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Abstract: Gaussian mixture model (GMM) has been one of the most representative models for
hyperspectral unmixing while considering endmember variability. However, the GMM unmixing
models only have proper smoothness and sparsity prior constraints on the abundances and thus do
not take into account the possible local spatial correlation. When the pixels that lie on the boundaries
of different materials or the inhomogeneous region, the abundances of the neighboring pixels do not
have those prior constraints. Thus, we propose a novel GMM unmixing method based on superpixel
segmentation (SS) and low-rank representation (LRR), which is called GMM-SS-LRR. we adopt the
SS in the first principal component of HSI to get the homogeneous regions. Moreover, the HSI to
be unmixed is partitioned into regions where the statistical property of the abundance coefficients
have the underlying low-rank property. Then, to further exploit the spatial data structure, under
the Bayesian framework, we use GMM to formulate the unmixing problem, and put the low-rank
property into the objective function as a prior knowledge, using generalized expectation maximization
to solve the objection function. Experiments on synthetic datasets and real HSIs demonstrated that
the proposed GMM-SS-LRR is efficient compared with other current popular methods.

Keywords: hyperspectral image analysis; endmember variability; Gaussian mixture model;
superpixel segmentation; low-rank property; Bayesian framework

1. Introduction

In the last few decades, Hyperspectral image (HSI) has received considerable attention in the field
of earth observation and geoinformation science. With the wealth of spatial and spectral information,
HSI has been successfully applied in many applications, such as spectral unmixing, environment
monitoring, matching and object classification [1–8]. However, due to the low spatial resolution of
current HSI sensors and the mixed effects of the ground surface, these factors will seriously affect the
accurate interpretation of the image content. In this case, spectral unmixing (SU) problem has become
a major issue for the deep development of HSI.

The information of hyperspectral images can be simplified by the linear mixing model (LMM),
which assumes that the physical region corresponding to a pixel contains several pure materials.
Hence, the observed spectra yn ∈ RB, n = 1, ..., N (B is the number of wavelengths and N is the
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number of pixels) is a (non-negative) linear combination of the pure material (called endmember)
spectra mj ∈ RB, j = 1, ..., M (M is the number of endmembers) [9], i.e.,

yn =
M

∑
j=1

mjαnj + nn, s.t. αnj ≥ 0,
M

∑
j=1

αnj = 1, (1)

where αnj is the proportion (called abundance) for the jth endmember at the nth pixel (with the positivity
and sum-to-one constraint) and nn ∈ RB is additive noise. Here, the endmember set mj : j = 1, ..., M is
fixed for all the pixels. Many endmember detection algorithms are under the pixel purity assumption to
extract the pure endmembers, such as the pixel purity index [10], successive projection algorithm [11],
and vertex component analysis (VCA) [12]. Other algorithms assume that all the pixels lie in a convex
hull in a high-dimensional subspace: N-Finder [13] and iterative constrained endmembers (ICE) [14].
In our proposed abundance estimation method, the pure endmembers are assumed to be known or
they can be identified from the target image by one of these endmember detection techniques.

However, in practice, the LMM may not be an appropriate model in many real scenarios. Even for
a pure pixel that only contains one material, over the whole image its spectrum may not be consistent.
This is due to several factors such as intrinsic variability, atmospheric conditions and topography.
Equation (1) can be generalized to a more abstract form, yn = S(mj, αnj : j = 1, ..., M), which is
called nonlinear mixing models (NLMMs). For example, in [15], the generalized bilinear model (GBM)
generalizes the LMM by introducing bilinear terms to handle the vegetation case with taking into
account the multipath effects. In that case, various representative abundance estimation algorithms
have been proposed based on different nonlinear model assumptions, such as least squares [16],
kernel-based least squares [17,18], and Bayesian methods [15]. A panoply of nonlinear models can be
found in the review article [19]. The reason we note those models is that the endmember set is still
assumed to be fixed.

Although NLMM models have abounded recently, it is still not appropriate to account for all the
scenarios. LMM has also been widely used due to its simplicity and physical meaning. To model real
scenarios more accurately, researchers have taken another route by generalizing Equation (1) to

yn =
M

∑
j=1

mnjαnj + nn, s.t. αnj ≥ 0,
M

∑
j=1

αnj = 1, (2)

where mnj ∈ RB : j = 1, ..., M, n = 1, ..., N. We note that the endmember set in that case is not fixed
and the endmember spectra could be different for each pixel yn. This is called endmember variability.
Given yn, inferring mnj, αnj is a much more difficult problem than inferring mj, αnj in Equation (1).

In the review paper [20], the methods taking into account the endmember variability can be
expressed in two categories: (1) endmembers represented as a discrete set; or (2) endmembers
represented using a continuous distribution. In the first category, the endmember spectra are modeled
as a series of spectra clusters, and expressed as discrete sets in mathematical form. The multiple
endmember spectral mixture analysis (MESMA) is one of the widely used methods of this category [21],
which tries every endmember combination to search the minimum mean square error in the discrete
set as the final calculation result. There are many variations to the original MESMA, such as the
multiple-endmember linear spectral unmixing model (MELSUM) [22], Auto-Monte Carlo Unmixing
(AutoMCU) [23,24] and the Bayesian spectral mixture analysis (BSMA) [25]. Besides those variants,
there are also some other set based methods, e.g., endmember bundles [26] and band weighting
or transformation approaches [27,28]. However, those methods mentioned above have a common
disadvantage that, when the spectral library is large, their complexity will increase exponentially,
resulting in extreme computational inefficiency difficulties.

