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Abstract: In recent decades, in order to enhance the performance of hyperspectral image classification,
the spatial information of hyperspectral image obtained by various methods has become a research
hotspot. For this work, it proposes a new classification method based on the fusion of two
spatial information, which will be classified by a large margin distribution machine (LDM). First,
the spatial texture information is extracted from the top of the principal component analysis
for hyperspectral images by a curvature filter (CF). Second, the spatial correlation information
of a hyperspectral image is completed by using domain transform recursive filter (DTRF). Last,
the spatial texture information and correlation information are fused to be classified with LDM.
The experimental results of hyperspectral images classification demonstrate that the proposed
curvature filter and domain transform recursive filter with LDM(CFDTRF-LDM) method is superior
to other classification methods.

Keywords: hyperspectral image; classification; curvature filter; domain transform recursive filter;
large margin distribution machine

1. Introduction

Hyperspectral images (HSI), which provide valuable spectral information, have been widely
used in remote-sensing applications [1–6]. In addition, classification of HSI has drawn lots of
attention for its importance in crop monitoring [7], environment monitoring [8], forest monitoring [9],
mineral identification [10] and forest mapping [11].

Many scholars around the world have successfully studied various classification methods
of HSI, including sparse representation-based techniques [12], Bayesian estimation method [13],
K-mean [14], maximum likelihood [15], multinomial logistic regression [16] and deep learning [17].
More specifically, Support Vector Machine (SVM) has been fruitfully applied in HSI classification and
achieved respectable results [18]. Zhang et al. adopted the idea of maximizing the margin mean and
minimizing the margin variance to improve the maximum margin model of SVM, with the suggestion
of using large margin distribution machine (LDM) [19]. In addition, Zhan et al. applied LDM to HSI
classification [20].

To improve the classification accuracy, many classification methods with spatial information
extraction have been successfully investigated. Some scholars have attempted to obtain spatial
information by segmentation to improve HSI classification. A classification method based on the
construction of a minimum spanning forest from the region markers, which were gained from the initial
classification results [21]. Ghamisi et al. proposed a classification method based on two segmentation
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methods, fractional-order Darwinian particle swarm optimization and mean shift segmentation, and
classified the integration of these two methods by SVM [22]. Also, the existing researches acquired
spatial information with morphological profile feature. Multiple morphological profiles were proposed
for synthesizing the spectral-spatial information extracted from the multicomponent base images and
were interpreted with decision fusion and sparse classifier based on multinomial logistic regression [23].
The method proposed by Xue et al. for HSI classification was performed via morphological component
analysis-based image separation rationale in sparse representation [24]. Liao et al. applied the
morphological profile filter and domain transform normalized convolution Filter (DTNCF) to extract
the spatial information [25], which was combined and fed into support vector machine (SVM), and
finally implemented two-step optimization in the classification process [26]. Moreover, some scholars
attempted to improve classification performance with Markov random field [27]. For instance, Sun
et al. proposed an HSI classification method, including a spectral data fidelity term and a spatially
adaptive Markov random field prior in the hidden field based on maximum a posteriori framework
with sparse multinomial logistic regression [28]. Zhang et al. used an extended Markov random field
model to combine the multiple features with local and nonlocal spatial constraints in the semantic
space with probabilistic SVM for HSI classification [29].

In order to obtain the fully spatial features of HSI, many classification methods for spatial
information extraction have been investigated. For example, the integration of spectral and spatial
context was an effective method for HSI classification, and more researchers intended to extract
spatial information with different filters, such as guided filter (GDF) [30], bilateral filter (BF) [31],
Gabor filter (GF) [32] and etc. Wang et al. suggested a filtering framework named discriminatively
guided image filtering which integrates SVM and linear discriminative analysis by GDF to enhance
classification performance [33]. A method of k-nearest neighbor with GDF was presented by Guo et al.
to extract spatial information and optimize the classification accuracy [34]. WANG et al. proposed
a spectral-spatial HSI classification method based on joint BF and graph cut segmentation with the
SVM classifier [35]. Sahadevan et al. integrated the spatial texture information obtained with BF into
the spectral domain to improve SVM performance [36]. A hyperspectral classification method was
proposed based on sparse representation classification spatial features, which were extracted by joint
BF with the first principal component as the guidance image in the literature [37]. Edge-preserving
filter (EPF) and principal component analysis (PCA) [38]-based EPFs (PCA-EPFs) methods with GDF
or BF and recursive filter were adopted to progress SVM classification performance in the references
of [39] and [40], respectively. Moreover, a feature extraction method based on the image fusion with
multiple subsets of adjacent bands and recursive filter (IFRF) was achieved by Kang et al. to increase
accuracy of HSI classification [41]. In addition, a spectral-spatial Gabor surface feature fusion method
was completed with including SVM classifier for HSI classification, and the magnitude pictures of
Gabor features were extracted by 2 dimensional GF in the reference [42]. Li et al. projected Gabor
features of the hyperspectral image obtained with GF into the kernel induced space through composite
kernel technique [43]. Chen et al. combined GD with deep convolutional neural networks to mitigate
overfitting problem and increase classification accuracy for HSI classification [44]. Tu et al. proposed
an HSI classification method o based on non-local means filtering with maximum probability and
SVM, which uses the spatial context information and non-local means filtering in the first principal
component to obtain the optimization probability image of spatial structure [45].

A filter can be used to extract spatial texture features, but it is difficult to get complete spatial
features using a single filter. In this paper, we first used the curvature filter (CF) to extract the spatial
texture features [46,47], and then applied DTRF [25] to attain spatial correlation features to enrich the
spatial characteristics and provide more effectively hyperspectral image classification. Finally, LDM
can be adopted to classify the fusion of two spatial information to form a new classification method,
which combine the curvature filter and domain transform recursive filter with LDM (CFDTRF-LDM).
The work of this paper can be summarized as follows:
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(1) CF with the minimal projection operator has superior characteristics of small calculation amounts
and fast convergence [46], which can efficiently extract the spatial features of a hyperspectral
image. The spatial correlation information of obtained by DTRF benefits the spatial texture
information to improve classification accuracy.

