and δ̂i j is
the predicted value for that plot when model coefficients are obtained removing that plot from the
training dataset. For the y-modeling method δ̂i j is obtained using the observed and fitted values of
the variable of interest, as δ̂i j =

1
6 (ŷi j15 − ŷi j09) where ŷi j09 and ŷi j15 are the predictions of yi j09 and

yi j15 are obtained fitting the corresponding y-model without the observations for plot i j. In addition,
we computed mRMSE and mBias in terms relative to the average changes observed in the sampled
plots. These quantities are denoted as mRRMSE = mRMSE/∆̂ f and mRBias = mBias/∆̂ f where ∆̂ f is
the mean of the changes observed in the field plots.

2.7.2. AOI-specific Comparisons.

For each of the considered areas of interest an estimate by each method (i.e., EBLUPs using either
∆̂δα(θ̂y) or ∆̂yα(θ̂y)) and their corresponding mean square error estimators (i.e., ˆMSE{∆̂δα(θ̂y)} or

ˆMSE{∆̂yα(θ̂y)}) were available. First, for each AOI and method, we directly compared ∆̂δα(θ̂y) and
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∆̂yα(θ̂y), and the square roots of ˆMSE{∆̂δα(θ̂δ) and ˆMSE{∆̂yα(θ̂y). To simplify the notation, we will
omit the subscript indicating the target AOI unless it is necessary and refer to ∆̂δ as ∆̂y. Similarly,
after omitting the subscript α, the AOI specific root mean square errors will be denoted as:

RMSEδ =
√

ˆMSE{∆̂δα(θ̂δ)}, (27)

RMSEy =
√

ˆMSE{∆̂yα(θ̂y)}, (28)

To perform an assessment relative to the predicted values the following coefficient of variation:

CV{∆̂δα(θ̂δ)} =

√
ˆMSE{∆̂δα(θ̂δ)}

∆̂δα(θ̂δ)
, (29)

CV{∆̂yα(θ̂y)} =

√
ˆMSE{∆̂yα(θ̂y)}

∆̂yα(θ̂y)
, (30)

was computed for each AOI and method. Finally, for each AOI we compared CV{∆̂δα(θ̂y)} to
CV{∆̂yα(θ̂y)}. To simplify the notation we will refer to these coefficients of variation as CVδ and CVy.
Finally, for each sampled AOI we computed, using only the field information, the sample mean ∆̂ fα
and its standard error:

SE fα =

√√√∑nα
i, j∈s (δi j − ∆̂ f ,α)

2

(nα − 1)nα
, (31)

and its coefficient of variation CV fα. In Equation (31), nα is the number of field plots in the considered
AOI and the sub-index f is used to indicate that these quantities are calculated using only field data.
Again, to simplify the notation we removed the sub-indexes α unless they were necessary. Finally,
the sample mean and the coefficient of variation were then compared to their counterparts (7) and (29)
and (21) and (30) obtained by the δ-modeling method and y-modeling method, respectively.

2.7.3. Extrapolation to Thinned Stands

The fact that thinned stands were not represented in the sample of field plots raises the question of
how applicable the models obtained are using either the δ-modeling method or the y-modeling method
to these stands. Applying the models to these stands involves a degree of extrapolation to a different
population and a high risk of producing biased predictions. We assessed this risk by comparing
the distributions of the LiDAR predictors included in the models for the δ-modeling method and
the y-modeling method for the sample of field plots to the distributions of the predictors in: (1) the
sampled stands, (2) the unsampled and not thinned stands and (3) unsampled and thinned stands.
Within each group (i.e., field plots, FP; sampled stands not thinned, SS; unsampled stands not thinned,
UN; and unsampled stands subject to thinning, UT), we estimated density functions for each LiDAR
predictor using a Gaussian kernel and a bandwidth determined using Silverman’s rule [33]. Note that
we considered two AOIs for the largest level of aggregation, the first one is SS and the other one, SA,
is the union of SS and UN. We first considered each predictor separately and graphically compared
their density functions. Predictors for 2009 and 2015 in the y-modeling method were considered
separately. For each predictor and group, we computed the area of overlap, AO, with the density
function for the field plots which takes value 0 if there is no overlap and value 1 if the distribution of
the predictor in the considered group equals the distribution for the sample.

In addition to the area of overlap and aiming to consider all predictors in a given model at once,
we calculated NT2, the average of Mesgaran’s novelty index NT2 for each model and group [34].
This quantity provides the average Mahalanobis distance from the pixels of the group to the mean of
the sample of field plots, and it is expressed in terms relative to the maximum Mahalanobis distance
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observed in the sample. Values of NT2 above one indicate that on average pixels in a group are at
a distance to the mean of the field plots larger than the distance from the extreme field observation
to the mean of the field plots. We also calculated NT2mean, the average of NT2, but using the mean
Mahalanobis distance as normalizing constant instead of the maximum. The reference value of one for
NT2mean indicates that the average Mahalanobis distance from pixels, to the mean of the field plots,
is the same as the average of the Mahalanobis distances observed in the sample. Means and variance
covariance matrices for computation of Mahalanobis distances are always estimated using the sample
of field plots.

