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Abstract: Owing to the characteristics of how a laser interacts with the water surface and water
column, the measured Light Detection and Ranging (LiDAR) intensity values are different with
respect to the laser wavelength, the scanning geometry and the reflection mechanism. Depending on
the instantaneous water condition and the laser incidence angle, laser dropouts can appear, causing
null returns or empty holes found in the collected LiDAR data. This variable intensity response
offers a valuable opportunity for using airborne LiDAR sensors for automatic identification of water
regions, and thus, we previously proposed an airborne LiDAR-based ratio index named the scan
line intensity-elevation ratio (SLIER). Over the water surface, airborne LiDAR data are always found
to have a high fluctuation of the intensity value and low variation of the elevation along each scan
line, and thus, the water region has a higher SLIER value compared to the land. We examined the
SLIER on a multispectral airborne LiDAR dataset collected by Optech Titan and a monochromatic
airborne LiDAR dataset collected by Optech Galaxy on a natural rocky shore and a man-made shore.
Our experiments showed that SLIER was able to provide a high separability between land and water
regions and was able to outperform the traditional normalized difference water index (NDWI) for
estimation of the water surface. With the use of SLIER as a mechanism for training data selection,
our case studies demonstrated an overall accuracy of 98% in the use of either monochromatic or
multispectral LiDAR data, regardless of the laser channel being used.

Keywords: land-water classification; multispectral LiDAR; normalized difference water index; NDWI;
Optech Titan; point cloud; scan line intensity-elevation ratio; SLIER; water surface mapping

1. Introduction

Due to the effect of light absorption, reflection and refraction, water bodies have a relatively lower
spectral reflectance than other ground features across the visible and infrared spectrum. As shown in
Figure 1, the spectral reflectance of calm water bodies is usually found below 5%, comparing to other
man-made and natural features, such as asphalt roads, rhyolite rock and vegetation cover. Therefore,
water bodies usually appear as “dark” features in most of the remote sensing images, regardless of the
spectral wavelength. Such a unique response in terms of relative reflectance makes water bodies easily
detectable through ratioing the difference of certain image bands collected by passive remote sensing
sensors, such as the normalized difference water index (NDWI) [1,2]. As a result, there emerges a wide
array of studies using multi-/hyperspectral remote sensing images in water-related studies, including
but not limited to water erosion assessment [3], river inundation [4], studying inland and near-coastal
transitional water [5] and ocean colour assessment [6].
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Figure 1. Spectral reflectance of different man-made and natural features (Data obtained from the
NASA ASTER Spectral Library [7]).

Fine-scale, large-area mapping of water bodies and other land cover features still poses a
research challenge using satellite remote sensing due to the constraint of image resolution, the
presence of shadow, the effect of relief displacement [8,9] and contributions of sun glints and
whitecaps [10]. Furthermore, using existing passive remote sensing techniques to measure the depth
of water bodies depends on various factors, including water clarity and turbidity [11]. Therefore,
the recent introduction of the airborne Light Detection and Ranging (LiDAR) technique becomes a
favourable alternative for extracting water bodies due to its penetration capability and independence
from atmospheric conditions. Application of airborne LiDAR toward water-related studies can be
found in urban flooding modelling [12], measuring channel cross-sections [13], estimating water
storage/volume [14] and various coastal engineering applications [15,16]. Although airborne LiDAR
systems are capable of collecting the backscattered signal (or the entire waveform) from the water
bodies, the recorded signal strength, i.e., intensity data, does not appear in a way similar to those
found in passive remote sensing images. The backscattered intensity, the availability of data returns
and the instantaneous position captured along the water column highly depend on how the laser
interacts with the water bodies. The three main influencing factors are: (i) the laser wavelength, (ii)
the laser scanning geometry and (iii) the water surface morphology including waves, roughness and
maybe suspended matter and algae [17].

