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Abstract: Knowledge on rangeland condition, productivity patterns and possible thresholds of
potential concern, as well as the escalation of risks in the face of climate change and variability over
savanna grasslands is essential for wildlife/livestock management purposes. The estimation of leaf
area index (LAI) in tropical savanna ecosystems is therefore fundamental for the proper planning
and management of this natural capital. In this study, we assess the spatio-temporal seasonal LAI
dynamics (dry and wet seasons) as a proxy for rangeland condition and productivity in the Kruger
National Park (KNP), South Africa. The 30 m Landsat 8 Operational Land Imager (OLI) spectral
bands, derived vegetation indices and a non-parametric approach (i.e., random forest, RF) were used
to assess dry and wet season LAI condition and variability in the KNP. The results showed that
RF optimization enhanced the model performance in estimating LAI. Moderately high accuracies
were observed for the dry season (R2 of 0.63–0.72 and average RMSE of 0.60 m2/m2) and wet season
(0.62–0.63 and 0.79 m2/m2). Derived thematic maps demonstrated that the park had high LAI
estimates during the wet season when compared to the dry season. On average, LAI estimates ranged
between 3 and 7 m2/m2 during the wet season, whereas for the dry season most parts of the park had
LAI estimates ranging between 0.00 and 3.5 m2/m2. The findings indicate that Kruger National Park
had high levels of productivity during the wet season monitoring period. Overall, this work shows
the unique potential of Landsat 8-derived metrics in assessing LAI as a proxy for tropical savanna
rangelands productivity. The result is relevant for wildlife management and habitat assessment
and monitoring.

Keywords: climate variability; natural capital; rangeland productivity; seasonal variability; wildlife

1. Introduction

Savanna ecosystems comprise socio-economically and ecologically important biodiversity
resources. These ecosystems consist of grasses, scattered forests and shrubs, which provide wildlife and
livestock with grazing resources as well as other ecosystem goods and services. Most rural communities
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around tropical savanna ecosystems practice wildlife hunting to sustain their livelihoods [1]. Therefore,
continuous monitoring of these ecosystems is crucial as they are key natural capital or resources.
So far, productivity in these ecosystems is more often assessed using two plant biophysical properties,
which are the leaf area index (LAI) and aboveground biomass (AGB) [2]. These parameters play
a major role in animal productivity and can help provide insights on rangelands condition, in terms of
the quality and quantity of natural capital. Besides, they indirectly sustain livelihoods. For example,
when forage is high in terms of quantity and quality, there will be an increase in livestock productivity,
thus leading to less importation and more exports of beef products in the country. Ecosystems that
are healthy and highly productive play an important role in the country’s economy, through wildlife
production and livestock grazing enhancement and tourism [3].

The presence of vast amounts of forage resources is linked to wildlife productivity, and this
can contribute to the economy through tourism, which accounts for about 9% of employment in
South Africa [4]. Like any other rangeland type, tropical savanna ecosystems are compromised by the
lack of proper operational assessment and monitoring frameworks in place. Hence, overgrazing,
bush encroachment and land degradation are characteristic of a number of these ecosystems,
particularly in the southern African region. For instance, towards the end of the dry season, most of
the southern African countries within tropical savanna biomes lose a large number of wildlife and
livestock populations annually due to rangelands degradation [1]. The area of land grazed by livestock
is projected to decrease by almost 50% by 2050 in the sub-Saharan Africa savannas [5]. If sustainable,
efficient and equitable use of these resources is to be achieved, it is important to understand the spatial
and temporal dynamics of tropical savanna rangelands. For this reason, LAI monitoring is crucial.

LAI is an important variable for determining forage quantity within vegetated ecosystems, and by
definition it is one-half of the total green leaf area per unit ground surface area of vegetation canopy.
In the past, methods that were used to estimate LAI focused on LAI measurement strategy and
theory, using litter fall collection and point quadrat sampling [6,7]. However, these methods are
time-consuming and labour intensive. Historically, the LAI has been measured on crop canopies
using in-situ (destructive) approaches. Although in-situ approaches are accurate and easy to
implement, they have their own limitations: they are laborious and time-consuming, the sample-based
measurements are spatially discontinuous, and they are difficult to operationalize and landscape
scale [7]. Recently, Zheng and Moskal [6] highlighted appropriate methods for measuring LAI using
remote sensing, which has the advantage of being dynamic and operational, with the ability to
overcome challenges associated with the sparse nature of ground-based field measurements.