The second category usually takes statistical method to model the endmember distribution.
Specifically, it is assumed that the endmembers of each pixel are sampled from a probability
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distribution, and hence embrace large libraries while being numerically tractable. In [29], Eches et al.
proposed the normal compositional model (NCM). This model is the early representative work in
this direction, which assumes the endmembers for each pixel are sampled from unimodal Gaussian
distribution (primarily due to mathematical simplicity). Due to the complexity of the model’s prior
knowledge and hyperparameters, the maximum a posteriori (MAP) constructed is often a non-convex
function. Then, NCM uses different optimization approaches, such as expectation maximization [30],
sampling method [31], and particle swarm optimization [32], to determine the hyperparameters.
However, the NCM allows for endmember samples to range outside the interval of [0, 1] and in
the real scenarios the endmember distribution could be skewed. Hence, Du et al. proposed a Beta
compositional model (BCM) to model the endmember variability in the HSI unmixing [33]. However,
the true distribution may not be well approximated by either a Gaussian or Beta distribution. In that
case, Zhou et al. proposed the Gaussian mixture model (GMM) to solve the LMM by considering
endmember variability [34]. GMM method assumes that the endmember mnj follows the GMM
distribution and noise nn follows the Gaussian distribution: p(nn) := N (nn|0, D), where D is the
noise covariance matrix, and with proper abundances constraint under the Bayesian framework to
lead the conditional density function to a standard MAP problem.

The performance of those methods in this category is often dependent on the initial value of
parameters, but does not rely on the large-scale spectral database, which is the research hotspot for
the endmember variability problem. However, neither method mentioned above takes into account
the possible spatial correlation between local pixels. Researchers in [2,35,36] proved that the spatial
correlations between the observed pixels can enhance the performance of spectral unmixing. On the
other hand, this strategy has great advantages of easily generalizing the Bayesian algorithms, which is
introduced in [37,38]. In that vein, in an attempt to achieve better abundance estimation results, Zhou’s
model (GMM) [34] uses the proper smoothness and sparsity prior constraints on the abundances, while
Iordache et al. [39] tried to find the minimum difference of the abundance between the adjacent pixels
by the total variation (TV) constraint. However, those prior constraint assumptions require a rather
strict assumption that the abundance of the local pixel should be piecewise smooth, which means that
the mixing pixel and its associated abundance should be similar for the adjacent pixels. When the
pixels lie on the boundaries of different materials or the inhomogeneous region, the abundances in
the neighboring pixels do not have those prior constraints. Driven by those considerations, to further
exploit the spatial data structure, we take superpixel segmentation (SS) in the first principal component
of HSI to get the homogeneous regions. Then, the hyperspectral image to be unmixed is partitioned
into several homogeneous regions (or classes) in which the abundance vector has the same first and
second order statistical moments (means and covariances). The shape and size can be accustomed on
the basis of different spatial structures, and each superpixel can be seen as a non-overlapping region.

Furthermore, in those homogeneous regions, there is a high degree of correlation among the
spectral signatures of the neighboring pixels. The high spatial similarity usually implies the low-rank
property in the abundance map. Qu et al. [40] proved that the abundance matrix has low-rank property
in homogeneous region and constructed an unmixing model by using low-rank property to verify the
effectiveness in homogeneous region unmixing. Giampouras et al. [36] proposed a novel low-rank
representation (LRR) for HSI unmixing, which jointly obtains a representation for all the data under
a global lowest rank constraint. In that vein, we take LRR to further exploit the spatial information
between the local pixels in the homogeneous region, using the Bayesian framework to construct the
objective function together seeking the lowest rank.

Thus, in this paper, in an attempt to achieve better abundance estimation performance and fully
consider the possible spatial correlation between local pixels, we propose a novel GMM unmixing
method based on SS and LRR, which is called GMM-SS-LRR. Firstly, we adopt the SS algorithm to cut
the HSI into different regions. In these regions, pixels are highly spatial correlated, the mixing pixel
and its associated abundance should be similar for the adjacent pixels and the abundance map has
low-rank property. Secondly, considering the endmember variability phenomenon, under the Bayesian
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framework, we use GMM to formulate the unmixing problem, and put the low-rank property into the
objective function as a prior knowledge. Finally, we use generalized expectation maximization (GEM)
to solve the objective function [41].

In summary, the main contribution in this paper are two folds:
(1) We take SS in the first principal component of HSI to get the homogeneous regions, which

can help the GMM method make pixels and their associated abundances similar for the adjacent
pixels, since directly using the GMM method to unmixing will make the estimated distribution of the
clusters cannot fit the ground truth well and using SS can enhance the performance of the endmember
estimation.

(2) We take LRR for the abundance estimation problem, which can further exploit the spatial
information between the local pixels. Because after taking SS, the regions will be homogeneous, and the
high spatial correlation of the data implies the low-rank property of the abundance matrix, using the
LRR property can better capture the spatial data structure by seeking the lowest rank representation,
and also get better abundance estimation.

The rest of this paper is structured as follows. In Section 2, we briefly introduce the related GMM
method. In Section 3, we describe the proposed model GMM-SS-LRR and the GEM for solving and
optimization are introduced. In Section 4, we evaluate the performances of the proposed GMM-SS-LRR
and the compared state-of-the-art algorithms on the synthetic datasets and real HSIs. We conclude this
paper in Section 5.

2. Related Models

Since the proposed model is closely related with the GMM method, we briefly introduce the
GMM in this section.