(2) The effective fusion of the two spatial information is conducive to the LDM classification and is
superior to other methods.

The rest of this article is organized as follows. The methodology is shown in Section 2.
The hyperspectral image datasets is applied in Section 3 to test the effectiveness of the proposed
method, with analyzing the experimental results with CFDTRF-LDM. Finally, conclusions are drawn
in Section 4.

2. Methodology

2.1. Classification Method for HSI

LDM improves the SVM classification performance with simultaneous maximization of the
margin means and minimization of the margin variances. A training set is defined as S =

{(a1, b1), . . . , (am, bm)}, in which, xi is the training sample labelled by yi ∈ (+1,−1), i = 1, 2, · · · , m,
and m is the number of the training data. The function of SVM was to predict the unlabeled data with
the hyperplane of maximization of the minimum margin [48], and can be shown as follows:

g(a) = vT ϕ(a), (1)

where a is the weight vector of decision function, g(a) is the linear model and ϕ(a) is a mapping of a
by a kernel k, such as:

kij = ϕ(ai)
T ϕ(aj) (2)

The margin of instance (xi, yi) can be formulated as

ηi = yivT ϕ(a), i = 1, 2, · · · , m. (3)

For the inseparable conditions, the soft-margin LDM can be expressed as Equation (4).

min
v

1
2 vTv + α1η̂ − α2

−
η + C

n
∑

i=1
ξi

s.t.yivTφ(ai) ≥ 1− ξi,
ξ > 0, i = 1, 2, · · · , m

, (4)

where α1 and α2 are the parameters corresponding to the trading-off the margin variance and
the margin mean. The margin mean η and the margin variance η̂ can be characterized as
Equations (5) and (6), respectively.

η =
m

∑
i=1

yivT ϕ(a) =
1
n
(Ab)Tv, i = 1, 2, · · · , m (5)

η̂ = 1
m2

m
∑

i=1

m
∑

j=1
(bivT ϕ(ai)− bjvT ϕ(aj))

2

= 1
m2 (mvTAATv− vTbbTATv)

. (6)

Since the hyperplane of LDM intends to maximize the mean margin and minimize the margin
variance, LDM can achieve more effective performance for the hyperspectral image classification with
small amount of training data [20,26].
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2.2. Spatial Information Extraction

In order to obtain fully spatial information, CF and DTRF were used to extract the spatial texture
features and spatial correlation features, and the principle of the CF and DTRF will be analyzed in
the following.

2.2.1. Curvature Filter

Curvature filter is proposed to first study the surface corresponding to the curvature and
then select one of all surfaces to best approximate the data. As a unique optimization algorithm,
the curvature filter optimizes regularization energy and implicitly uses known differential geometry
surfaces in the filtering process.

A. Optimization of energy functional

The basic idea of the variational regularization method is to first define the energy function of the
image processing problem. When the energy function is smaller, the variable is closer to the expected
result. There is a relationship in the process of optimizing the model

∂(M) = ∂D(M, I) + λ∂R(M), (7)

where ∂D(M, I), which is data-fitting energy, measured how well M fits the image data I. ∂R(M) that
is regularization energy formalized prior knowledge about M, and λ is scalar regularization coefficient
used to measure the contribution of the two energy.

The evolution process of the energy function in the variational model is shown in Figure 1.
The data-fitting energy ∂D(M, I) is always increasing, while the regular energy ∂R(M) is decreasing.
Since the overall energy ∂(M) is decreasing, this indicated that the regularization energy is the main
part in the optimization process. Therefore, curvature filtering suggests optimizing the regular energy.
As long as the reduction of the regular energy is greater than the increase in the data-fitting energy, the
overall energy decline can be guaranteed. The curvature filter proposes to optimize the variational
model, which is to reduce the energy of the curvature regular energy to a minimum value, and
minimize the regular energy by minimizing the regular curvature from the perspective of differential
geometry [46].
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There is a dependency between adjacent pixels, which hinders local minimization of the principal
curvature. A domain decomposition algorithm was proposed here to circumvent the problem.

As shown in Figure 2, the discrete domain Ω of image U was decomposed into four subsets:
red triangle RT, red circle RC, purple triangle PT, purple circle PC. The advantages of this decomposition
were as follows: (1) the dependence of adjacent pixels can be eliminated, and the filtering efficiency
can be improved; (2) the updated field can be used to ensure convergence due to independence; (3) all
the tangent planes can be enumerated in a 3 × 3 local window [46].Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 24 
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Figure 2. Disjoint domain decomposition.

C. Projection to the tangent plane

Assuming that a pixel is x, constructing the surface is to project the current pixel value of
hyperspectral image M(x) onto the ideal pixel value M(x) which is on the optimal tangent plane of
the adjacent pixel [46]. The relationships are met as following:

M = M + d, (8)

where d is the projection distance.
To find the optimal tangent plane of the field M(x), all possible triangles are enumerated in the

3 × 3 neighborhood of x (as shown in Figure 3, excluding x as the vertex). Among them, four pass the
red field R, and four pass the purple field P, and four pass the red/purple mixed field RP.
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As shown in Figure 4, since there are common edges of x passing through the 12 triangular sections
and the projection was sufficient, there were only eight different projection distance di. There are two
common edges in R, two common edges in P, and four mixed tangent planes.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 24 
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D. Minimal Projection Operator (Pg)

According to Euler’s theorem, it can be known that:

di = k1 cos 2θi + k2 cos 2θi, (9)

where: k1, k2 are the principal curvatures; θi is the angle to the principal plane. If the angular sample θi
is sufficiently dense within (−π, π), when k1, k1 ≥ 0, there is dm ≈min{ki}.