Further, a couple of studies have estimated or predicted LAI using remotely sensed data, and most
of these were not linked to tropical savanna ecosystems or rangeland productivity. Those that focused
on rangeland productivity focused on plot-level monitoring or used very coarse satellite data like
MODIS or high-spatial-resolution data that are costly and spatially restricted [8–11]. For example,
References [8,9] studied the spatial variation of ecosystem structure functions at a landscape scale
in mountainous areas of Japan. Further, Cui and Kerekes [12] applied three retrieval approaches
based on vegetation indices, physical model-based lookup table (LUT) inversion and machine
learning to estimate LAI simulated from the SPectra bARrax Campaign (SPARC 2003) field campaign
HyMap hyperspectral data. Although most of these studies reported high-accuracy LAI estimates,
their approaches cannot be operationalised in extensive tropical savanna rangelands, given the cost
of high-resolution data acquisition and the curse of dimensionality [13]. The medium-resolution
Landsat 8 Operational Land Imager (OLI) sensor is one of the key primary data sources. It is highly
suitable and practical for regional LAI analysis, especially in resource-limited areas. The Landsat 8 OLI,
as a multispectral push-broom scanner, was designed to achieve high radiometric image resolution,
with minimal signal-to-noise ratio. The sensor collects data in nine spectral bands, with a spatial
resolution of 30 m in bands 1–7 and 9 [3]. It is therefore crucial to assess the advantage of increased
radiometric resolution of Landsat 8 OLI on estimating LAI in tropical savanna rangelands [6].
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Furthermore, the Landsat 8 OLI sensor provides (i) a refined spectral range for certain bands
that have been found to be critical for improving the detection of subtle vegetation properties and
spectral responses across the near-infrared (NIR) and panchromatic bands, and (ii) an improved
radiometric resolution from 8 to 12 bits, which are critical in enabling the characterization of different
forest conditions [7]. Landsat 8 OLI’s high spatial resolution makes it ideal for vegetation mapping
and monitoring applications. Findings from Landsat 8 OLI can help to conserve tropical savanna
rangelands through the provision of accurate and up-to-date information about rangeland conditions
and ecosystem dynamics, as well as changes in productivity in terms of quantity and quality.
Such findings can help guide farmers, resource managers and land use planners with baseline
information needed for developing sustainable rangeland management practices. Thus, the aim
of this study was to assess the spatio-temporal seasonal dynamics in LAI, as a proxy for rangeland
condition and productivity in the Kruger National Park, South Africa, using multispectral Landsat
8 OLI.

2. Materials and Methods

2.1. Study Area

The study was conducted in the protected Kruger National Park (KNP), which covers sections of
the Limpopo and Mpumalanga provinces of South Africa (Figure 1). The park is characterized by arid
to semi-arid savanna biome, with gentle slopes that make it suitable for wildlife grazing (Figure 2).
The area has a humid subtropical climate, with cool–dry winters and hot–wet summers. Annual
average rainfall ranges between 0 and 553 mm, with annual average summer and winter temperatures
of 28 ◦C and 16 ◦C, respectively. The dry season stretches from mid-June to mid-November and the wet
season ranges from mid-November to early July. The dominant vegetation cover in the area includes
grasslands, mopane, marula and acacia trees, etc.
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2.2. LAI Field Measurements

LAI measurements were conducted across the Kruger National Park, South Africa. The Kruger
National Park was considered for this study due to the high presence of wildlife gazing in the
area as well as its economic value. Field data collection was done during the wet and dry seasons
in 2016 and 2017. Sampling for the dry season was from 19 to 20 September 2016, with 74 plots
being surveyed, whereas 195 plots were sampled during the wet season from 13 to 16 March 2017.
Sampling plots were selected using a random sampling technique based on accessibility within the
protected area. The coordinates for each sampled plot within the park were recorded using a handheld
Global Positioning System (GPS). For LAI measurements, a LICOR 2200 plant canopy analyser was
used under clear sky conditions (i.e., without clouds) to ensure that LAI was not underestimated.
LAI measurements of each plot were obtained by calculating an average for LAI above canopy (n > 3)
and below canopy (n > 3) measurements taken from each plot.