GMM method [34] is an LMM by considering the endmember variability, use a mixture of
Gaussians to approximate any distribution of the endmember and can be classified in the second
category mentioned above (endmembers represented using a continuous distribution). GMM model
assumes the endmember p(mnj) follows a mixture of Gaussians, and has the density function
as follows:

p(mnj|Θ) := fmj(mnj) =

Kj

∑
k=1

πjkN (mnj|µjk, Σjk), (3)

subject to πjk ≥ 0, ∑
Kj
k=1 πjk = 1, with Kj being the number of components, πjk (µjk ∈ RB) or

Σjk ∈ RB×B being the weight (mean or covariance matrix) of its kth Gaussian component, Θ :=
πjk, µjk, Σjk : j = 1, ..., M, k = 1, ..., Kj, mnj : j = 1, ..., M are independent. The noise nn also follows the
Gaussian distribution, which has the density function p(nn) := N (nn|0, D), where D is the noise
covariance matrix and then obtains the distribution of yn by the equation yn = ∑M

j=1 mnjαnj + nn,
which turns out to be another mixture of Gaussians, we can obtain the density function of yn as follows:

p(yn|αn, Θ, D) = ∑
k∈K

πkN (yn|µnk, Σnk) , (4)

where K := { 1, ..., K1 } × { 1, ..., K2 } × ...× { 1, ..., KM } is the Cartesian product of the M index sets,
k:=(k1, ..., kM) ∈ K, πk ∈ R, Σnk ∈ RB×B, are defined by:

πk :=
M

∏
j=1

πjkj
, µnk :=

M

∑
j=1

αnjµjkj
, Σnk :=

M

∑
j=1

α2
njΣjkj

+ D. (5)
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More specifically, in the prior of the abundances of p(A), Zhou’s model [34] assumes the
abundances A have the proper smoothness and sparsity prior constraints. The density function
of the abundances A can be generalized as follows:

p (A) ∝ exp
{
− β1

2
Tr
(

ATLA
)
+

β2

2
Tr
(

ATA
)}

, (6)

where L is a graph Laplacian matrix constructed from wnm, n, m = 1, . . . , N with wnm =

e||yn−ym ||2/2Bη2
for neighboring pixels and 0 otherwise. Tr(·) is the trace of the matrix, and

Tr
(

ATLA
)

= 1
2 ∑ n,mwnm||αn − αm||2, with β1 controlling smoothness and β2 controlling sparsity

of the abundance maps.

3. GMM Unmixing with Superpixel Segmentation and Low-Rank Representation

In this section, we describe the specific steps in implementing the superpixel segmentation at first,
then introduce the GMM unmixing based on the low-rank representation, finally develop an GEM for
solving the proposed unmixing method GMM-SS-LRR.

3.1. Formulation of the Proposed GMM-SS-LRR

When considering the endmember variability, the current popular unmixing methods which
model the endmember following the probability distribution have been mentioned above: normal
compositional model (NCM) [29], beta compositional model (BCM) [33] and Gaussian mixture model
(GMM) [34]. Those methods all ignore the local spatial correlation of HSI. However, the spatial
correlation of HSI is very important in the analysis of HSI, and researchers in [2,35,36] proved that the
spatial correlations between the observed pixels can enhance the performance of spectral unmixing.
In [34], the abundance A has been modeled as assumed having proper smoothness and sparsity
prior constraints. From Equation (6) we can get that the smoothness is modeled by the well known
symmetric positive semidefinite graph Laplacian matrix. This constraint is based on the assumptions
that both the mixing material and its associated abundance should be similar for the adjacent pixels.
When the pixels lie on the boundaries of different materials or the pixels are concentrated on different
components, the prior will not have the smoothness property. The pixels in that region are not pure;
this also cannot conduct a sparse prior constraint. In that vein, to better incorporate the abundance
prior constraints, we take SS to cut the HSI into several homogeneous regions. The SS methods are
originally designed for the visible images, since the whole original HSI cube usually has hundreds of
bands, and the SS cannot be directly used for the HSI cube; hence, we take PCA to get the first principle
component of HSI which is used as the base image when using the SS. Since entropy rate (ER) possesses
the advantage of the computational efficiency [42], and the superpixels incline to have common features
and similar sizes [43]. Therefore, in this paper, we adapt the ER to generate superpixels.

After adopting the PCA and SS, the HSI is segmented into several homogeneous regions, and,
as shown in Figure 1, each superpixel can be seen as a non-overlapping region, the shape is adaptive
and size can be accustomed on the basis of different spatial structures. Thus, each superpixel
in these regions, pixels are highly spatial correlated, and the abundance matrix has the low-rank
property. According to Horn and Johnson [44], we further propose to exploit its rank property by the
following theorem:

Theorem 1. Assume Z ∈ NL×B, E ∈ BL×M, and A ∈ RN×M which satisfy Z = EA. If rank(Z) = k ≤
min(R, N) and rank(E) = M, then we have

rank(Z) = rank(A) = k. (7)
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Figure 1. Algorithm flow of the proposed method.