For the pixel at (i, j), the distance dm can be obtained from the tangent plane with the neighborhood
pixels in the 3 × 3 window [46].

d1 = (Mi−1,j + Mi+1,j)/2−Mi,j
d2 = (Mi,j−1 + Mi,j+1)/2−Mi,j
d3 = (Mi−1,j−1 + Mi+1,j+1)/2−Mi,j
d4 = (Mi−1,j+1 + Mi+1,j−1)/2−Mi,j
d4 = (Mi−1,j+1 + Mi+1,j−1)/2−Mi,j
d5 = Mi−1,j + Mi,j−1 −Mi−1,j−1 −Mi,j
d6 = Mi−1,j + Mi,j+1 −Mi−1,j+1 −Mi,j
d7 = Mi,j−1 + Mi+1,j −Mi+1,j−1 −Mi,j
d7 = Mi,j+1 + Mi+1,j −Mi+1,j−1 −Mi,j
d8 = Mi,j+1 + Mi+1,j −Mi+1,j+1 −Mi,j

(10)

Therefore, the minimum absolute value dm is taken as the minimum projection of M(x) to M̂.

dm = min{|di|, n = 1, 2, · · · · · · , 8}. (11)

M̂ is on the tangent plane of the field

M̂i,j = Mi,j + dm. (12)
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E. Gaussian curvature filter

The minimum projection operator is iterated with all pixels of RT , RC, PT and PC, and the Gaussian
curvature filter can be generated as:

O = Pg(M(x)), x ∈ {RT , RC, PT , PC}. (13)

As a unique optimization algorithm, Gaussian curvature filtering is an image smoothing algorithm
with edge protection, which assumes that the surface formed by the ideal noise-free image is
block-expandable, and the Gaussian curvature is zero everywhere. Also, the pixel values are directly
adjusted so that the tangential plane of the domain pixel satisfied the assumption, avoiding the
explicit calculation of the Gaussian curvature. Thus, the image surface is no longer required to have
second-order variability, allowing for the presence of abrupt edges and corners in the image to ideally
protect the edges of image.

In hyperspectral images, there are hundreds of frequency bands, high correlation between large
amount of data and adjacent bands, which leads to redundant information. In order to obtain more
comprehensive spatial information with CF, we first use PCA to reduce dimensionality of hyperspectral
images. The CF validation test will be found in Section 3.3.

2.2.2. Domain Transform Recursive Filter (DTRF)

DTRF proposed by Gastal et al. is used for image filtering, in which two-dimensional image
filtering can be converted into one-dimensional image filtering [25]. The energy function of DTRF for
hyperspectral image R at the i-th band can be represented as:

Di(n) = (1− gd)I[n] + gdDi[n− 1] (14)

and
d = f (yn)− f (yn−1) (15)

f (yn) =
∫ yn

0
1 +

σs

σr

c

∑
l=1

∣∣R′k(x) |dx (16)

σr =
√

3σH (17)

σHt = σs
√

3
2N−t
√

4N − 1
(18)

a = e−
√

2/σH , (19)

where gd is a feedback coefficient, I[n] is the hyperspectral image, Di[n− 1] is the result of the (n-1)-th
recursive filtering, d is the distance between neighbor samples yn and yn−1 in the transformed domain
Ωw, f (yn) which is calculated by integrating the partial differential for the hyperspectral band image
Rk, which is transformed into an increasing function. Besides, r is filter radius, σs is the spatial standard
deviation, σr is the range standard deviation, σHt is the value of the t-th iteration, and N is the total
number of iterations.

DTRF has an infinite impulse response with the exponential decay. Briefly, as d increases, ad goes
to zero, which stops the propagation chain, indicating that the neighborhood pixels are in the same
ground. Equation (14) is an asymmetric causal filter and depended on input and output information.
To obtain the filtering symmetry, this equation needs to be executed twice, such as the procedures: first
from left to right, and then from right to left; or from top to bottom, and then from bottom to top [25].

In general, the ground distribution of hyperspectral images has suitable uniformity, so there is
always a strong spatial correlation between pixels in a hyperspectral image. Moreover, the spatial
correlation meaning is an associated property of the reflection intensity between a pixel and an adjacent
pixel. However, spatial correlation information is often ignored in texture information extraction.
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To examine the spatial correlation features of CF and DTRF, Moran’s I [49,50] is employed
to test the spatial correlation of hyperspectral images before and after filtering, calculated by the
following formula:

I =

n
n
∑

i=1

n
∑

j=1
αij(Yi −Y)(Yj −Y)

n
∑

i=1

n
∑

j=1
αij

n
∑

i=1
(Yi −Y)2

, (20)

where Yi and Yj are the reflection intensities of two hyperspectral pixels, and Y is the average of Y. n is
the pixel number of one band, and αij is the spatial weight.

The larger I is larger, the stronger the spatial correlation and vice versa. Section 3.4 describes
validation tests for spatial correlation information extraction with DTRF.

2.3. CFDTRF-LDM

Based on CF and DTRF, a new classification approach (CFDTRF-LDM) is proposed. CF and DTRF
are respectively applied to extract spatial texture information and spatial correlation information.
In order to obtain rich spatial correlation feature, the spatial correlation information is obtained
from original spectral images. In addition, in order to avoid the hughes phenomenon, the spatial
correlation information and spatial texture information were obtained from the original image and the
components of PCA respectively, so the total numbers of images are suitable for LDM classification.
The implementation process will be depicted as following.

Step 1: normalization. The formula (21) normalized the hyperspectral image R, where µ and σ are
corresponding to the mean and standard deviation of R.

H =
R− µ

σ
(21)

Step 2: dimensionality reduction. Since most of the information is distributed in the front principal
component after the PCA dimension is reduced, the normalized image H will be further lowered by
PCA, while the top 10% of the principal componentis selected for CF.

E = Pca(H) (22)

Step 3: spatial texture information extraction. CF extracts the spatial texture information Dt on
each band of E by Equation (13).

Step 4: spatial correlation information extraction. DTRF extracts the spatial correlation information
Dc from E.

Step 5: fusion. Equation (23) linearly fuses Dt and Dc:

D = Dt+Dc (23)

Step 6: classification. The training set is randomly selected in proportion from D and the test set is
formed with the remaining samples, which is verified by the LDM classifier.