2.3. Satellite Acquisition and Pre-Processing

Landsat 8 OLI satellite images for the wet (12 September 2016) and dry (22 March 2017)
season were acquired from the USGS Earth Explorer (https://earthexplorer.usgs.gov/). A detailed
summary on the Landsat 8 satellite images used is provided in Table 1. Top of atmosphere (TOA)
reflectance Landsat 8 OLI bands were considered. These bands encompass visible, Near Infra-Red
(NIR), and Short Wave Infra-Red (SWIR) regions of the electromagnetic spectrum. TOA reflectances
were atmospherically corrected using Landsat Ecosystem Disturbance Adaptive Processing Systems,
which masks out clouds, shadows and water, among other non-target effects. As such, no further
pre-processing was implemented. Spectral reflectances from Landsat 8 OLI images for different
dates were then extracted corresponding to each leaf area index sample GPS location. The extracted
spectral reflectances were then used to calculate selected vegetation indices. The most commonly
used vegetation indices in obtaining the leaf characteristics of plants are shown in Table 2. In total,
21 remotely sensed variables were used to build a relationship with the field-measured LAI. The indices
were chosen based on their performance as described in literature.

Table 1. Summary detail of the Landsat 8 OLI used for this work.

Season Image Scene Detail Date of Acquisition

Dry LC08_L1TP_168077_20161022_20170319_01_T1 22 October 2016
LC08_L1TP_169076_20161029_20170319_01_T1 29 October 2016

Wet
LC08_L1TP_168077_20170518_20170525_01_T1 18 May 2017
LC08_L1TP_169076_20170525_20170614_01_T1 25 May 2017

Table 2. Spectral vegetation indices used in LAI retrieval. Abbreviations: NDVI: normalized difference
vegetation index; SR: simple ratio; SAVI: soil adjusted vegetation index; EVI: enhanced vegetation
index; EVI2: enhanced vegetation index—improved; PSRI: plant senescence reflectance index; CRI1:
carotenoid reflectance index 1; GVI: green vegetation index; GNDVI: green normalized difference
vegetation index; GCI: green chlorophyll index; MSR: modified simple ratio; ARVI: atmospherically
resistant vegetation index; MCARI: modified chlorophyll absorption ratio index; MTVI2: modified
triangular vegetation index—improved.

Vegetation Indices Algorithm Reference

NDVI NIR − RED/NIR + RED [8]
SR NIR/RED [9]

SAVI ((NIR − RED)/(NIR + R + L)) × (1 + L) [10]
EVI 2.5 × (NIR − RED)/(NIR + 6RED − 7.5 × BLUE + 1) [11]

EVI2 2.4 × (NIR − RED)/(NIR + RED + 1) [11]
PSRI (RED − GREEN)/NIR [12]
CRI1 (1/BLUE) − (1/GREEN) [13]

https://earthexplorer.usgs.gov/
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Table 2. Cont.

Vegetation Indices Algorithm Reference

GVI NIR/GREEN [14]
GNDVI (NIR − GREEN)/(NIR + GREEN) [15]

GCI (NIR/GREEN) − 1 [16]
MSR (NIR/RED) − 1/

√
((NIR/RED)) +1 [17]

ARVI NIR − (RED − 1 × (BLUE − RED))/NIR + (RED − 1 × (BLUE − RED))
where, 1 = γ

[18]

MCARI 1.5 × (2.5 × (NIR − RED) − 1.3 × (NIR − BLUE))/
√

((2 × NIR + 1)ˆ2 −
(6 × NIR − 5 × RED) − 0.5) [19]

MTVI2 1.5 × (1.2 × (NIR − GREEN) − 2.5 × (RED − GREEN))/
√

((2 × NIR + 1)ˆ2
− (6 × NIR − 5 ×

√
(RED) − 0.5)) [20]