The majority of existing topographic airborne LiDAR sensors usually operate with a near-infrared
(NIR) or infrared (IR) laser with wavelengths mostly in either 1064 nm or 1550 nm, where the NIR/IR
laser is typically backscattered from the water surface. Airborne LiDAR bathymetry (ALB) reaps the
benefits of a green laser operated in 532 nm, which is able to penetrate the water bodies through
the intermediate water column to the seabed (depending on the water depth and instantaneous
water condition). Nevertheless, the water surface measured by the green laser is not as reliable as
the NIR laser’s measurement [18]. Therefore, early prototypes of ALB sensors, such as Optech’s
SHOALSsystem [19,20], were equipped with both NIR and green lasers. Through subtracting the
LiDAR data collected by the dual laser channels, the instantaneous water depth can be estimated
after appropriate data correction is implemented to adjust the laser attenuation and depth bias [21,22].
Several existing studies also reported the use of other lasers operated at different wavelengths in order
to cater to different water environments. Early experiments conducted by Bufton et al. [23] utilized
the N2 laser (337 nm), Nd:YAG laser (532 nm) and CO2 laser (9500 nm) to measure the ocean surface
backscatter. Research conducted by Pe’Eri and Philpot [24] justified that classification and mapping
of (extreme) shallow water depth can be achieved through analysing the shape of a red (645 nm)
waveform (i.e., the head, peak and tail) as ascribed by the Raman effect, which results from the change
of the green laser wavelength. Li et al. [25] investigated the use of ultraviolet laser (355 nm) to model
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the sea surface reflectance through considering the whitecap contribution, specular reflection and
sub-surface contribution.

Laser scanning configurations have an impact on how laser interacts with the water bodies.
Firstly, the impact of the laser incidence angle can divert the laser reflectance in a distinct manner. It is
recommended to set the swath angle within ±20◦, which leads to the swath width being equivalent
to half of the flying height [17]. Peak intensity returns can be found in the close to the nadir region,
while laser dropouts can be observed at large incidence angles on a calm water surface [26]. Despite
that, Tamari et al. [27] proposed to use an NIR laser mounted on a terrestrial laser scanner operated at
large incidence angles (>40◦) to monitor still, but turbid water bodies at reservoirs as attributed to the
sub-surface water backscattered by suspended particles. Li et al. [25] also noted that the sub-surface
water backscattering plays an important role when the laser incidence angle is greater than 15◦ from
the nadir. Apart from the incidence angle, different brands of LiDAR sensors have their own laser
amplitude adjustment mechanism in order to increase the data collection capability. For instance,
some of the Leica Geosystem’s airborne LiDAR sensors are bundled with the automatic gain control
function to adjust the intensity data bin while flying over dark objects, such as water bodies [28].
Optech Titan has its own Titan transfer function to balance between their three channels’ power ratio
and the respective pulse repetition frequency (PRF).

The instantaneous water condition is another major factor influencing the level of backscattered
laser signal. This can be categorized as the water turbidity (or clarity) and the water surface roughness
(i.e., high waves, whitecaps or even sea smoke). For calm and clear water bodies, the NIR laser is
mostly reflected away by the water surface or absorbed by the water column. As a result, there can be
null returns or data holes found within the water region, particularly at large incidence angles [26].
Such a phenomenon can also be observed in swimming pools or water ponds that are surveyed by
topographic airborne LiDAR sensors. Although murky water with suspended particulates results in
elastic scattering for the laser pulses, it also blocks the green laser signal from penetrating through the
water column, not being able to reach to the seabed, resulting in a lesser number of data returns [29].
Furthermore, the attainable water depth highly depends on the LiDAR sensor’s capability. For instance,
Optech Titan is able to reach to a water depth up to 20 m through increasing its intensity transfer
function. On the other hand, instantaneous surface wind or tidal effects may cause high water waves,
turbulence and white caps, and all these effects significantly change the bidirectional reflectance
function, leading to a special case of specular reflectance, i.e., Bragg scattering [27]. In addition, aquatic
vegetation found on the water surface can produce extremely high amplitude returns of intensity due
to the nature of NIR/IR reflectance [30]. Therefore, unlike passive remote sensing, the backscattered
returns of laser do not appear in a uniform manner, leading to homogeneous intensity data found on
the water region.