The flow of the CFDTRF-LDM is shown in Figure 5.
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Figure 5. Flow of the proposed curvature filter domain transform recursive filter (CFDTRF-LDM).

3. Experiments

3.1. Hyperspectral Data Description

Three hyperspectral image datasets were used to verify the effectiveness of CFDTRF-LDM.
The first dataset was Indian Pines [51], which was acquired in 1992 by the airborne visible infrared
imaging spectrometer (AVIRIS) sensor in the Indian Pines region of Northwestern Indiana. It contains
220 spectral bands with a spatial size of 145× 145 pixels. Due to noise and water absorption, 20 spectral
bands were removed, leaving 200 bands remaining. This image includes 16 classes, and the specific
types and the numbers of each class are shown in Table 1.

Table 1. Comparison of classification accuracies (in percent) provided by seven methods for Indian
Pines (part A).

Ground Sum Train SVM PCA-SVM LDM PCA-LDM EPF IFRF PCA-EPFs

Alfalfa 54 11 45.59 73.20 90.08 83.42 55.88 89.51 83.28
Corn-no-till 1434 72 64.06 67.16 72.90 74.16 84.55 89.87 86.18

Corn-min-till 834 42 72.28 71.24 67.41 57.38 88.49 78.09 91.12
Corn 234 12 15.73 34.51 56.38 60.08 19.11 69.25 78.80

Grass-pasture 497 25 87.22 84.36 88.90 91.85 91.56 92.72 91.49
Grass-trees 747 37 94.11 95.83 94.98 94.35 99.89 97.97 93.53

Grass-pasture-mowed 26 5 45.46 73.57 83.57 69.11 43.86 64.18 60.59
Hay-windrowed 489 24 98.26 96.96 96.46 94.62 100.00 99.51 99.83

Oats 20 4 29.46 26.68 73.53 87.85 18.30 41.29 42.32
Soybeans-no-till 968 48 65.89 61.67 67.49 72.83 86.69 84.51 87.86

Soybeans-min-till 2468 123 82.38 82.87 79.34 73.30 97.83 94.58 96.35
Soybeans-clean-till 614 31 76.40 76.03 80.35 73.29 95.47 89.31 88.21

Wheat 212 11 95.66 98.28 99.51 99.01 99.88 99.16 76.38
Woods 1294 65 95.64 97.25 92.65 91.81 99.57 98.55 98.36

Bldg-grass-tree 380 19 41.31 33.53 61.07 56.65 53.77 76.75 91.20
Stone-steel-towers 95 5 81.22 57.49 86.38 76.38 93.87 67.63 58.59

OA/% - 77.47 77.81 79.85 78.49 90.35 90.64 91.62
AA/% - 68.17 70.66 80.69 78.51 76.80 83.31 82.76

Kappa/% - 74.12 74.52 77.03 77.36 88.92 89.30 90.43
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The second dataset was Salinas Valley [52] collected by AVIRIS in the Salinas Valley,
Southern California, in 1998. It has a high spatial resolution of 3.7 m with a region of the spatial
size of 512× 217 pixels and 206 spectral bands. Similarly, 200 bands were retained because of noise
and water absorption. The image also includes 16 classes, and the specific types and numbers of each
class are shown in Table 2.

Table 2. Comparison of classification accuracies (in percent) provided by seven methods for Indian
Pines (part B).

Ground Sum Train LDM-FL CF-SVM CF-LDM DTRF-SVM DTRF-LDM CFDTRFF-SVM CFDTRF-LDM

Alfalfa 54 11 93.13 86.69 89.41 92.38 98.73 76.32 93.62
Corn-no-till 1434 72 92.17 84.60 86.26 87.98 91.07 94.74 96.85

Corn-min-till 834 42 89.89 83.40 81.41 92.51 92.21 92.29 94.71
Corn 234 12 77.60 69.97 73.33 78.79 94.72 73.56 88.17

Grass-pasture 497 25 93.43 94.71 94.67 89.58 96.36 92.68 92.29
Grass-trees 747 37 96.56 97.39 98.51 94.76 97.01 97.32 99.01

Grass-pasture-mowed 26 5 100.0 74.11 97.50 27.94 100.0 98.61 93.45
Hay-windrowed 489 24 100.00 98.65 98.80 99.78 100.00 99.40 99.78

Oats 20 4 93.74 52.35 98.33 5.88 93.20 70.31 100.00
Soybeans-no-till 968 48 91.57 78.69 85.60 86.39 92.45 87.69 95.21

Soybeans-min-till 2468 123 92.56 91.60 86.97 95.57 95.02 96.80 96.97
Soybeans-clean-till 614 31 91.17 87.21 86.19 89.96 90.69 91.53 92.06

Wheat 212 11 99.14 99.12 99.26 97.24 94.09 99.25 99.75
Woods 1294 65 98.98 98.34 96.48 98.74 99.67 98.82 99.96

Bldg-grass-tree 380 19 90.20 48.87 68.97 92.66 93.68 91.12 99.16
Stone-steel-towers 95 5 92.09 84.00 88.38 67.51 81.45 70.04 95.67

OA/% - 93.31 88.09 88.54 92.29 94.60 94.13 96.64
AA/% - 93.26 83.11 89.38 81.10 94.40 89.41 96.04

Kappa/% - 92.39 86.36 86.94 91.20 93.84 93.29 96.16

The third dataset was Kennedy Space Center acquired by NASA airborne visible/infrared imaging
spectrometer (AVIRIS) at the Kennedy Space Center in Florida on 23 March 1996. AVIRIS collected
224 bands with 10 nm width with the center wavelengths from 400–2500 nm. The Kennedy Space
Center dataset was available at an altitude of approximately 20 km with a spatial resolution of 18 m.
After removal of water absorption and low SNR bands, 176 bands were used for the analysis. The image
also includes 13 classes, and the specific types and numbers of each class are shown in Table 3.

Table 3. Comparison of classification accuracies (in percent) provided by seven methods for Salinas
Valley (part A).