2.4. Random Forest Algorithm for LAI Estimates

The random forest (RF) regression technique was used to estimate and map dry and wet season
LAI within Kruger National Park. RF has recently gained popularity in environmental and agricultural
studies using remotely sensed data [21,22]. Its advantage is that it uses training samples to develop
multiple nodes of the trees—a set of conditions which are applied from the roots to the leaves of
the model trees and the results are averaged from each individual tree to better predict LAI [23].
In addition, the RF model for each tree was trained with independent bootstrap samples (i.e., two-thirds
of samples), which were selected randomly from the sample data set. The remaining one-third of
the data, which was not used in growing trees, is called the out-of-bag (OOB) data and was used
for model validation [24]. The OOB data were further used to rank the variables based on their
contribution to the model accuracy and are often expressed in percentage increased mean squared
error (%IncMSE) and increased node purity (IncNodePurity) [21]. %IncMSE is the most robust and
informative accuracy measure. It is the increase in MSE of predictions (estimated with out-of-bag-CV)
as a result of a variable being permuted (values randomly shuffled). The IncNodePurity relates to
the loss functions, which are chosen by best splits. The loss function is the MSE for regression and
Gini-impurity for classification. Another advantage of the RF model is its tuning parameters, such as
ntrees (number of trees used in a model), mtry (number of variables available for splitting at each node
of the tree) and node size (at each terminal node of an individual tree containing a fixed pre-specified
number of observations). The default value for ntree was 500, mtry was one-third of the total number
of variables, and node size values ranged from 1 to 5 [25]. Further, variable screening was done
using the backward elimination of the least-important variables generated from the OOB data to
determine the most important variables for LAI estimation. Previous studies have demonstrated that
variable screening is important as it helps to strengthen the model performance by eliminating the
weak variables in model building [14–16]. Houborg and McCabe [14] argue that the development and
application of machine-learning methods should be carefully guided by prior “expert” knowledge for
vegetation indices screening in order to maximize predictability and transferability. The RF analysis
was performed in R software (R Development Core Team) [26], using the “randomForest” package [27].
For model validation, 10-fold cross validation was carried out considering the limited number of
sample plots for each of the seasons. For cross validation, the “caret” package [28] was used. Further,
root mean square error (RMSE) and relative RMSE were calculated from the validation data to quantify
the optimal model for seasonal LAI estimation and for further mapping purposes (Figure 3).



Remote Sens. 2019, 11, 829 6 of 14

Remote Sens. 2019, 11, x; doi: FOR PEER REVIEW 6 of 14 

Remote Sens. 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

 
Figure 3. Seasonal LAI computation using is-situ and remotely sensed data. 

3. Results 

3.1. Statistical Summary of the Measured LAI 

Kruger National Park field LAI measurements ranged between 0 and 7.18 m2/m2 (n = 119, mean 
3.02 ± 1.18 m2/m2) for the wet season and between 0 and 5 m2/m2 (n = 74, mean 2 ± 1.17 m2/m2) for the 
dry season, respectively (Table 3). It was evident that the protected area had a greater LAI during the 
wet season when compared to the dry season demonstrating highest levels of savanna ecosystem 
productivity during the period. Figure 4 shows the histogram of LAI for dry and wet seasons. It can 
be observed that the LAI followed a normal distribution curve for both the dry and wet seasons. 

Table 3. Random forest (RF) model performance by backward elimination of variables for the wet 
season. RMSE: root mean square error. 

No. of Variables Used Eliminated Variable (Backward) R2 RMSE m2/m2 relRMSE% 
21 full predictors  0.63 0.70 37.63 
20 B3 0.70 0.63 33.82 
19 B1 0.69 0.63 33.97 
18 B2 0.69 0.62 33.67 
17 GVI 0.68 0.63 34.08 
16 MSR 0.69 0.63 34.07 
15 B4 0.72 0.60 32.48 
14 B6 0.68 0.64 34.33 
13 MTVI2 0.68 0.64 33.33 
12 EVI2 0.68 0.63 34.34 
11 B7 0.68 0.63 34.14 
10 ARVI 0.68 0.63 34.20 
9 GNDVI 0.68 0.63 34.23 

Figure 3. Seasonal LAI computation using is-situ and remotely sensed data.

3. Results

3.1. Statistical Summary of the Measured LAI

Kruger National Park field LAI measurements ranged between 0 and 7.18 m2/m2 (n = 119, mean
3.02 ± 1.18 m2/m2) for the wet season and between 0 and 5 m2/m2 (n = 74, mean 2 ± 1.17 m2/m2) for
the dry season, respectively (Table 3). It was evident that the protected area had a greater LAI during
the wet season when compared to the dry season demonstrating highest levels of savanna ecosystem
productivity during the period. Figure 4 shows the histogram of LAI for dry and wet seasons. It can
be observed that the LAI followed a normal distribution curve for both the dry and wet seasons.