3. Results

3.1. Selected Models δ-modeling Method and y-modeling Method

Selected models for the δ-modeling method included auxiliary variables from Set 1 and Set 3.
It was possible to find alternative models including fixed effects for the diversity treatments (i.e.,
predictors from Set 4) with similar values of mRMSE and mRBias; however, those models did not
improve the model fit. From a practical point of view, models that only depend on the LiDAR variables
but do not depend on the structural diversity treatments or the presence/absence of prescribed fires
make the models more portable and applicable to stands without needing to know exactly which one
of these treatments was applied. Considering that models using the structural diversity and presence
of prescribed fires as predictors did not result in important gains in accuracy, we selected models that
were not dependent on these treatments (Table 2).

Table 2. Summary models for the δ-modeling method. Model coefficients, standard errors of the model
coefficients, variance parameters and general metrics for accuracy assessment are provided. Predictor
acronyms are explained in Table A1. Coef is the value of the coefficient and Std.Error its corresponding
standard error. V indicates volume, BA indicates basal area and B indicates biomass.

Model Predictor Coef Std. Error σ̂2
δv σ̂2

δε mRMSE mRRMSE mBias mRBias

V(m3 ha−1 year−1)
Intercept 1.16 0.31

0.50 10.53 3.47 241.99% −1.83 × 10−4 −0.01%δElev_P5015-09 1.33 0.27
δPcFstAbv215-09 0.23 0.07

BA(m2 ha−1 year−1)

Intercept 0.31 0.12

0.01 0.14 0.39 116.30% −8.2 × 10−4 −0.25%
δPcAllAbv215-09 0.05 0.01

Elev_P7509 −0.03 0.01
PcAllAbv215-09 0.02 <0.01

B(Mg ha−1 year−1)

Intercept 1.03 0.17

0.19 2.52 1.72 180.20% −1.09 × 10−3 −0.11%
δElev_var15-09 0.05 0.02
δElev_P5015-09 1.03 0.20
δCRR15-09 −16.67 6.58

For the models in the δ-modeling method, the variance of random the effects, σ̂2
δv, was very small

compared to the variance of the model errors, σ̂2
δε, (Table 2). This indicated that, in this forest and for

these variables, the use of synthetic estimators that do not account for the variability between stands
should not cause a strong bias problem.

Models for the y-modeling method showed a pattern similar to that observed for the δ-modeling
and only included predictors from Set 1 and Set 2 (Table 3). Errors showed non-constant variance
patterns for all variables. The predictor most correlated with the variable of interest (i.e., the predictor
used to model the error variance) was the same for 2009 and 2015. For V and B, the variance of model
errors was a function of the square of the mean LiDAR elevation (Elev_mean2), and the exponents
of the error variance function were very close to those obtained in [4,17,27] for V, and in [27] for B.
For BA, variance of model errors was a function of the percentage of first returns above two meters
(PcFstAbv2). Based on the results of the likelihood ratio tests, that for all variables resulted in p-values
larger than 0.87, simplified models were selected and used for prediction.
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Table 3. Summary models for the y-modeling method. Model coefficients, standard errors of the model coefficients, variance-covariance parameters and general
metrics for accuracy assessment are provided. Covariate acronyms are explained in Table A1. Coef is the value of the coefficient and Std.Error its corresponding
standard error. Coef is the value of the coefficient and Std.Error its corresponding standard error. V indicates volume, BA indicates basal area and B indicates biomass.

Model Year Covariate Coef Std.Error σ̂2
yu Kijt ωyt σ̂2

ytε ρe
General Accuracy Metrics for Change Per

Hectare and Year

mRMSE mRRMSE mBIAS mRBias

V(m3 ha−1)

2009
Intercept −19.09 10.36

640.29

Elev_mean2
09 0.64 3.00

0.85 3.76 262.62% 0.13 9.24%

Elev_mean2
09 2.52 0.23

PcFstAbv209 0.63 0.05

2015
Intercept 2.69 0.23

Elev_mean2
15 0.61 4.17Elev_mean2

15 0.69 0.05
PcFstAbv215 −26.30 11.10

BA(m2 ha−1)

2009

Intercept −0.22 1.57

7.42

PcFstAbv209 0.48 0.81

0.85 0.47 138.06% 0.01 1.53%

Elev_P1009 −1.37 0.34
Elev_P3009 1.58 0.24

PcFstAbv209 0.51 0.03

2015

Intercept −2.16 0.61

PcFstAbv215 0.45 1.12
Elev_P1015 2.56 0.51
Elev_P2015 0.57 0.03

PcFstAbv215 −0.97 1.72

B(Mg ha−1)

2009
Intercept −11.86 5.19

165.69

Elev_mean2
09 0.71 0.39

0.85 1.94 203.69% 0.08 8.60%

Elev_mean2
09 1.19 0.11

PcFstAbv209 0.34 0.02

2015
Intercept 1.31 0.12

Elev_mean2
15 0.58 1.47Elev_mean2

15 0.37 0.03
PcFstAbv215 −14.15 5.76
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3.2. General Accuracy Assessment and Comparison of Methods

For all variables and modeling alternatives, values of mBias and mRBias were orders of magnitude
smaller than mRMSE and mRRMSE (Tables 2 and 3). For all variables and methods, the percentages
of explained variance for the change in V, BA and B were low. For the δ-modeling method,
models explained 34.38%, 31.37% and 39.04% of the variance of the change in V, BA and B, respectively.
For the y-modeling method, models explained only 10.65% and 5.37% of V and B, respectively, while
for BA the prediction using the y-modeling method was not better than the sample mean. In addition,
δ-models had values of mRBias lower than those obtained for the y-models. When instead of the change
we considered the forest structural attributes with the y-modeling method, percentages of explained
variance were 82.16% for V, 82.53% for BA and 82.93% for B. Considering only 2009, the percentage of
explained variance for V, BA and B was 81.60%, 83.45%, and 82.84%, respectively. Considering only
2015, the percentage of explained variance for V, BA and B was 82.72%, 81.42% and 82.98%, respectively.