Ground Sum Training SVM PCA-SVM LDM PCA-LDM EPF IFRF PCA-EPFs

Broccoli-green-weeds-1 2009 16 96.68 98.91 99.06 99.32 99.84 99.93 99.86
Broccoli green-weeds-2 3726 30 99.03 98.59 99.08 99.03 100.00 98.88 99.43

Fallow 1976 16 95.91 85.30 94.30 98.04 86.58 99.96 99.66
Fallow-rough-plough 1394 11 96.34 94.50 99.06 99.35 99.87 95.11 92.39

Fallow-smooth 2678 21 90.60 97.33 95.97 96.51 99.50 96.28 98.29
Stubble 3959 32 99.57 99.50 99.84 99.76 100.00 99.62 99.84
Celery 3579 29 99.35 99.34 99.61 99.46 100.00 99.16 99.18

Grapes-untrained 11271 90 89.94 86.19 78.05 76.14 95.01 96.04 98.45
Soil-vineyard-develop 6203 50 98.22 99.00 99.35 99.60 99.96 100.00 100.00

Corn-senesced-green weeds 3278 26 89.33 83.14 92.17 93.11 92.23 99.02 99.41
Lettuce-romaine-4wk 1068 9 70.95 66.80 92.34 91.60 97.76 90.80 88.48
Lettuce-romaine-5wk 1927 15 98.29 93.45 99.69 99.62 100.00 98.08 98.45
Lettuce-romaine-6wk 916 7 98.43 50.42 97.66 97.99 100.00 83.46 96.41
Lettuce-romaine-7wk 1070 9 88.09 94.49 94.12 95.50 99.60 95.31 96.89
Vineyard-untrained 7268 58 51.00 61.05 63.39 65.96 53.39 97.89 99.86

Vineyard-vertical-trellis 1807 14 81.60 86.77 96.47 97.13 91.75 93.45 95.86

OA/% - 87.99 87.45 88.96 89.19 91.37 97.52 98.68
AA/% - 90.21 87.17 93.76 94.26 94.72 96.44 97.65

Kappa/% - 86.57 85.96 87.70 87.97 90.34 97.23 98.53
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3.2. Parameter Setting

To demonstrate the superiority of the proposed method, several methods were used to compare
with CFDTRF-LDM, including:

(1) SVM [18]: according to the raw features of hyperspectral images, SVM was applied with the
Gaussian radial basis function kernel.

(2) PCA-SVM (PCA with SVM): the use of PCA reduced the hyperspectral dimension and selected
the top 10% components for the SVM.

(3) LDM: gaussian radial basis function kernel was applied according to the raw features of
hyperspectral images.

(4) PCA-LDM (PCA with LDM): PCA reduced the hyperspectral dimension and selected the top
10% components for the LDM.

(5) EPF [39]: in this method, SVM classified hyperspectral images. Next, edge-preserving filter was
conducted for each probabilistic map. Last, the class of every pixel was selected based on the
maximum probability.

(6) IFRF [41]: this method acquired the classified results with SVM according to the image fusion
and recursive filter.

(7) PCA-EPFs [40]: the spatial information constructed by applying edge-preserving filters was
stacked to form the fused feature, and the dimension was reduced by PCA for the classifier
of SVM.

(8) LDM and feature learning-based(LDM-FL) [20]: this method attained the classified results with
LDM from the recursive filter.

(9) CF-SVM: the hyperspectral dimensionality was reduced with PCA, and the first 10% principal
components were selected for SVM based on CF.

(10) CF-LDM: the hyperspectral dimensionality was reduced with PCA, and the first 10% principal
component were selected for LDM based on CF.

(11) DTRF-SVM: the hyperspectral dimensionality was reduced with PCA, and the first 10% principal
components were selected for SVM according to DTRF.

(12) DTRF-LDM: the hyperspectral dimensionality was reduced with PCA, and the first 10% principal
components were picked for LDM based on DTRF.

(13) CFDTRF-LDM: the advanced method in this paper.
(14) CFDTRF-SVM: in addition to the classification results, the advanced method was generated by

SVM in this paper.

In this paper, overall accuracy (OA), average accuracy (AA) and kappa statistic (Kappa) were
adopted to test the classification accuracy. To avoid biased estimation, twelve independent tests were
carried out using the computer program of Matlab R2012b based on the configuration of i7-6700 CPU
and 8GB RAM.

3.3. The Validation Test of CF and DTRF

To verify CF validation, the 10th, 60th, 130th and 180th bands of Indian Pines were processed
with CF. As shown in Figure 6, CF can extract good boundary features of hyperspectral images, and
has great advantages in obtaining smooth edges by using CF smooth hyperspectral images. Also,
DTRF owns good spatial correlation preserving characteristics.
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Figure 6. Curvature filter (CF) and domain transform recursive filter (DTRF) comparison for Indian
Pines; (a) the 10th band of spectrum; (b) the 60th band of spectrum; (c) the 130th band of spectrum;
(d) the 180th band of spectrum; (e) the 10th band filtering of CF; (f) the 60th band filtering of CF; (g) the
130th band filtering of CF; (h) the 180th band filtering of CF; (i) the 10th band filtering of DTRF; (j) the
60th band filtering of DTRF; (k) the 130th band filtering of DTRF; (h) the 180th band filtering of DTRF.