Table 3. Random forest (RF) model performance by backward elimination of variables for the wet
season. RMSE: root mean square error.

No. of Variables Used Eliminated Variable (Backward) R2 RMSE m2/m2 relRMSE%

21 full predictors 0.63 0.70 37.63
20 B3 0.70 0.63 33.82
19 B1 0.69 0.63 33.97
18 B2 0.69 0.62 33.67
17 GVI 0.68 0.63 34.08
16 MSR 0.69 0.63 34.07
15 B4 0.72 0.60 32.48
14 B6 0.68 0.64 34.33
13 MTVI2 0.68 0.64 33.33
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Table 3. Cont.

No. of Variables Used Eliminated Variable (Backward) R2 RMSE m2/m2 relRMSE%

12 EVI2 0.68 0.63 34.34
11 B7 0.68 0.63 34.14
10 ARVI 0.68 0.63 34.20
9 GNDVI 0.68 0.63 34.23
8 EVI 0.67 0.64 34.57
7 MCARI 0.67 0.64 34.56
6 SR 0.66 0.65 34.92
5 GCI 0.65 0.66 35.36
4 NDVI 0.59 0.70 38.03
3 B5 0.63 0.67 36.19

Remote Sens. 2019, 11, x; doi: FOR PEER REVIEW 7 of 14 

Remote Sens. 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

8 EVI 0.67 0.64 34.57 
7 MCARI 0.67 0.64 34.56 
6 SR 0.66 0.65 34.92 
5 GCI 0.65 0.66 35.36 
4 NDVI 0.59 0.70 38.03 
3 B5 0.63 0.67 36.19 

 
Figure 4. Histogram for predicted LAI for dry season and wet seasons. 

3.2. LAI Estimates Using RF Algorithm  

The use of RF selected predictor variables resulted in the most accurate LAI estimates for the 
two seasons. The use of optimal selected variables yielded high coefficient of determination values, 
ranging from 0.63 to 0.72 (RMSE = 0.70 m2/m2, relRMSE = 37.63 m2/m2 to RMSE = 0.60, relRMSE = 
32.48 m2/m2) for the wet season, whereas for the dry season the range was between 0.62 and 0.63 
(RMSE = 0.81 m2/m2, relRMSE = 31.07, RMSE = 0.79 m2/m2, relRMSE = 29.91) (Table 3). Specifically, 
the use of the full set of variables without screen compromised the model performance in LAI 
estimation, yielding an R2 of 0.63, RMSE of 0.70 m2/m2 and %RMSE of 37.63 for the wet season and 
the same was observed for the dry season. LAI estimates improved significantly after model 
screening, demonstrating that other variables were not important in LAI estimation (Tables 3 and 4). 

Table 4. RF model performance by backward elimination of variables for dry season data. 

No. of Variables Used Eliminated Variable (Backward) R2 RMSE m2/m2 relRMSE% 
21 full predictors  0.62 0.81 37.63 
20 B4 0.61 0.80 33.82 
19 EVI2 0.61 0.80 33.97 
18 B5 0.61 0.80 33.67 
17 MTVI2 0.61 0.80 34.08 
16 B3 0.61 0.80 34.07 
15 ARVI 0.61 0.80 32.48 
14 B7 0.62 0.79 34.33 
13 B2 0.62 0.79 33.33 
12 MCARI 0.62 0.80 34.34 
11 SAVI 0.62 0.80 34.14 
10 B1 0.62 0.79 34.20 
9 EVI 0.63 0.79 34.23 
8 MSR 0.63 0.79 34.57 
7 NDVI 0.63 0.79 34.56 
6 B6 0.62 0.79 34.92 
5 SR 0.62 0.79 35.36 
4 CRI1 0.61 0.80 38.03 
3 PSRI 0.59 0.86 36.19 

The accuracy results show that both the dry and wet seasons’ LAI could be predicted with 
reasonable accuracies using multispectral Landsat 8 OLI satellite data. It is also important to note 
that when the mtry increased or decreased, the model accuracy became weak, hence the 500 mtry 

Figure 4. Histogram for predicted LAI for dry season and wet seasons.