For the real HSI, the extracted endmembers E are generally distinct from each other and the
number of bands L is usually larger than the total number of the endmember R, which makes the
rank(E) = R, and rank(Z) = k ≤ min(R, N); according to Theorem 1, we can get rank(Z) = rank(A),
since adopting the PCA and SS, the original HSI has been cut into different regions, and the columns
of Z are highly correlated, which means that the matrix Z is low rank, thus the abundance matrix A in
each homogeneous regions is also low rank. To use this property, together with the proper smoothness
and sparse prior constraints, and after conducting principal component analysis (PCA) and SS on the
HSI, the priors for abundance A based on the proposed GMM-SS-LRR can be mathematically written
as follows:

p (A) ∝ exp
{
− β1

2
Tr
(

ATLA
)
+

β2

2
Tr
(

ATA
)
+

β3

2
rank(A)

}
. (8)

However, Equation (8) is a highly nonconvex optimization problem or even NP-hard, which is
very difficult to work out. According to Liu et al. [45], we use the nuclear norm to substitute the rank
function, and the nuclear norm is widely used as a surrogate to the rank function. Thus, the prior
constraints on A can be reformulated as:

p (A) ∝ exp
{
− β1

2
Tr
(

ATLA
)
+

β2

2
Tr
(

ATA
)
+

β3

2
||A||∗

}
, (9)

where ||A||∗ denotes the nuclear norm of the matrix A defined as

||A||∗ = trace(
√

ATA). (10)

Then, based on GMM method analysis in the Section 2, given all the abundances A := [α1, ..., αN ] ∈
RN×M(αN := [α1, ..., αnM]T) and GMM parameters Θ, we can model the conditional distribution of the
pixels Y := [y1, ..., yN ] ∈ RN×B, together we also assume the noise D follows the Gaussian distribution,
and assuming the conditional distributions of each yn are both independent, then, using the result in
Equation (4), given A, Θ, D becomes:

p(Y|A, Θ, D) =
N

∏∏∏
n=1

p(yn|αn, Θ, D). (11)

On the basis of the conditional density function, the priors and Bayes’ theorem, we can obtain the
posterior given by

p(A, Θ|Y, D) ∝ p(Y|A, Θ, D)p(A)p(Θ), (12)
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where p(Θ) is assumed to be a uniform distribution. Since we have obtained the distribution of
p(Y|A, Θ, D) (Equation (11)), p(A) (Equation (9)), and maximizing p(A, Θ|Y, D) is equivalent to
minimizing − log p(A, Θ|Y, D), we can obtain the objective function as follows:

ε(A,Θ) = −
N

∑
n=1

log ∑
k∈K

πkN (yn|µnk, Σnk) + εprior(A),

s.t. πk ≥ 0, ∑
k∈K

πk = 1, αnj ≥ 0,
M

∑
j=1

αnj = 1, ∀n,

(13)

where εprior(A) = − β1
2 Tr

(
ATLA

)
+ β2

2 Tr
(

ATA
)
+ β3

2 ||A||∗ and µnk, Σnk are defined in Equation (5).

3.2. Optimization of the Proposed GMM-SS-LRR

There are numerical methods in estimating the parameters of GMM method, such as expectation
maximization (EM) [46,47] and projection-based clustering [48]. However, in our method, each pixel
yn is generated to be a different GMM determined by the coefficients αn, which is a more challenging
problem to estimate the parameters. Since EM is more flexible and can be seen as a special case of
majoriziation-minimization algorithms [49], we take this method to approach. Because the parameters
A, Θ both need to be updated in each M step, we adopt the method called generalized expectation
maximization [41], where both parameters A, Θ are updated sequentially as long as the complete data
log-likelihood increases.

Then, following the EM step, we calculate the posterior probability of the latent variable γnk
given the observed data and old parameters in the E step:

γnk =
πkN (yn|µnk, Σnk)

∑k∈K πkN (yn|µnk, Σnk)
. (14)

In the M step, we maximize the expected value of the complete data log-likelihood. Putting
the priors in the Bayesian formulation, the final objective function εM we need to minimize becomes
the following:

εM = −
N

∑
n=1

∑
k∈K

γnk {log πk + logN (yn|µnk, Σnk)}+ εprior, (15)

where the εprior are defined in Equation (13). The weight of the gaussian mixture πk can be updated as

πk =
1
N

N

∑
n=1

γnk. (16)

In the next step, we need to update the µjk, Σjk and A. Using Equation (5), we can obtain the
derivatives of the objective function εM in Equation (15) with respect to µjk, Σjk, αnj

∂εM
∂µjl

= −
N

∑
n=1

∑
k∈K

δlkj
αnjλnk, (17)

∂εM
∂Σjl

= −
N

∑
n=1

∑
k∈K

δlkj
α2

njΨnk, (18)

∂εM
∂αnj

=− ∑
k∈K

λT
nkµjkj

− 2αnj ∑
k∈K

Tr(ΨT
nkΣjkj

)

+ β1(KA)nj − β3(UVT)nj,

(19)
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where δlkj
= 1 when l = k j and 0 otherwise, λnk ∈ RB×1 and Ψnk ∈ RB×B are given by

λnk = γnkΣ−1
nk (yn − µnk), (20)

Ψnk =
1
2

γnkΣ−T
nk (yn − µnk)(yn − µT

nk)Σ
−T
nk −

1
2

γnkΣ−T
nk , (21)

and the K = L− β2
β1

IN (suppose β1 6= 0), U, V are the singular value decomposition of the abundance A.