3.4. Test of Spatial Correlation Information

To compare the spatial correlation of CF and DTRF, we calculated the mean of Moran’s I for each
band of Indian Pines, Salinas Valley and Kennedy Space Center datasets. The average Moran’s I of the
two filters is shown in Figure 7. It can be found that the average of Moran’s I obtained from DTRF is
higher than the average of CF and raw spectral features. In addition, the average of Moran’s I acquired
by CF is lower than that of the spectrum images, suggesting that the spatial correlation information is
weak. Therefore, it can be illustrated that DTRF can extract good spatial correlation information and
effectively compensate for the deficiency of CF.
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3.5. Investigation of the Proposed Method

3.5.1. Optimization of DTRF

The total number of iteration N, spatial standard deviation σs and the range standard deviation σr

of DTRF can influence the filtering effect of the image. Therefore, a classification test was conducted for
the Indian Pines dataset to verify the effectiveness of parameter optimization. From the entire data set,
4% and 96% of the training and test samples were randomly selected, and the exhaustive method was
employed to establish the three optimal parameters to obtain the most satisfactory LDM classification
results. To reduce the complexity of the algorithm, we first set the total number of iterations N = 10.
Then, σr ∈ 0.10, 0.11, · · · , 0.5 and σs ∈ 10, 15, · · · , 500 were set for experiments. Last, the experiments
were performed sequentially for the classification with 4059 iterations. According to the iteration result,
when σr = 0.43 and σs = 260, the best classification can be obtained and the optimal OA = 90.23%.
Therefore, to achieve a better classification, the parameters of σr = 0.43 and σs = 260 will be adopted
in the following experiments.

3.5.2. Experiment of Indian Pines

To evaluate the performance of CFDTRF-LDM, fifteen methods were used to classify and validate
the data from Indian Pines. The verified method is as follows: The distribution of Indian Pines datasets
is shown in Figure 8a. All 16 categories were selected, of which 5% (about 533) samples were employed
as the training set with the rest as test set, while 20% of the three types of Indian Pines grounds
were insufficient for training. Tables 1 and 2 shows the classification accuracy generated by fifteen
classification methods, as shown in Figure 8.

The classification results for Indian Pines are shown in Figure 8, while Tables 1 and 2
shows the accuracies of OA, AA and Kappa for each class of the different methods, and also
indicates CFDTRF-LDM achieved the best accuracy, when OA = 96.64%, AA = 96.04% and
Kappa = 96.18%. Furthermore, the accuracies can be over 99% of six classes for CFDTRF-LDM.
This experiment demonstrates that the classification performance was improved compared to other
classification methods.

Besides, the OA values of CFDTRF-LDM for Indian Pines are shown in Figure 8, which are 19.17%,
18.83%, 16.78%, 18.15%, 6.29%, 5.99%, 1.85%, 0.60%, 8.55%, 6.99%, 4.34% and 2.04%, correspondingly
higher than that of SVM, PCA-SVM, LDM, PCA-LDM, EPF, IFRF, LDM-FL, CF-SVM, CF-LDM and
GDF-LDM, DTRF-SVM and DTRF-LDM. The effectiveness of CFDTRF-LDM is fully verified for the
hyperspectral classification.
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Figure 8. Classification maps of different methods on the Indian Pines dataset (a) ground;
(b) training; (c) SVM, overall accuracy (OA) = 77.47%; (d) principal component analysis (PCA)-SVM,
OA = 77.81% (e) large margin distribution machine (LDM), OA = 79.85%; (f) PCA-LDM, OA = 78.49%;
(g) edge-preserving filter (EPF), OA = 90.35%; (h) image fusion with multiple subsets of adjacent
bands and recursive filter (IFRF), OA = 90.64%; (i) PCA-EPFs, OA = 91.62%; (j) LDM-FL, OA = 93.31%;
(k) CF-SVM, OA = 88.09%; (l) CF-LDM, OA = 88.54%; (m) DTRF-SVM, OA = 92.29%; (n) DTRF-LDM,
OA = 94.60%; (o) CFDTRFF-SVM, OA = 94.13%; (p) CFDTRF-LDM, OA = 96.64%.

3.5.3. Experiment of Salinas Valley

Similarly, the distribution according to the Salinas Valley dataset is shown in Figure 9a:
all 16 classes were selected, with 0.8% (about 433) samples as the training set, and the remaining
99.2% as the test set. Table 2 lists the classification accuracy of the Salinas Valley dataset for different
methods. The classification effects are shown in Figure 9.

The classification results for Salinas Valley are shown in Figure 9, while Tables 3 and 4 shows the
accuracies of OA, AA and Kappa for each class of the different methods, and also indicates CFDTRF-LDM
achieved the best accuracy, when OA = 99.16%, AA = 98.71% and Kappa = 99.06%. Furthermore,
the accuracies reached 100% of four classes for CFDTRF-LDM. This experiment demonstrates that
the classification performance was improved compared to other classification methods.

In addition, the OA values of CFDTRF-LDM were higher than that of SVM, PCA-SVM, LDM,
PCA-LDM, EPF, IFRF, LDM-FL, CF-SVM, CF-LDM, GDF-LDM, DTRF-SVM and DTRF-LDM by
11.17%, 11.71%, 10.20%, 9.97%, 7.79%, 1.64%, 0.48%, 0.40%, 9.96%, 6.56%, 2.45% and 0.64%, respectively.
The hyperspectral classification fully validated the effectiveness of CFDTRF-LDM.
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3.5.4. Experiment of Kennedy Space Center 

Hay-windrowed
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Figure 9. Classification maps of different methods on the Salinas Valley dataset (a) ground; (b) training;
(c) SVM, OA = 87.99%; (d) PCA-SVM, OA = 87.45%; (e) LDM, OA = 88.96%; (f) PCA-LDM, OA = 89.19%;
(g) EPF, OA = 91.37%; (h) IFRF, OA = 97.52%; (i) PCA-EPFs, OA = 98.68%; (j) LDM-FL, OA = 98.76%;
(k) CF-SVM, OA = 89.20%; (l) CF-LDM, OA = 90.56%; (m) DTRF-SVM, OA = 96.71%; (n) DTRF-LDM,
OA = 98.52%; (o) CFDTRFF-SVM, OA = 97.93%; (p) CFDTRF-LDM, OA = 99.16%.
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Table 4. Comparison of classification accuracies (in percent) provided by seven methods for Salinas
Valley (part B).