3.3. AOI-Specific Estimates

3.3.1. Entire Study Area

Estimates for the sampled stands and for the whole study area using either the δ-modeling method
or the y-modeling method were consistent with the estimates obtained using only the field information
except for BA and B in SA. For the entire study area values of RMSEδ tended to be smaller than RMSEy.
When considering the sampled stands, SS, approximate confidence intervals computed as ∆̂ f ± 2SE f for
the field estimates, and as ∆̂δ ± 2RMSEδ and ∆̂y ± 2RMSEy for each one of the LiDAR based methods,
overlapped for all variables (Table 4) and contained estimates derived from other methods. Differences
between the uncertainty of estimates obtained from LiDAR-based methods and the uncertainty of
estimates obtained from field-based methods tend to be of small magnitude.

Table 4. Average increments of volume V, basal area BA and biomass B in the entire study area
excluding the thinned stands (SA) and for the union of the sampled stands (SS). Estimates (∆̂), root
mean square errors (RMSE), coefficients of variation (CV) and confidence intervals (CI) obtained using
the δ-modeling method and the y-modeling method are compared to estimates (∆̂ f ), standard errors
(SE f ) coefficients of variation (CV f ), and confidence intervals (CI f ) using only the field information.

Variable Area
δ-modeling Method y-modeling Method Field Only Estimates

∆̂δ RMSEδ CVδ CIδ ∆̂y RMSEy CVy CIy ∆̂f SEf CVf CIf

V(m3 ha−1

year−1)
SS 1.66 0.27 16.29% 1.12 2.20 1.95 0.32 16.48% 1.31 2.60

1.43 0.32 22.21% 0.80 2.07SA 1.67 0.30 17.98% 1.07 2.27 1.98 0.29 14.67% 1.40 2.56

BA(m2 ha−1

year−1)
SS 0.36 0.03 8.68% 0.30 0.42 0.37 0.04 9.93% 0.30 0.45

0.34 0.04 10.87% 0.26 0.41SA 0.42 0.04 8.41% 0.35 0.49 0.44 0.04 9.61% 0.35 0.52

B(Mg ha−1

year−1)
SS 1.07 0.13 12.35% 0.81 1.34 1.24 0.17 13.61% 0.90 1.57

0.95 0.16 16.89% 0.63 1.28SA 1.15 0.16 13.66% 0.83 1.46 1.29 0.15 11.83% 0.98 1.59

3.3.2. Stands

Estimated change of V, BA and B in the sampled stands by both the δ-modeling method and the
y-modeling method agreed with their field-based counterparts in most stands (Figure 2). However,
the width of the confidence intervals obtained using the δ-modeling method tended to be larger than
the confidence intervals of the estimates derived using the y-modeling method (Figure 2).
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Figure 2. Estimates of V, BA and B change for the sampled stands of Blacks Mountains Experimental 
Forest. LiDAR-derived estimates using the 𝛿 -modeling method are indicated by blue dots, 
LiDAR-derived estimates obtained using the 𝑦-modeling method are indicated with red dots and 
field-based estimates are indicated using black. 

For unsampled stands, estimates and confidence intervals had larger variability in stands where 
the forested area was small (Figure 3). This variability cannot be avoided, and indicates that certain 
sources of errors cannot be compensated if the number of pixels that are aggregated is low. Finally, 
for both methods, values of 𝑅𝑀𝑆𝐸  and 𝑅𝑀𝑆𝐸  were in the range of 0.25 to 1 m3 ha−1year−1 for V, of 
0.02 to 0.15 m2 ha−1year−1 for BA and of 0.10 to 0.80 Mg ha−1year−1 for B. However, for B and V, the 𝑅𝑀𝑆𝐸  tended to be smaller than 𝑅𝑀𝑆𝐸  while negligible differences between methods were 
observed for BA (Figure 3 and Figure 4). 

Figure 2. Estimates of V, BA and B change for the sampled stands of Blacks Mountains Experimental
Forest. LiDAR-derived estimates using the δ-modeling method are indicated by blue dots,
LiDAR-derived estimates obtained using the y-modeling method are indicated with red dots and
field-based estimates are indicated using black.