3.2. LAI Estimates Using RF Algorithm

The use of RF selected predictor variables resulted in the most accurate LAI estimates for
the two seasons. The use of optimal selected variables yielded high coefficient of determination
values, ranging from 0.63 to 0.72 (RMSE = 0.70 m2/m2, relRMSE = 37.63 m2/m2 to RMSE = 0.60,
relRMSE = 32.48 m2/m2) for the wet season, whereas for the dry season the range was between 0.62
and 0.63 (RMSE = 0.81 m2/m2, relRMSE = 31.07, RMSE = 0.79 m2/m2, relRMSE = 29.91) (Table 3).
Specifically, the use of the full set of variables without screen compromised the model performance in
LAI estimation, yielding an R2 of 0.63, RMSE of 0.70 m2/m2 and %RMSE of 37.63 for the wet season
and the same was observed for the dry season. LAI estimates improved significantly after model
screening, demonstrating that other variables were not important in LAI estimation (Tables 3 and 4).

Table 4. RF model performance by backward elimination of variables for dry season data.

No. of Variables Used Eliminated Variable (Backward) R2 RMSE m2/m2 relRMSE%

21 full predictors 0.62 0.81 37.63
20 B4 0.61 0.80 33.82
19 EVI2 0.61 0.80 33.97
18 B5 0.61 0.80 33.67
17 MTVI2 0.61 0.80 34.08
16 B3 0.61 0.80 34.07
15 ARVI 0.61 0.80 32.48
14 B7 0.62 0.79 34.33
13 B2 0.62 0.79 33.33
12 MCARI 0.62 0.80 34.34
11 SAVI 0.62 0.80 34.14
10 B1 0.62 0.79 34.20
9 EVI 0.63 0.79 34.23
8 MSR 0.63 0.79 34.57
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Table 4. Cont.

No. of Variables Used Eliminated Variable (Backward) R2 RMSE m2/m2 relRMSE%

7 NDVI 0.63 0.79 34.56
6 B6 0.62 0.79 34.92
5 SR 0.62 0.79 35.36
4 CRI1 0.61 0.80 38.03
3 PSRI 0.59 0.86 36.19

The accuracy results show that both the dry and wet seasons’ LAI could be predicted with
reasonable accuracies using multispectral Landsat 8 OLI satellite data. It is also important to note
that when the mtry increased or decreased, the model accuracy became weak, hence the 500 mtry
was found to be the most suitable as it resulted in the best LAI model results. Further, the results
indicate that Landsat 8 OLI data could more accurately predict LAI during the wet season when
compared to the dry season as there would be many bare patches, resulting in spectral mixing and
poor model performance. To identify the optimal model, backward elimination of the least important
variables generated from the OOB data enhanced the performance of the model for the wet season
LAI estimation. However, for the dry season, although there was an improvement in the variance
explained by the model and the reduction in the error term, this was minimal. Figure 5 shows the
scatter plot between observed LAI and estimated LAI for both seasons. The results indicate a good
relationship between observed and estimated LAI, especially for the wet season.

1 
 

 

(a) (b) 

Figure 5. Observed vs. predicted LAI using RF-optimized models: (a) wet season data; (b) dry
season data.

3.3. RF Important Variables Selection

CRI1, SAVI, PSRI, B5, NDVI, GCI, SR, MCARI, EVI, GNDVI, ARVI, B7 EVI2, MTVI2 and B6 were
RF-model selected as the most important Kruger National Park LAI predictor variables during the
wet season, whereas for the dry season, GNDVI, GCI, GVI, PSRI, CRI1, SR, B6, NDVI and MSR were
selected (Figure 5a,b). The RF model allows the ranking of the most important variables. Following the
ranking process, redundant variables were removed from the modelling of LAI. A total of 15 variables
yielded a better result for the wet season data, producing an R2 of 0.72, RMSE of 0.60 m2/m2 and
a relRMSE 32.48, whereas for the dry season LAI data, nine predictor variables were selected, producing
an R2 of 0.63, RMSE of 0.79 m2/m2 and a relRMSE of 34.23 (Figure 6). Overall, the wet season LAI was
predicted with a high accuracy when compared to the dry season LAI. However, both LAI predictions
were satisfactory and within the acceptable ranges.