Ground Sum Training LDM-FL CF-SVM CF-LDM DTRF-SVM DTRF-LDM CFDTRFF-SVM CFDTRF-LDM

Broccoli-green-weeds-1 2009 16 99.99 99.91 99.95 99.96 100.00 100.00 100.00
Broccoli green-weeds-2 3726 30 99.75 97.44 99.57 99.36 99.81 99.80 99.98

Fallow 1976 16 99.96 92.66 99.95 97.74 98.31 97.05 100.00
Fallow-rough-plough 1394 11 96.41 98.59 98.88 89.95 91.38 99.15 98.46

Fallow-smooth 2678 21 99.03 96.73 99.04 94.93 94.79 98.07 98.73
Stubble 3959 32 99.55 99.36 99.76 97.70 98.84 99.58 99.90
Celery 3579 29 99.85 99.57 99.76 99.87 99.83 99.73 99.72

Grapes-untrained 11271 90 98.50 87.98 83.92 97.82 99.24 97.54 99.18
Soil-vineyard-develop 6203 50 100.00 99.87 99.67 100.00 100.00 99.63 100.00

Corn-senesced-green weeds 3278 26 99.32 86.16 93.23 96.27 96.53 95.97 98.19
Lettuce-romaine-4wk 1068 9 91.08 56.40 94.38 64.07 94.06 96.65 96.84
Lettuce-romaine-5wk 1927 15 98.37 86.48 100.00 98.52 99.01 99.95 100.00
Lettuce-romaine-6wk 916 7 93.09 97.61 97.04 93.30 94.46 93.36 98.26
Lettuce-romaine-7wk 1070 9 95.06 89.91 97.41 74.42 94.66 91.38 93.20
Vineyard-untrained 7268 58 99.16 64.93 76.36 98.21 99.40 96.37 99.03

Vineyard-vertical-trellis 1807 14 96.24 88.78 97.80 95.21 99.43 95.69 97.82

OA/% - 98.76 89.20 92.60 96.71 98.52 97.93 99.16
AA/% - 97.84 90.15 96.04 93.58 97.48 97.49 98.71

Kappa/% - 98.62 87.92 91.76 96.33 98.35 97.70 99.06

3.5.4. Experiment of Kennedy Space Center

Likewise, the distribution based on Kennedy Space Center dataset is shown in Figure 10a: all
16 classes were selected, of which 4% (about 208) samples were employed as the training set, and the
remaining 96% were used as the test set. Tables 5 and 6 lists the classification accuracies of the Salinas
Valley dataset for different methods. The classification effect is shown in Figure 10.
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Figure 10. Classification maps of different methods on the Salinas Valley dataset (a) Ground;
(b) Training; (c) SVM, OA = 82.45%; (d) PCA-SVM, OA = 79.49%; (e) LDM, OA = 85.11%; (f) PCA-LDM,
OA = 80.65%; (g) EPF, OA = 89.03%; (h) IFRF, OA = 86.21%; (i) PCA-EPFs, OA = 94.12%; (j) LDM-FL,
OA = 90.17%; (k) CF-SVM, OA = 90.07%; (l) CF-LDM, OA = 91.02%; (m) DTRF-SVM, OA = 92.62%;
(n) DTRF-LDM, OA = 95.24%; (o) CFDTRFF-SVM, OA = 95.89%; (p) CFDTRF-LDM, OA = 97.33%.
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Table 5. Comparison of classification accuracies (in percent) provided by seven methods for Kennedy
Space Center (part A).

Ground Sum Training SVM PCA-SVM LDM PCA-LDM EPF IFRF PCA-EPFs

Scrub 761 30 97.66 87.95 89.54 98.43 100.00 95.91 99.00
Swamp willow 243 10 85.42 70.41 84.78 68.98 81.12 35.46 59.96

Cabbage palm hammock 256 10 84.99 70.54 88.39 78.69 94.85 92.98 97.27
Cabbage palm/oak 252 10 49.68 46.28 55.33 44.40 80.40 57.85 97.32

Slash pine 161 6 8.28 38.67 52.71 26.32 12.83 63.77 64.70
Oak/broadleaf hammock 229 9 25.68 35.82 56.79 0.23 21.37 60.51 77.86

Hardwood swamp 105 4 38.89 57.99 66.96 41.09 48.51 77.87 81.76
Graminoid marsh 431 17 75.44 63.40 72.97 71.72 93.46 91.28 99.71

Spartina marsh 520 21 94.09 92.51 94.58 96.59 100.00 87.57 100.00
Cattail marsh 404 16 90.81 92.34 94.56 92.54 95.80 97.04 92.78

Salt marsh 419 17 93.85 92.56 90.71 88.33 98.33 88.03 99.83
Muld flats 503 20 78.52 73.93 83.61 84.78 93.53 96.80 94.18

Water 927 37 99.94 98.54 98.18 98.08 100.00 100.00 100.00

OA/% - 82.45 79.49 85.11 80.65 89.03 87.16 94.12
AA/% - 71.02 70.84 79.16 68.47 78.48 80.39 89.57

Kappa/% - 80.33 77.14 83.42 78.32 87.72 85.63 93.42

Table 6. Comparison of classification accuracies (in percent) provided by seven methods for Kennedy
Space Center (part B).

Ground Sum Training LDM-FL CF-SVM CF-LDM DTRF-SVM DTRF-LDM CFDTRFF-SVM CFDTRF-LDM

Scrub 761 30 93.73 98.42 94.80 99.41 99.01 99.76 98.08
Swamp willow 243 10 74.77 83.89 87.59 65.14 85.82 98.07 82.52

Cabbage palm hammock 256 10 84.72 86.24 88.07 82.80 100.00 96.34 98.80
Cabbage palm/oak 252 10 78.55 66.98 75.04 63.97 93.04 89.69 94.77

Slash pine 161 6 72.59 31.36 63.05 65.57 86.10 91.74 84.26
Oak/broadleaf hammock 229 9 96.68 70.39 64.02 94.79 100.00 75.75 99.09

Hardwood swamp 105 4 100.00 48.10 68.19 97.54 100.00 46.56 100.00
Graminoid marsh 431 17 90.59 90.15 90.89 98.25 93.98 97.06 97.41