For unsampled stands, estimates and confidence intervals had larger variability in stands where
the forested area was small (Figure 3). This variability cannot be avoided, and indicates that certain
sources of errors cannot be compensated if the number of pixels that are aggregated is low. Finally,
for both methods, values of RMSEδ and RMSEy were in the range of 0.25 to 1 m3 ha−1year−1 for V,
of 0.02 to 0.15 m2 ha−1year−1 for BA and of 0.10 to 0.80 Mg ha−1year−1 for B. However, for B and
V, the RMSEy tended to be smaller than RMSEδ while negligible differences between methods were
observed for BA (Figures 3 and 4).
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Figure 3. Estimates of V, BA and B change for the unsampled stands of Blacks Mountains 
Experimental Forest. LiDAR-derived estimates using the 𝛿-modeling method are indicated by blue 
dots and LiDAR-derived estimates obtained using the 𝑦-modeling method are indicated with red 
dots. Thinned stands are to the left and non-thinned stands to the right. 

For the thinned (and unsampled) stands, differences between 𝛿-modeling method and the 𝑦-modeling method for BA were large and their confidence intervals did not overlap (Figure 3). For 
these stands, the estimates for BA using the 𝛿-modeling method tended to indicate almost no 
changes in BA. Estimates for the thinned stands using the 𝛿-modeling method provided inconsistent 
results indicating gains in B, and changes close to zero for V and BA. Certain inconsistencies were 
also observed for stands subject to thinning when using the 𝑦-modeling method where predictions 
of the change in V and B were positive for three and five stands respectively. These inconsistencies 
seem to derive from the fact that the distribution of predictors in Set 3 (i.e., changes in LiDAR 
predictors) in the thinned stands was rather different to the distribution of these predictors in the 
sample of field plots, in the sampled stands and in the unsampled and not thinned stands. For 
predictors of the 𝑦 -modeling method, modeled differences between thinned stands and the 
remaining groups were of much smaller magnitude. Results for the analysis of the extrapolation 
risks are presented in detail in section 0. 

Figure 3. Estimates of V, BA and B change for the unsampled stands of Blacks Mountains Experimental
Forest. LiDAR-derived estimates using the δ-modeling method are indicated by blue dots and
LiDAR-derived estimates obtained using the y-modeling method are indicated with red dots. Thinned
stands are to the left and non-thinned stands to the right.

For the thinned (and unsampled) stands, differences between δ-modeling method and the
y-modeling method for BA were large and their confidence intervals did not overlap (Figure 3).
For these stands, the estimates for BA using the δ-modeling method tended to indicate almost no
changes in BA. Estimates for the thinned stands using the δ-modeling method provided inconsistent
results indicating gains in B, and changes close to zero for V and BA. Certain inconsistencies were also
observed for stands subject to thinning when using the y-modeling method where predictions of the
change in V and B were positive for three and five stands respectively. These inconsistencies seem to
derive from the fact that the distribution of predictors in Set 3 (i.e., changes in LiDAR predictors) in the
thinned stands was rather different to the distribution of these predictors in the sample of field plots,
in the sampled stands and in the unsampled and not thinned stands. For predictors of the y-modeling
method, modeled differences between thinned stands and the remaining groups were of much smaller
magnitude. Results for the analysis of the extrapolation risks are presented in detail in Section 3.4.
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Figure 4. Values of RMSEδ (blue), RMSEy (red) and SE f (black) for the stand-level estimates of V,
BA and B.

3.3.3. Pixel-level

For both methods, inconsistencies observed at the stand level were observed at the pixel-level,
especially the positive predictions of change obtained with the δ-modeling method in the thinned
stands (Figure A1). In addition, due to the low correlations of LiDAR predictors with the change in V,
BA, and B, predictions at this level have large uncertainties. Mean and median values of RMSEδ were
2.30 m3 ha−1 year−1 and 3.30 m3 ha−1 year−1 for V, 0.39 m2 ha−1 year−1 and 0.38 m2 ha−1 year−1 for
BA, and 1.67 Mg ha−1 year−1and 1.65 Mg ha−1 year−1 for B. Mean and median values of RMSEy were
2.49 m3 ha−1 year−1 and 2.20 m3 ha−1 year−1 for V, 0.48 m2 ha−1 year−1 and 0.48 m2 ha−1 year−1 for
BA and 1.89 Mg ha−1 year−1 and 1.76 Mg ha−1 year−1 for B (Table 5 and Figure A1). Predictions from
the δ-modeling method tend to be smoother than predictions from the y-modeling method. For all
variables, the proportion of pixel-level predictions using the δ-modeling method within the range of
values observed for the field plots, was always 99.84% or larger (Figure A2). Considering that these
results were obtained in the presence of thinned stands and the relatively small fraction of the forest
that was sampled, obtaining less than 0.16% of the predictions outside of the measurement range
seems to be a clear sign of over smoothing (see Appendix B).

Table 5. Minimum (Min), 5th percentile (p05), mean, median, 95th percentile (p95) and maximum
(Max) of RMSEδ (27) and RMSEy (28) for the pixels of the study area.