A = UΣVT , Σ = diag({πi}1≤i≤r), (22)

where U ∈ Rn×r and V ∈ Rm×r are matrices with orthogonal columns and the singular values
πi(1 ≤ i ≤ r) are positive. It is convenient to represent the derivatives in matrix forms. Considering
the multiple summations in Equations (17)–(19), we can write them as

∂εM
∂µjl

= − ∑
k∈K

δlkj
(ATΛk)j, (23)

∂εM
∂vec(Σjl)

= − ∑
k∈K

δlkj
((A ◦A)TΨk)j, (24)

∂εM
∂A

= − ∑
k∈K

ΛkRT
k − 2A ◦ ∑

k∈K
ΨkST

k + β1(KA)− β3(UVT), (25)

where ◦ denotes the Hadamard product, Λk ∈ RN×B, Ψk ∈ RN×B2
denote the matrices formed by

λnk, Ψnk as follows:
Λk := [λ1k, λ2k, ..., λNk]

T ,

Ψk := [vec(Ψ1k), vec(Ψ1k), ..., vec(ΨNk)]
T ,

vec(·) denotes the vectorization of the matrix and Rk ∈ RM×B, Sk ∈ RM×B2
are defined by

Rk := [µ1k1 , µ2k2 , ..., µMkM ]T , (26)

Sk := [vec(Σ1k1), vec(Σ2k2), ..., vec(ΣMkM )]T . (27)

If the optimization problem has no constraint condition, we can let ∂εM
∂µjl

= 0, ∂εM
∂Σjl

= 0 and ∂εM
∂A = 0

to get the minimum of εM. However, the Σjk has the positive definite constraint and αnj has the
non-negativity (ANC) and sum-to-one (ASC) constraint, which make minimizing εM become very
difficult. Thus, we follow the method [24]. In each M step, using Equations (23)–(25) and decreasing
the objective function by project gradient decent. In estimating the number of components Kj from the
data, we use the Kullback–Leibler (KL) divergence to minimize difference with true density function
and the estimated density function, and can be mathematically written as follows:

DKL(gmj || fmj) =
∫
RB

gmj(y) log
gmj(y)

fmj(y|Θj)
dy

≈ − 1
Nj

Nj

∑
n=1

log fmj(y
j
n|Θj) + const,

(28)

where fmj(y|Θj) is the estimated density function with Θj :=
{

πjk, µjk, Σjk : k = 1, ..., Kj

}
, gmj(y) is

the true density function, Nj denotes number of the jth endmember and yj
n denotes nth element for the

jth endmember. Then, we take the cross-validation-based information criterion CVIC [50,51] to correct
for the bias. To sum up, the detailed procedure for solving Equation (15) is listed in Algorithm 1.
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Algorithm 1 Solving Equation (15) with EM.

Input: Collect mixed pixel matrix Y, endmember E, the parameter of smoothness and sparse constraint

β1, β2, and the parameter of low-rank property β3;
Output: The estimated abundance matrix A;

1: Implement PCA and set αnk ← (RkRT
k + εIM)−1Rkyn as initialization;

2: Using the KL divergence to get the number of components Kj;
3: Using CVIC to correct for the bias;
4: while not converged do
5: E step:

γnk =
πkN (yn|µnk, Σnk)

∑k∈K πkN (yn|µnk, Σnk)
,

6: M step:
∂εM
∂µjl

= −
N

∑
n=1

∑
k∈K

δlkj
αnjλnk = 0,

∂εM
∂Σjl

= −
N

∑
n=1

∑
k∈K

δlkj
α2

njΨnk = 0,

∂εM
∂αnj

=− ∑
k∈K

λT
nkµjkj

− 2αnj ∑
k∈K

Tr(ΨT
nkΣjkj

)

+ β1(KA)nj − β3(UVT)nj = 0.

7: Update γnk and A;
8: end while
9: Return A.

Given the complexity of EM scheme in solving GMM-SS-LRR, the most time-consuming step
is estimating the abundances A in each iteration. Thus, the EM complexity of GMM-SS-LRR has
spatial complexity O(NB2) and time complexity O(NB3). The detailed procedure of the proposed
GMM-SS-LRR is listed in Algorithm 2.

Algorithm 2 Proposed GMM-SS-LRR.

Input: Collect mixed pixel matrix Y, endmember E, the parameter of smoothness and sparse constraint

β1, β2, and the parameter of low-rank property β3 and the number of the superpixels S;
Output: The estimated abundance matrix A;

1: Implement PCA on Y and obtain the first principal component;
2: Segment Y into homogeneous regions based on its first principal component by using entropy

rate [42] ;
3: for each homogeneous region do
4: |Recover A with Algorithm 1;
5: end for
6: Obtain A from each homogeneous region;
7: Return A.

4. Experimental Result

We evaluated the performances of the proposed GMM-SS-LRR and compared it with the
state-of-the-art algorithms on synthetic datasets and real HSIs. To demonstrate the efficiency of
the proposed GMM-SS-LRR, we mainly compared it with three other algorithms, namely the normal
compositional model (NCM), the beta compositional model (BCM) (BCM takes the spectral version
with quadratic programming) and GMM, because these three methods are both based on LMM and
model the endmember using continuous distribution. For the proposed method GMM-SS-LRR and
GMM, the original image data were projected to a subspace with 10 dimensions to speed up the
computation for abundance estimation. Since NCM is a supervised algorithm, we took the ground
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truth pixels as input, and modeled them by an unimodal Gaussian distribution and obtained the
abundance maps by maximizing the log-likelihood. BCM was also implemented as a supervised
algorithm; ground truth pure pixels were again taken as input and the results were the abundance maps.
In the following experiments, we implemented the algorithm in MATLABr and experiments were
performed on a laptop with 2.6-GHz Intel Core CPU, 16-GB memory. All parameters of β1 (smoothness
prior constraint) and β2 (sparse prior constraint) were set following the GMM method [34] (in the
synthetic dataset, the parameters were set to β1 = 0.1, β2 = 0.1; and in the real HSIs, the parameters
were set to β1 = 5, β2 = 5 ), and, for the proposed GMM-SS-LRR method, the low-rank property in the
synthetic dataset was set to β3 = 0.1 and in the real HSIs was set to β3 = 1. The number of superpixels
for both synthetic dataset and real HSIs was set to S = 5.