3.4. Derived LAI Thematic Maps

The results further showed that there was a significant variation (α = 0.05) in LAI between the
dry and the wet seasons (Figure 7). It is evident that during the wet season, LAI estimates were high
in the Kruger National Park. High LAI estimates were observed in the middle and southern parts of
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the park during the wet season. However, the northern parts had low LAI values, demonstrating low
productivity in that region during the wet season. In contrast, during the dry season the southern parts
of the park were characterized with low LAI estimates and this trend was observed in the middle parts
of the park and towards the north. However, the southern parts were more degraded as estimated LAI
was around 0.001 m2/m2.Remote Sens. 2019, 11, x; doi: FOR PEER REVIEW 9 of 14 
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4. Discussion

Kruger National Park, located in South Africa, is one of the most important protected game
reserves in sub-Saharan Africa. It is home to a wide range of wild animals and contributes greatly to
employment opportunities and economic growth through tourism. According to the South African
Department of Environmental Affairs (DeA) and SANParks, 1,659,000 people visited the KNP between
2014 and 2015 financial years. This is a clear indication of how important protected areas in tropical
savanna ecosystems are to the economy through tourism. It is therefore imperative to ensure
that ecosystem productivity in these areas is routinely monitored and conserved from degradation
or overgrazing. This understanding is critical as it provides park managers with the necessary
baseline information about forage distribution and productivity dynamics within the park, which is
fundamental in planning and management. In this study, we assessed the spatio-temporal dynamics
of LAI for the dry and wet seasons, as a proxy for rangeland condition and productivity in the
Kruger National Park, South Africa. Vegetation LAI is indicative of vegetation productivity, and its
characterization using satellite data at landscape scale plays a critical role in determining the ability of
the reserve in providing forage for wildlife.

4.1. Variations in LAI between Wet and Dry Season

The results demonstrated that the variations in LAI between the wet and dry seasons could
be clearly depicted using Landsat 8 data. The mean estimated LAI values were slightly lower
during the dry season (1.86 m2/m2) when compared to the wet season (2.61 m2/m2). Nevertheless,
the relationship between LAI and satellite-derived spectral bands and vegetation indices were
better-explained (72%) for the wet season when compared to the dry season. Although some of
the plots showed predicted LAI values that were distinctly higher than the observed and vice-versa,
the error term was highest for the extreme values, which can be explained by prevailing heterogeneous
shrub vegetation in the study site.

In addition, the study produced medium-resolution maps depicting the spatio-temporal LAI
estimates using machine learning, RF regression. The relationship between spectrally derived
vegetation indices and LAI estimates obtained from field LAI measured data for the two time periods
was within the acceptable ranges. A comparative analysis of dry and wet seasons for LAI estimated,
with selected vegetation indices (VIs) depicted a better result for the wet season. Furthermore, the RF
optimization enhanced the model performance (R2 = 0.72, RMSE = 0.60 m2/m2). Most notably, the RF
model tended to under-predict high LAI values and over-predict low LAI values. This was observed
for both the dry and wet seasons. This has been found to be a common phenomenon in RF regression
resulting from averaging the prediction from each tree used in the RF model [22,29–31].

Observed LAI estimation accuracies can be associated with the RF regression algorithm. This is
because the model has the ability to interrogate, rank and screen variables based on their importance,
and this has been found to help improve model accuracy. Literature shows that the inclusion of
less-important variables in modelling results in the convergence and instability of models or introduces
random errors, due to noise from predictor variables without any relation to the response variable [31–34].
Thus, in this study, the tuning of ntree and mtry parameters to build the model further enhanced the
model performance in estimating LAI for the wet and dry seasons. Our findings are in line with
studies conducted elsewhere [31–34]. A study by Grömping [34] showed that the choice of mtry in the
RF model could affect the ranking of predictor variables. For our study, the RF model identified the
smallest subset of the variables that led to a parsimonious model by reducing the reductant variable
effect to fifteen and nine input variables for LAI estimation in the wet and dry seasons, respectively.
Similar model performances were reported in References [15,17], whose work demonstrated that
key vegetation biophysical characteristics could be predicted with high accuracy when using model
selected important variables.