Variable Method Min p05 Mean Median p95 Max

V(m3 ha−1 year−1)
δ-modeling method 0.42 0.42 2.30 3.30 3.59 9.41
y-modeling method 0.08 0.37 2.49 2.20 6.01 32.69

BA(m2 ha−1 year−1)
δ-modeling method 0.38 0.38 0.39 0.38 0.40 0.59
y-modeling method 0.11 0.30 0.48 0.48 0.64 1.47

B(Mg ha−1 year−1)
δ-modeling method 1.62 1.63 1.67 1.65 1.76 4.57
y-modeling method 0.47 1.10 1.89 1.76 3.09 10.45
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3.4. Extrapolation to Thinned Stands

Estimates of change in B for the thinned stands by both methods were clearly subject to bias
problems. The predicted change in B for the total area subject to thinning for the period 2009–2015,
using the δ-modeling method was an increase in biomass of 40,469.22 Mg. The predicted change
using the y-modeling method was a removal of B. However, the predicted removal for the period
2009–2015 was only 1750.29 Mg while the weighted extractions for the thinned stands were orders of
magnitude larger. For BA both methods estimated extractions in BA, which is consistent with the fact
that these stands were thinned. Estimated changes in BA using the δ-modeling method for the thinned
stands ranged from −0.05 m2 ha−1 to −1.88 m2 ha−1, which seems to be a very small change in basal
area. Estimated changes in BA using the y-modeling method ranged from −3.58 m2 ha−1 to −7.01 m2

ha−1. An advantage of the y-modeling method is that it allows obtaining the values of the structural
attributes at a given point in time. Using the y-model we estimated BA for the thinned stands for
2015. For those stands where thinning prescriptions dictated leaving a residual BA of 17.22 m2 ha−1

to 25.25 m2 ha−1, estimated BA for 2015 ranged from 19.87 m2 ha−1 to 26.22 m2 ha−1, which is in
accordance with the thinning prescriptions. For the remaining area subject to thinning the estimated
BA for 2015 was 17.64 m2 ha−1, while the prescriptions dictated leaving a residual BA ranging from
6.89 m2 ha−1 to 13.77 m2 ha−1 in 75% of the area and leaving the remaining area untouched. In general,
the estimated BA for 2015 are consistent with the prescriptions, which indicates that the y-modeling
method produces reasonable estimates of BA when extrapolating to the thinned stands. In summary,
for the estimation of changes, biases derived from extrapolation seemed to be of larger magnitude for
the δ-modeling method although they were also present for the y-modeling method.

The extrapolation indexes NT2 and NT2mean showed that predictions in thinned stands, involved a
large amount of extrapolation when using the δ-modeling method. For the y-modeling method,
differences between thinned stands and stands not subject to thinning were of smaller magnitude
(Figures 5 and A3). The inspection of the distribution of the LiDAR predictors in the field plots,
the sampled and not thinned stands, unsampled and not thinned stands and the unsampled and
thinned stands showed similar results for all variables, being the distributions of predictors from Set 3
(i.e., changes in LiDAR predictors for the period 2009–2015) very sensitive to the thinning operations
(Figures 6, A4 and A5).
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Figure 6. Comparison of density functions for the predictors in the models used to estimate changes in
Volume using the δ-modeling method and y-modeling method in field plots (light blue), sampled and
not thinned stands (dark blue), unsampled and not thinned stands (light blue) and unsampled and
thinned stands (red). For each group the area of overlap, AO, with the density function for the field
plots (green) is provided for each predictor.
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4. Discusion

4.1. General Accuracy Assessment and Comparison of Methods.

The smallest values of mRMSE were obtained using the δ-method, which is consistent with
previous results reported by Poudel et al. [8] for V and B in coastal coniferous forest of Western
Oregon and by Temesgen et al. [9] for B in spruce-dominated forest of Alaska (Tables 2 and 3).
We observed, however, smaller differences between methods. Additionally, as observed in previous
studies, (e.g., [8,21,35,36]) where LiDAR auxiliary variables showed a much stronger correlation with
structural attributes at a given point in time than with their change.

Values of mRMSE for V were 3.47 m3 ha−1year−1 when using the δ-method and 3.76 m3 ha−1

year−1 when using the y-method. These values are slightly smaller than the mRMSE obtained by
Poudel et al. [8] using the δ-method (4.74 m3 ha−1 year−1) and two lidar acquisitions separated in
time by five years. For B, mRMSE using the δ-method and the y-method were, respectively, 1.72 Mg
ha−1year−1 and 1.94 Mg ha−1 year−1. These values were very close to those reported by Poudel et
al. [8] using the δ-method (1.88 Mg ha-1 year-1) and worse than those reported by Temesgen et al.
(1.25 Mg ha−1year−1 and 1.63 Mg ha−1 year−1), also using two LiDAR acquisitions separated in time
by five years. Values of RMSE for BA were similar to those obtained by Næsset and Gobakken [20]
in coniferous forest in Norway, using the y-method with log-transformed models and two LiDAR
acquisitions that were two years apart from each other. In relative terms, for V and B, the values that
we obtained for mRRMSE were considerably larger than those obtained by Poudel et al. [8]. These
differences are due to the fact that observed growth rates in Poudel et al [8] are much higher than we
observed at BMEF.