For comparison of abundances, we calculated the root mean squared error (RMSE) for abundance
error, which is defined as follows:

RMSE = (
1
N ∑

n
|αGT

nj − αest
nj |2)1/2, (29)

where αGT
nj are the ground truth abundances and αest

nj are the estimated values. Since only some pure

pixels were identified as ground truth in the real HSI dataset, we calculated errorj = ( 1
|I| ∑n∈I |αGT

nj −
αest

nj |2)1/2 given the pure pixel index set I .

4.1. Synthetic Datasets

For the synthetic data experiments, the mean endmember spectra we used were randomly selected
from the ASTER spectral library [24] with slight constant changes (their original spectra are shown
in Figure 2b), which determined a spectral range from 0.4 µm to 14 µm. The size of the synthetic
was 60× 60 pixels and constructed from five endmembers (limestone, basalt, concrete, conifer and
asphalt), whose spectral signatures are highly differentiable. The covariance matrices Were constructed
by α2

jkIB + b2
jkµjkµT

jk where µjk is a unit vector controlling the major variation direction. We made
the first material as background, and the procedure of generating the abundance maps followed
Zhou et al. [52]: for each other material (not as background), 600 Gaussian blobs were randomly
placed in the corner, and the shape, width and location were sampled from Gaussian distributions.
The Gaussian noise was added to generated pixels; the noise sigma was set with σY = 0.001. Figure 2a
shows the resulting color images by extracting the bands corresponding to wavelengths 488 nm,
556 nm, and 693 nm. The endmember spectra we used to generate the synthetic data are shown in
Figure 3, where we can see the centers and the major variations of the Gaussians.

Figure 2c,d shows the first principle component of the synthetic dataset and the superpixel map
we used, respectively. The synthetic image was correctly partitioned into several regions, whose
shape and size were accustomed on the basis of different spatial structures, meaning there was a
high degree of correlation among the spectral signatures of the neighboring pixels, hence we could
take low-rank representation to further exploit the spatial information and improve the abundance
estimation. The abundance maps of our method and other comparison algorithms for the synthetic
dataset are shown in Figure 4; since the materials were randomly placed in the corner, the abundance
maps of the last four materials (basalt, concrete, conifer and asphalt) look relatively clean and less
cluttered. Comparing them with the ground truth, we can see that all algorithms correctly estimated
the abundance maps scatter. However, for BCM and NCM, although the abundance maps performed
relatively clean as well, the shape and size were quite different compared with the ground truth.
This means that many pixels with original abundance of 1 were predicted to have abundance of 0,
which caused a relatively large value of RMSE. As for the GMM method, although the abundance
maps appeared to have clutter point, the shape and size were similar to the ground truth. Hence,
the estimating accuracy was higher than NCM and BCM. The GMM-SS-LRR algorithm with SS and
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low-rank property was much closer to the ground truth map. The quantitative analysis of those four
algorithms is shown in Table 1.

The histograms of the synthetic pure pixels for the five materials are shown in Figure 5. Since the
BCM algorithm was not modeled as Gaussian distribution, the probability of each distribution was
only compared among GMM-SS-LRR, GMM and NCM algorithm. The histogram was the statistical
probability value of the pure materials for the five materials (when projected to one-dimensional space
determined by performing PCA). The probability of each distribution was calculated by multiplying
the value of the density function at each bin location with the bin size. Figure 5 shows that the graph of
NCM is similar to GMM and GMM-SS-LRR when the distribution of pure pixels was generated by an
unimodal Gaussian. Nevertheless, for basalt and concrete, GMM and GMM-SS-LRR provided a more
accurate estimation because NCM was modeled by a single Gaussian hypothesis. When comparing
GMM and GMM-SS-LRR, the distribution was similar for limestone, concrete, conifer and asphalt.
However, for basalt, GMM-SS-LRR fitted the histograms better than GMM, as the first step in GMM
approach was to separate the library into several groups, each of which representing a material and
clustered into several centers. The size of each cluster affected the probability of picking its center
to a large extent. When directly using the GMM method for unmixing, sometimes the estimated
distribution of the cluster did not fit the ground truth well. Taking SS in the first principle component
of HSI helped the GMM better separate the clusters. The quantitative analysis of these three algorithms
is shown in Table 2. We calculated the probability value in each histograms between the ground truth
and estimate value using Equation (29).

Figure 2. (a) The synthetic color images by extracting the bands corresponding to wavelengths 488 nm,
556 nm, and 693 nm; (b) the original spectra from the ASTER library; (c) the first principle component
of the synthetic dataset; and (d) the superpixel map used for the synthetic dataset.
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Figure 3. Estimated GMM-SS-LRR in the wavelength–reflectance space for the synthetic dataset.
The background gray image represents the histogram created by placing the pure pixel spectra into
the reflectance bins at each wavelength. The different colors represent different components, where
the solid curve is the center µjk, the dashed curves are µjk ± 2σjkvjk (σjk is the square root of the
large eigenvalue of Σjk while vjk is the corresponding eigenvector), and the legend shows the prior
probabilities.

Figure 4. Abundance maps for the synthetic dataset. From top to bottom: Ground truth, GMM-SS-LRR,
GMM, NCM, and BCM. The corresponding endmembers from left to right are: limestone, basalt,
concrete, conifer and asphalt.