Although not tested in this study, the performance of Landsat 8 OLI satellite images in
estimating LAI can be attributed to the unique sensor design. For instance, Landsat 8 OLI makes
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use of numerous elongated sets of detectors for each waveband capable of a detailed scan of the
surface along-track. The along-track design augments the sensitivity of the sensor to most critical
vegetation biophysical metrics. Furthermore, the presence of a refined spectral range of particular
wavebands (e.g., near-infrared) plays a fundamental function in boosting the detection of subtle
grassland biophysical and biochemical characteristics, whereas the enhanced image radiometric
resolution (12 bits) permits the precise detection of various vegetation conditions [35–37]. These results
demonstrate the unique potential of the Landsat 8 multi-spectral sensor in vegetation or rangeland
mapping and monitoring in tropical savanna ecosystems.

4.2. Performance of Landsat 8 Variables in Characterizing Seasonal LAI

The RF generated variable important results identified CRI1 (carotenoids reflectance index 1) as
the most important variable for the wet season. Carotenoids function as the light absorption processes
in plants and is related to high chlorophyll concentration. Thus, for the wet season data, CRI1 was
ranked as most important predictor variables. Similarly, SAVI was identified as the second-most
important variable for predicting LAI in tropical savanna ecosystems [38,39]. For the dry season,
the GNDVI was identified as the most important variable. Since chlorophyll content is low during the
dry season, the green band tends to be more sensitive to chlorophyll than the red channel [38,40–42].
The results indicated that visible bands’ reflectance sensitivity to LAI varied seasonally.

Previous studies [43,44] have highlighted a strong relationship between LAI and various
vegetation indices, mainly for the most frequently used NDVI and SAVI. These indices enhance
the contrast between the spectral differences between vegetation and soil, but they are sensitive to the
optical properties of the soil background and also experience saturation problems when LAI is high
(6 m2/m2), depending on the vegetation types [38,45]. Thus, in this study, we tried not to limit the
important role of VIs in explaining the leaf characteristics, as we introduced more VIs.

4.3. The Implications of Seasonal LAI Estimations for Reserve

Accurate estimation of LAI in tropical savanna rangelands provides a critical input dataset
required for ecological modelling and the accurate quantification of ecosystem productivity using the
Landsat 8 OLI. Understanding current dynamics and potential changes in ecosystem productivity
(quality and quantity) is critical for sustainable wildlife and livestock production. A number of
studies [46–48] have used LAI to model vegetation cover, growth, productivity and the effects of
disturbances such as climate change, drought and defoliation on vegetation communities. The study
by Ramoelo et al. [3] also emphasized the importance of an appropriate algorithm for identifying the
optimal remote sensing variables to improve the LAI estimation accuracy. The LAI of grass species
might be related to the solar energy and dry biomass production, and should be included in modelling
rangeland productivity in future studies. The services of other freely-available broadband multispectral
satellites (e.g., Sentinel-2) with better estimation accuracy might also have a positive effect in terms of
accurately monitoring LAI across grass species functional types, especially considering the current
demand for vegetation information [7]. The demand for vegetation information—particularly in
endangered biomes such as tropical savanna—has been on the rise given the need to improve the
management and conservation of these valuable ecosystems.

5. Conclusions

Our study has shown that:

1. With its improved sensing characteristics, the Landsat 8 OLI has the ability to explain and predict
the spatio-temporal dynamics in LAI in tropical savanna rangelands with acceptable accuracy.

2. LAI could be estimated with high accuracy during the wet season when compared to the dry
season using RF model—a previously challenging task with traditional linear techniques.
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3. The derived KNP LAI thematic maps indicate that forage productivity varied significantly
(α = 0.05) between the wet and dry seasons, hence the need for monitoring wildlife movements
and grazing patterns so that degradation can be minimal.

For effective conservation of tropical savanna rangelands, including Kruger National Park,
sustainable land management practices and coordinated research and monitoring of wildlife grazing
patterns and rangeland productivity is required. Our results indicate that the tropical savanna
rangelands are likely to have less forage quantity during the dry season. Unsustainable grazing
patterns may cause land degradation, especially if limited rain is received during the wet season.
However, we recommend further research in tropical savanna rangeland productivity monitoring
and assessment across different land management units. The inclusion of other variables like rainfall
patterns and plant diseases is also crucial in understanding these ecosystems.
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