Spartina marsh 520 21 100.00 99.50 96.84 100.00 100.00 100.00 100.00
Cattail marsh 404 16 70.08 96.72 96.79 89.76 75.69 98.08 100.00

Salt marsh 419 17 100.00 97.06 95.95 96.87 99.94 96.76 99.75
Muld flats 503 20 83.57 91.74 91.50 95.26 92.08 98.38 94.99

Water 927 37 98.57 100.00 100.00 99.89 99.89 99.78 100.00

OA/% - 90.17 90.07 91.02 92.62 95.24 95.89 97.33
AA/% - 87.99 81.58 85.60 88.40 94.27 91.38 96.13

Kappa/% - 89.05 88.92 89.99 91.77 94.70 95.42 97.03

The classification results for Kennedy Space Center are shown in Figure 10, while Tables 5 and 6
indicates the accuracies of OA, AA and Kappa for each class of the various methods, with the best
accuracy of CFDTRF-LDM as OA = 97.33%, AA = 96.13% and Kappa = 97.03%. Furthermore, six classes
for CFDTRF-LDM owned accuracies more than 99%. This experiment shows that the classification
performance was enhanced compared to other classification methods.

Also, the OA values of CFDTRF-LDM were correspondingly larger than that of SVM, PCA-SVM,
LDM, PCA-LDM, EPF, IFRF, LDM-FL, CF-SVM, CF-LDM, GDF-LDM, DTRF-SVM and DTRF-LDM
by 14.89%, 17.85%, 12.23%, 16.69%, 8.31%, 10.17%, 3.21%, 7.16%, 7.27%, 6.32%, 4.72% and 2.10%.
The hyperspectral classification completely verified the effectiveness of CFDTRF-LDM.

3.5.5. Analysis

First, as the classification results are shown in Figure 11. The OA values of LDM and PCA-LDM
for Indian Pines were 79.85% and 78.49%, correspondingly, which were 2.38% and 0.68% greater than
that of SVM and PCA-SVM. Likewise, the OA values of LDM and PCA-LDM for Salinas Valley were
88.96% and 89.19%, respectively which were 0.98% and 1.74% higher than that of SVM and PCA-SVM.
Furthermore, the OA values of LDM and PCA-LDM for the Kennedy Space Center were 85.11%
and 80.65%, severally, which were 2.66% and 1.16% grander than that of SVM and PCA-SVM. It can
be included that LDM superior to SVM with features that maximize margin means and minimize
margin variances.
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Figure 11. Comparison of SVM, LDM, PCA-SVM and PCA-LDM on three datasets.

Second, as shown in Figure 12, the CF-SVM and CF-LDM OA values of Indian Pines were 10.62%
and 9.79% higher than that of SVM and LDM, respectively, and the OA values of CF-SVM and CF-LDM
in Salinas Valley were 1.21% and 1.60% higher than that of SVM and LDM. In addition, The OA values
of CF-SVM and CF-LDM in Kennedy Space Center were 7.62% and 5.91% higher than that of SVM
and LDM. This finding indicates that the spatial texture information extracted by CF was effective for
enhancing the classification performance of SVM and LDM.
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Figure 12. Comparison of SVM, CF-SVM, LDM and CF-LDM on three datasets.

Third, from Figure 13, the OA values of DTRF-SVM and DTRF -LDM in Indian Pines were 14.82%
and 14.75%, separately larger than of the OA values of SVM and LDM. Correspondingly, the OA
values of DTRF-SVM and DTRF-LDM in Salinas Valley were 8.72% and 9.56% huger than the SVM and
LDM OA values. Similarly, the OA values of DTRF-SVM and DTRF-LDM in Kennedy Space Center
were 10.17% and 10.13%, respectively, higher than the SVM and LDM OA values. Thus, for improving
the hyperspectral classification in this work, the spatial correlation information extracted by DTRF
was efficient.
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Figure 13. Comparison of SVM, DTRF-SVM, LDM and DTRF-LDM on three datasets.

Fourth, in Figure 14, the OA values of CFDTRF-LDM in Indian Pines, Salinas Valley and Kennedy
Space Center were 96.64%, 99.16% and 97.33%, respectively. It can be found that all those OA
values were larger than that of EPF, IFRF, PCA-EPFs and LDM-FL. Therefore, the spatial texture
information and spatial correlation information obtained by CF and DTRF in this work can improve
the performance of LDM than that of the edge-preserving filter and recursive filter methods, and the
LDM-based methods.
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To prove the effect of the training ratio on the classification, the classification of the two datasets
has been used to test the different values, as shown in Figure 15. As can be seen from the figure, if the
training sample was 2% of the Indian Pines dataset, the OA value of the proposed method can reach
90.41%. In addition, when the ratio increased 7%, the OA value can exceed 97%. Also, if the training
sample ratio of the Salinas Valley dataset was set to 0.2%, the OA value can reach 90%, and when
the ratio increased to 0.8%, it can achieve to 99%. Also, when the training ratio were 2% and 9%, the
OA value of the Kennedy Space Center can reach 93% and 99%, respectively. Thus, the proposed
CFDTRF-LDM can obtain satisfied classification with a small amount of training set and provided
stability of the different training ratios with optimal classification performance.
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4. Conclusions

In this paper, based on the combination of two spatial information and LDM classification,
namely CFDTRF-LDM, a hyperspectral image classification method was proposed. The spatial texture
features and spatial correlation features were correspondingly extracted by CF and DTRF, which
were linearly fused for the LDM classification. To verify the superior performance of CFDTRF-LDM,
three hyperspectral image datasets were tested and found that the proposed method was superior to
other methods. The advantage of the proposed method CFDTRF-LDM was that the spatial texture
information and spatial correlation information extracted by CF and DTRF were appropriately fused
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to effectively classify with LDM, and obtain huge classification performance for HSI. Furthermore, the
proposed method can obtain satisfied classification with a small amount of training set and supply
stability of the various training ratios with optimal classification performance. For future work, more
efficient spatial information should be explored for SVM or LDM classification.
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