Remote Sens. 2019, 11, 911 13 of 23

Figure 5. Histograms of pure pixels for the five materials (when projected to one-dimensional
space determined by performing PCA on the pure pixels of each material) of the synthetic dataset.
The probability of each distribution was calculated by multiplying the value of the density function at
each bin location with the bin size.

Table 1. Abundance errors for synthetic dataset.

×10−4 GMM-SS-LRR GMM NCM BCM

Limestone 142 816 566 743
Basalt 59 182 278 311

Concrete 94 539 460 586
Conifer 50 50 248 273
Asphalt 45 123 262 277

Whole map 78 342 363 438

Table 2. The RMSE calculated between the probability value in each histogram and the estimated value
at each bin location for the synthetic dataset.

×10−4 GMM-SS-LRR GMM NCM

Limestone 60 62 81
Basalt 89 134 248

Concrete 90 93 259
Conifer 72 72 160
Asphalt 94 94 140

4.2. Mississippi Gulfport Datasets

The dataset was collected at the University of Southern Mississippi’s Gulfpark Campus, and is a
289 × 284 image with 72 bands corresponding to wavelengths from 0.368 µm to 1.043 µm. The spatial
resolution is 1 m/pixel. The scene contains several man-made and natural materials including
sidewalks, roads, various types of building roofs, concretes, shrubs, trees and grasses. To better
compare the performance between our method and GMM, we chose the same ROI area followed
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in [34]. The ROI was a 58 by 65 pixel area containing five materials. The original RGB image and the
selected ROI are shown in Figure 6a,c.

Figure 7 shows the abundance maps comparison in the Gulfport dataset. Comparing them with
the ground truth (the first row of Figure 7), we can see that BCM failed to estimate the pure pixels
of tree, even though ground truth pure pixels were used for training. For example, the fourth and
fifth abundance maps of BCM showed that the pixels of tree were mixed with grass and asphalt.
For BCM and NCM, we did not use PCA to get the main information while using the original HSI
dataset as input. However, they still performed poorly on this dataset. The result of GMM-SS-LRR not
only showed sparse abundances for the region but also interpreted the boundary as a combination
of neighboring materials. Although the results of GMM method appeared to be good in general,
the abundances in a pure material region were inconsistent. The result of these abundance maps
also verified that the GMM-SS-LRR algorithm with SS and low-rank property could better capture
the spatial data structure and enhance the performance in the abundance estimation. The errors
of abundances for these algorithms are shown in Table 3, which demonstrates that GMM-SS-LRR
performed best overall.

Figure 8 shows the GMM-SS-LRR result in the wavelength–reflectance space for the Gulfport.
Figure 9 shows histograms of pure pixels for the five materials (when projected to one-dimensional
space determined by performing PCA on the pure pixels of each material) of the Gulfport dataset.
Although there were no multiple peaks in any of the histograms, NCM algorithm still did not fit the
histograms of the shadow. In contrast, our method and GMM algorithm gave a much better fit for this
pure pixel distribution. For the performance of all five materials, our method matched the ground
truth best, and this was also verified in the quantitative analysis presented in Table 4.

Figure 6. (a) The original RGB image of the Mississippi Gulfport dataset; (b) the original ground truth
map; (c) the selected ROI 58 by 65 pixels; (d) ground truth materials of asphalt, grass, shadow, tree and
grey roof in the ROI; (e) the first principle component of the Gulfport dataset; (f) the superpixel map
used for the Gulfport dataset; and (g) the mean spectra of the five materials.
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Figure 7. Abundance maps for the Gulfport dataset. From top to bottom: Ground truth, GMM-SS-LRR,
GMM, NCM, and BCM. The corresponding endmembers from left to right are: asphalt, shadow, roof,
grass and tree.

Figure 8. Estimated GMM-SS-LRR in the wavelength–reflectance space for the Gulfport dataset.
The background gray image and the curves have the same meaning as in Figure 3.
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Figure 9. Histograms of pure pixels for the Gulfport dataset and the estimated distribution from
GMM-SS-LRR, GMM and NCM when projected to one dimension.

Table 3. Abundance errors for Gulfport dataset.

×10−3 GMM-SS-LRR GMM NCM BCM

Asphalt 161 202 383 865
Shadow 136 149 151 888

Roof 216 338 627 536
Grass 10 21 166 341
Tree 197 183 647 761

Whole map 99 140 278 328

Table 4. The RMSE calculated between the probability value in each histogram and the estimated value
at each bin location for the Gulfport dataset.

×10−3 GMM-SS-LRR GMM NCM

Asphalt 229 322 332
Shadow 137 273 473

Roof 91 163 186
Grass 81 88 70
Tree 110 110 111

4.3. Salinas-A Datasets

The dataset was collected by the AVIRIS sensor over Salinas Valley, California, and is characterized
by high spatial resolution (3.7-m pixels). It is a 512 by 217 image with 224 bands. The original image
includes vegetables, bare soils, and vineyard fields. Considering that the whole dataset contains many
different objects, we only performed experiments on the exemplar ROI. It is a small sub scene of Salinas
image, denoted Salinas-A, which is commonly used. It comprises 86 by 83 pixels and includes six
classes: broccoli, corn, lettuce 4wk, lettuce 5wk, lettuce 6wk and lettuce 7wk. The RGB image, ground
truth and the superpixel map are shown in Figure 10.