4.2. AOI-Specific Estimates

4.2.1. Entire Study Area

Most studies on estimation of change of structural variables using repeated LiDAR measurements
have focused on analyzing indexes of model fit and reported only global measures of accuracy
developed at a plot level. There is an important difference between the values of RMSEδ and RMSEy

and mRMSEδ and mRMSEy being mRMSEδ and mRMSEy an order of magnitude larger than RMSEδ
and RMSEy. Model root mean square errors mRMSEδ and mRMSEy provide an average measure of
the errors that can occur when predicting a single pixel. For large areas, there will be some level of
compensation of overpredicted and underpredicted pixels. Knowing how important that compensation
is requires calculating AOI-specific root mean square errors. These AOI-specific measures cannot be
directly derived from mRMSE because RMSEδ and RMSEy consider factors such as the uncertainty
in the estimation of the fixed and random effects that are not accounted for in mRMSEδ or mRMSEy.
The effect of these factors in RMSEδ and RMSEy can cause that the way two models with similar
values of mRMSE rank based on this metric could change when attending to RMSE. But the most
important consequence of the disconnect between mRMSEδ and mRMSEy and AOI-specific measures
of uncertainty, is that the former cannot be used as quality controls in LiDAR based inventories.

While numerous studies on estimation of changes using LiDAR rely on global measures of
accuracy such as mRMSE, exceptions to this trend can be found in the literature [10,12,18–20]. The last
four studies used model assisted techniques to derive either landscape or stratum level changes.
Reported errors in those studies changed depending on the modeling techniques and study areas,
but they all were of similar magnitude for changes in biomass per hectare and year (Table 4). Errors
for the methods tested in this study were smaller than those reported by [10], where changes in live
carbon stocks in Norway were estimated using generalized regression estimators (GREG). Differences
with the errors reported in [10] for carbon, using the same 0.5 biomass to carbon conversion factor,
were in the range of 0.12–0.09 Mg ha−1 year−1. These differences seem to be due to multiple factors
such as differences between study areas, changes in live biomass versus changes in standing biomass,
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time between LiDAR acquisitions and field plot sizes etc. Further investigation is needed to test if the
model-based estimators studied here and the GREG estimators in [10] have a similar performance
when used under the same conditions.

The study from Magnussen et al. [18] also included model based estimators using the y-modeling
method. Reported errors were slightly larger than the ones observed here but at the same time smaller
in terms relative to the observed mean change. An important result from the comparisons of [18] was
the drastic improvement in model accuracy when developing stratum specific models (i.e., a set of
model coefficients per stratum) as opposed to a global model for the whole study area. The mixed
effect models used in this study can be used in combination with stratification if sample sizes are large.
The introduction of stand level random effects allows for certain variability between AOIs that can be
applied in situations where AOI sample sizes are limited.

4.2.2. Stands

One of the novelties of this study was the analysis of estimates for AOIs with small sample
sizes to develop AOI specific models (i.e., stands). While at large scales both LiDAR-based and
field-based estimates were very similar and had equivalent accuracies, at the stand-level, LiDAR based
estimates, clearly had smaller errors than their field-based counterparts do. Qualitatively, this result
for the change in V, BA and B is similar to the results obtained in [15,17] for the structural variables
themselves and shows that the LiDAR auxiliary information allows for gains in efficiency when
estimating changes in AOIs with small sample sizes. However, due to the low correlation of LiDAR
and structural changes, values of CVδ and CVy were oftentimes larger than 50%. These values of CV
are larger than those observed for structural variables in similar AOIs in previous studies [4,14,17].
While differences were not of large magnitude RMSEy, tended to be smaller than RMSEδ. In addition,
RMSEy had a larger variability because errors did not have constant variance. Finally, stand level
estimates using the δ-modeling method in the thinned and unsampled stands involved an important
degree of extrapolation that can cause inconsistent estimates and severe biases, which indicates that
the δ-modeling method is more sensitive to extrapolating than the y-modeling method.

4.2.3. Pixel-level

For the most detailed level of disaggregation, the magnitude of the errors was very large. This is
due to the low correlation between LiDAR auxiliary variables and the change in structural attributes.
First-order and second-order texture indexes [37] are auxiliary variables with a promising potential for
future research aiming to improve the prediction of structural changes. While for structural variables,
maps at the pixel-level can provide a reliable reference about the forest structure; for growth and
changes, pixel-level maps like the one in Figure A1 should be taken as mere approximations. They
could be used to infer certain trends and patterns, but the high values of RMSEδ and RMSEy show that
estimates for a particular location made at the pixel scale can differ significantly with reality. These
results clearly indicate that, predictions at such a fine scale are highly unreliable, and it is necessary
either to perform some level of spatial aggregation or to increase the lapse between LiDAR acquisitions.

4.3. Advantages of Modeling Alternatives

In general, the δ-modeling method was found to be a better alternative to estimate changes
for the entire study area than the y-modeling method; however, the y-modeling method produced
better results at the stand-level and also seemed to be advantageous to prevent problems related to
extrapolation to values of the covariates outside of those included in model development.

The δ-modeling method offers a faster model developments and fitting, and is significantly
simpler than the modeling with the y-modeling method, as it is not necessary to consider differences
between years and time correlations. The main disadvantage of this method is that it seems to be
more prone to extrapolation errors. Predictors from Set 3 are sensitive to intense changes in the forest
structure caused for example by thinning (see Figures 5, 6, A4 and A5). The inspection of predictors
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of alternative models for V and B using this method revealed that inconsistencies of predictions in
unthinned stands could be attenuated including more predictors from Set 1. The sensitivity to changes
of predictors from Set 3 can be an advantage if all possible changes are correctly represented in the
field sample. However, for relatively short periods of time between acquisitions and a low amount of
forest operations, changes that are not very frequent in the landscape can be misrepresented or even
not included in the sample. Thus, results for areas subject to those changes can be severely biased
and inconsistent.