Figure 11 shows the abundance maps comparison in the Salinas-A dataset. Comparing them
with the ground truth (the first row of Figure 11), we can see that BCM and NCM both failed to
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estimate the pure pixels of corn, and, as for the lettuce 4wk, the abundance maps of GMM, NCM
and BCM were mixed with the endmember corn. GMM-SS-LRR matched the ground truth best
followed by GMM. The errors of abundances for these algorithms are shown in Table 5, which also
implies that GMM-SS-LRR performed best overall. Figure 12 shows GMM-SS-LRR result in the
wavelength–reflectance space. Figure 13 shows histograms of pure pixels for the six materials and the
estimated distributions of GMM-SS-LRR, GMM and NCM. When the distribution of pure pixels was
a single peak, the NCM algorithm still did not closely approximate the ground truth. In the lettuce
5wk, the GMM algorithm failed to estimate the distribution since the pure pixels had multiple peaks.
This also showed that our method helped the GMM better separate the clusters and improve the
performance in the estimated distribution. The quantitative analysis is shown in Table 6.

Table 5. Abundance errors for Sainas-A dataset.

×10−3 GMM-SS-LRR GMM NCM BCM

Brocoli 506 715 1421 511
Corn 386 2087 8790 8021

Lettuce 4wk 2090 2096 2732 2396
Lettuce 5wk 710 520 1858 1536
Lettuce 6wk 551 1975 2529 1597
Lettuce 7wk 1061 1046 3053 2423
Whole map 498 802 2268 2006

Table 6. The RMSE calculated between the probability value in each histogram and the estimated value
at each bin location for the Sainas-A dataset.

×10−4 GMM-SS-LRR GMM NCM

Brocoli 1303 1196 552
Corn 264 342 607

Lettuce 4wk 140 159 164
Lettuce 5wk 51 112 120
Lettuce 6wk 122 187 138
Lettuce 7wk 110 133 599

Figure 10. (a) Original RGB image of the Salinas-A dataset; (b) ground truth materials of broccoli,
corn, lettuce 4wk, lettuce 5wk, lettuce 6wk and lettuce 7wk; (c) the first principle component of the
Salinas-A dataset; (d) the superpixel map used for the Salinas-A dataset: and (e) the mean spectra of
the six materials.
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Figure 11. Abundance maps for the Salinas-A dataset. From top to bottom: Ground truth,
GMM-SS-LRR, GMM, NCM, and BCM. The corresponding endmembers from left to right are: broccoli,
corn, lettuce 4wk, lettuce 5wk, lettuce 6wk, lettuce 7wk.

Figure 12. Estimated GMM-SS-LRR in the wavelength–reflectance space for the Salinas-A dataset.
The background gray image and the curves have the same meaning as in Figure 3.
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Figure 13. Histograms of pure pixels for the Salinas-A dataset and the estimated distribution from
GMM-SS-LRR, GMM and NCM when projected to one dimension.

4.4. Effects of the Size of the Superpixels

For the proposed method GMM-SS-LRR, the number of superpixels for both synthetic dataset
and real HSIs was set to S = 5. To compare the effects of different sizes of superpixels on the
unmixing accuracy, we experimented with the synthetic dataset by changing the size of the parameters
S. From the first row of Figure 14b, we can see that, when S = 1, the GMM-SS-LRR abundance maps
were similar to those of GMM (the second row of Figure 14a), which means that, when we did not take
the SS, the pixels were not in the homogeneous region, thus only taking low-rank representation for
prior constraint could not improve the performance of the abundance estimation. As the number S
increased, the performance of the abundance estimation was improved. Compared with the ground
truth (the first row of Figure 14a), we can see that, when the number of superpixels S was set to 5 and
7, the precision of unmixing became the best. That means only segmenting the pixel into a highly
spatially related region, and then taking low-rank representation could greatly improve the abundance
estimation. However, when the number of superpixels S was set to 10 and 15, the accuracy of the
unmixing declined. This was because, when the superpixel was too small, there were not enough data
for training, and those superpixels had no statistical significance. The quantitative analysis of different
size of superpixels is shown in Table 7.
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Figure 14. (a) The synthetic dataset abundance maps for the Ground truth and GMM; and (b) the
corresponding abundance maps with the different size of the superpixels. From top to bottom: S = 1, 3,
5, 7, 10, 15. From left to right: Superpixel map, limestone, basalt, concrete, conifer and asphalt.

Table 7. GMM-SS-LRR abundance errors with different sizes of superpixels for synthetic dataset.

GMM-SS-LRR S = 1 S = 3 S = 5 S = 7 S = 10 S = 15

Limestone 816 813 142 142 628 645
Basalt 182 180 59 58 168 170

Concrete 539 537 93 93 491 508
Conifer 50 47 50 48 96 96
Asphalt 123 120 45 46 182 186

Whole map 342 339 78 77 313 321
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5. Conclusions

In this paper, we propose a GMM-SS-LRR method for hyperspectral abundances estimation
problem based on the GMM, which can achieve better abundance estimation results and fully consider
the possible spatial correlation between local pixels. Taking SS in the first principal component of
HSI to get the homogeneous regions can help the GMM method make pixels and their associated
abundances similar for the adjacent pixels, and enhance the performance of the endmember estimation.
Using low-rank property in the homogeneous regions can also get better abundance estimation.
Moreover, considering the endmember variability phenomenon, under the Bayesian framework, we
use GMM to formulate the unmixing problem, and put the low-rank property into the objective
function as a prior knowledge; the conditional density function leads to a MAP problem that can be
solved by the GEM method. The experiments on both synthetic datasets and real HSI demonstrated
that the proposed GMM-SS-LRR is efficient for solving the hyperspectral unmixing problem compared
with the other algorithms such as GMM, NCM, and BCM.
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