The more complex model development for the y-modeling method may be compensated by its
ability to produce a richer set of outputs, by its apparently smaller risk of extrapolation and by its
more accurate estimates for AOIs with small sample sizes (i.e., stands). In this study we analyzed the
performance of the y-modeling method when estimating change, but estimates of V, BA and B for all
the AOIs in 2009 and 2015 could have been readily obtained using this method. Results from our study
also support the idea that the y-modeling method has advantages over the δ-modeling method in
terms of protection against inconsistent extrapolations. The distributions of predictors from Set 1 and
Set 2 in thinned stands were relatively similar to the distributions observed for the sample while the
distributions of predictors in Set 3 used in the δ-modeling method, these distributions were rather
different (see Figures 5, 6, A4 and A5). The greater similarity between thinned stands and the sample of
field plots, for predictors from Set 1 and Set 2, indicates that the effect of thinning, in terms of auxiliary
information, can be seen as transition from one situation in 2009 to another in 2015, and both seem
to be represented in the field sample (e.g., Figure 5). If structures before and after the thinning (or
other changes) are represented in the sample, the need for extrapolation will be limited. Within certain
limits, if the sampling design covers all structures present at both points in time, even if there is a
particular change from one structure to another that is not represented in the sample, predictions from
the y-modeling method will not involve large extrapolations.

5. Conclusions

The four main conclusions obtained from this study include:

• The change of structural attributes and LiDAR auxiliary information are weakly correlated.
This weak correlation seems to more evident in BMEF than in previous studies because of the
slower growth in the study area and the relatively short lapse of time between LiDAR acquisitions,
which indicates that for future studies in similar areas it might be necessary to increase the time
lags between LiDAR flights.

• In general, the δ-modeling method was found to be a slightly more accurate alternative to obtain
estimates of change for the whole study area; however, the y-modeling method was able to
produce better estimates at the stand level. In addition, the y-modeling method method also
seemed to be less prone to extrapolation problems. This indicates that field campaigns for the
δ-modeling method have to be carefully designed while the y-modeling method might be less
sensitive to certain bias problems.

• Despite the weak correlations with the changes in structural attributes, LiDAR auxiliary information
allows obtaining estimates of growth for stands that improve over those derived using only
field information.

• The large uncertainty observed for pixel-level predictions indicated that high-resolution maps of
growth, generated using LiDAR auxiliary information in similar conditions, should be taken as
approximated products.
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Appendix A

Table A1. Sets of candidate predictors used in the study. Predictors included in the models to predict
structural changes are highlighted with a boldface font. HiD, LoD and RNA represent the high diversity,
low diversity and research natural areas respectively.

Description Auxiliary
Variables Sets 1, 2 and 3

Acronym
Description Auxiliary

Variables Set 4

Acronym

Set 1 Year: 2009 Set 2 Year: 2015 Set 3, Difference
2015-2009 Set 4

Minimum, maximum, mean,
mode, standard deviation,

variance, coefficient of
variation and interquartile
range of the distribution of
heights of the point cloud.

Elev_min09 Elev_min15 δElev_min15-09 Incoming solar radiation Solar_radiation
Elev_max09 Elev_max15 δElev_max15-09

Elev_mean09 Elev_mean15 δElev_mean15-09 Structural diversity, factor
with three levels HiD, LoD
and RNA. Coded using two

dummy variables. RNA
reference level.

HiDElev_mean2
09 Elev_mean2

15 δElev_mean2
15-09

Elev_mode09 Elev_mode15 δElev_mode15-09

Elev_stddv09 Elev_stddv15 δElev_stddv15-09 LoDElev_var09 Elev_var15 δElev_var15-09

Elev_CV09 Elev_CV15 δElev_CV15-09
Presence absence of

prescribed fires. Coded
using a dummy variable
taking value 1 for stands

where prescribed fires are
applied and 0 otherwise.

Burned
Elev_IQ09 Elev_IQ15 δElev_IQ15-09

Elev_AAD09 Elev_AAD15 δElev_AAD15-09
Elev_MADmed09 Elev_MADmed15 δElev_MADmed15-09
Elev_MADmod09 Elev_MADmod15 δElev_MADmod15-09

Percentiles of the
distribution of heights of the

point cloud.

Elev_P0109 Elev_P0115 δElev_P0115-09
Elev_P0509 Elev_P0515 δElev_P0515-09
Elev_P1009 Elev_P1015 δElev_P1015-09
Elev_P2009 Elev_P2015 δElev_P2015-09
Elev_P3009 Elev_P3015 δElev_P3015-09
Elev_P4009 Elev_P4015 δElev_P4015-09
Elev_P5009 Elev_P5015 δElev_P5015-09
Elev_P6009 Elev_P6015 δElev_P6015-09
Elev_P7009 Elev_P7015 δElev_P7015-09
Elev_P7509 Elev_P7515 δElev_P7515-09
Elev_P8009 Elev_P8015 δElev_P8015-09
Elev_P9009 Elev_P9015 δElev_P9015-09
Elev_P9509 Elev_P9515 δElev_P9515-09
Elev_P9909 Elev_P9915 δElev_P9915-09

Canopy relief ratio CRR09 CRR15 δCRR15-09

Percentage of first (Fst) and
all (All) returns above 2 m

PcFstAbv209 PcFstAbv215 δPcFstAbv215-09
PcAllAbv209 PcAllAbv215 δPcAllAbv215-09

Ratio all returns above 2 m
to first returns AllAbv2Fst09 AllAbv2Fst15 δAllAbv2Fst15-09

Percentage of first returns
above the mean and mode

PcFstAbvMean09 PcFstAbvMean15 δPcFstAbvMean15-09
PcFstAbvMode09 PcFstAbvMode15 δPcFstAbvMode15-09

Percentage of all returns
above the mean and mode

PcAllAbvMean09 PcAllAbvMean15 δPcAllAbvMean15-09
PcAllAbvMode09 PcAllAbvMode15 δPcAllAbvMode15-09

Ratio of all returns above the
mean and mode to number

of first returns

AllAbvMeanFst09 AllAbvMeanFst15 δAllAbvMeanFst15-09

AllAbvModeFst09 AllAbvModeFst15 δAllAbvModeFst15-09

Proportion of points in the
height intervals [0,0.5),

[0.5,1), [1,2), [2,4), [4,8) and
[8,16) meters.

Prop0_0509 Prop0_0515 δProp0_0515-09
Prop05_109 Prop05_115 δProp05_115-09
Prop1_209 Prop1_215 δProp1_215-09
Prop2_409 Prop2_415 δProp2_415-09
Prop4_809 Prop4_815 δProp4_815-09

Prop8_1609 Prop8_1615 δProp8_1615-09

Appendix B

Predictions from the δ-modeling method tend to be smoother than predictions from the y-modeling
method (Figure A1). For all variables, the proportion of pixel-level predictions using the δ-modeling
method within the range of values observed for the field plots, was always 99.84% or larger. Considering
the presence of thinned stands and the relatively small fraction of the forest that is sampled. Obtaining
less than 0.15% of the predictions outside of the measurement range seems to be a clear sign of over
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smoothing. Predictions using the y-modeling method showed a greater variability, especially for
BA, and the proportions of predictions inside the range of observed values, Py, were 99.45% for V,
95.82% for BA and 99.29% for B. For BA, pixel-level predictions using the y-modeling method were
oftentimes negative and of larger magnitude than the changes in BA observed for the plots. However,
these pixels represent a small proportion of the total predictions (i.e., 4.02%), and a significant portion
of them correspond to pixels in thinned stands. It is important to note that these comparisons of
predicted values inform about how similar predictions are by the two analyzed methods and cannot
be considered as indicators of accuracy or reliability. For all variables, pixel-level predictions by both
methods were strongly correlated with Pearson’s correlation coefficients of 0.92, 0.82 and 072 for V,
BA and B, respectively (Figure A2). Finally, considering the unsampled and thinned stands, pixel-level
predictions obtained by both methods showed the same inconsistencies observed at the stand-level
especially for B using the δ-modeling method where only about 4%, of the predicted values were
negative (i.e., removals of B). These inconsistencies are clearly due to extrapolations in the thinned
stands and are analyzed in more detail in next section.
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Figure A1. Maps of change in V, BA and B and corresponding pixel-level RMSE maps for the
δ-modeling method.
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Figure A2. Comparison pixel-level predictions for V, BA and B using the δ-modeling method and
y-modeling method predictions for the unsampled stands subject to thinnings are in red. The range
of V, BA and B observed in the sample is indicated by the grey ribbons. The proportions, Pδ and
Py, of predictions within the range of values observed in the sample, and the correlation between
predictions from both methods are indicated in the upper left corner. The proportion of pixels in the
thinned stands where the δ-modeling method and y-modeling method predict losses (i.e., P(δ̂i,δ < 0)
and P(δ̂i,y < 0)) are indicated on the lower left quadrant of the figure.
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Figure C1. Indexes of extrapolation. Average of Mesgaran’s novelty index relative to the mean, 𝑁𝑇2 , for the sampled and not thinned stands (dark blue), unsampled stands not thinned (green) 
and unsampled and thinned stands (red). The value of this index for the field plots (light blue) 
provides the baseline value (i.e., the value observed for the sample of field plots). 

Figure A3. Indexes of extrapolation. Average of Mesgaran’s novelty index relative to the mean,
NT2mean, for the sampled and not thinned stands (dark blue), unsampled stands not thinned (green)
and unsampled and thinned stands (red). The value of this index for the field plots (light blue) provides
the baseline value (i.e., the value observed for the sample of field plots).
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Figure C2. Comparison of density functions for the predictors in the models used to estimate changes 
in Basal Area using the 𝛿-modeling method and 𝑦-modeling method in field plots (light blue), 
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Figure A4. Comparison of density functions for the predictors in the models used to estimate changes
in Basal Area using the δ-modeling method and y-modeling method in field plots (light blue), sampled
and not thinned stands (dark blue), unsampled and not thinned stands (light blue) and unsampled and
thinned stands (red). For each group the area of overlap, AO, with the density function for the field
plots (green) is provided for each predictor.
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