Due to the peculiarity of how a laser interacts with water bodies, some ALB sensors are
intentionally designed to operate with a Fresnel wedge (e.g., Optech CZMIL) in order to avoid
the intensity discrepancy and laser dropouts found in the collected data. Nevertheless, such a scanning
mechanism is mostly not being adopted by the topographic airborne LiDAR systems, where they are
mainly operated with either an oscillating mirror or rotating prism. As a result, a large variation of
intensity can be observed along the airborne LiDAR scan line while surveying any open water region.
Extreme peaks of intensity can be found particularly at the close to the nadir region, whereas low
intensity values or even laser dropouts would appear at the swath edge of the airborne LiDAR data
scan. Unless the airborne LiDAR survey is carried out under high wave height conditions, the elevation
difference on the water surface should be smaller than those found on the land, where a variety of
land cover features (such as houses, tree canopies and towers) exist. As a result, such a phenomenon
inspires us to develop a new ratio index named the scan line intensity-elevation ratio (SLIER) for
automatic water surface mapping. The concept of SLIER has been preliminarily reported in Yan et
al. [31] for land-water classification. In this paper, we aim to (i) further explain how the SLIER is
being designed, (ii) justify the merit of using SLIER over traditional NDWIs in terms of water surface
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estimation, (iii) evaluate the use of SLIER on a multispectral LiDAR dataset collected for a natural
shore region (instead of a simple man-made shore reported in Yan et al. [31]) and (iv) evaluate the use
of SLIER on a monochromatic airborne LiDAR dataset.

2. Scan Line Intensity-Elevation Ratio

There exist several water spectral indices developed for water surface mapping using
multi-/hyperspectral satellite images [1,2]. These indices mostly utilize the ratio difference of the NIR
band and the green/SWIR band to delineate the water region from non-water bodies. For instance, the
NDWI proposed by McFeeters [1] is formulated as:

NDWI =
ρg − ρnir

ρg + ρnir
(1)

where ρg and ρnir refer to the spectral band of green and NIR, respectively, acquired by multispectral
satellite sensors, such as Landsat. Although these water indices utilize the ratio difference of spectral
reflectance acquired at different wavelengths, they cannot be implemented in monochromatic airborne
LiDAR data unless multispectral LiDAR data are available. Even so, the effect of laser backscattering
on the water surface is completely different than those found on passive remote sensing data as
previously mentioned. Unlike traditional satellite remote sensing data, airborne LiDAR is capable of
collecting a dense 3D point cloud representing the 3D geometry of the surveyed scene together with
the backscattered laser signal strength, i.e., intensity data. Therefore, we attempt to develop a new
ratio index that maximizes the benefits of using both the geometric and radiometric components of
airborne LiDAR data to fulfil the same task. The main concept of SLIER is designed to (i) maximize the
high fluctuation of intensity data collected over the water surface along a scan line, (ii) minimize the
elevation difference of the water surface along the scan line and (iii) reap the benefits of fewer data
points acquired from the water surface compared to the ground, particularly at large incidence angles.
Figure 2 illustrates such a concept.
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Figure 2. Illustration of the airborne LiDAR data’s scan line profile acquired from land and water.
Compared to the land, the water region usually has a high fluctuation of intensity and low variation of
elevation along each scan line, and laser dropouts can also be found at large incidence angles.
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As a result, for given LiDAR data L, a simple version of SLIER can be formulated as:

SLIER =
σI
σz

, ∀ s ∈ L (2)

where σI and σz are the standard deviation of the intensity and elevation of the LiDAR data points,
respectively, along each scan line (s). This leads to the water bodies having an SLIER value larger
than that of the ground surface, due to the high fluctuation of intensity value and the low elevation
difference found on the water surface along each scan line. To further exaggerate the difference of
SLIER between water and land, the above Equation (2) can be enhanced as:

SLIER =
σI
σz
× cos θ × Ns

ns
, ∀ s ∈ L (3)

where θ is the scan angle, ns refers to the number of data points of scan line s and Ns refers to the
maximum number of data points found from a scan line in L. Due to laser dropouts being observed at
large incidence angles, those scan lines acquired on the water surface usually have fewer data points
compared to those acquired on the land. As a result, the use of ns and cosθ can further boost the
difference between the SLIER values of the land and the water region. With the computed SLIER for
each scan line, it serves two purposes. First, those LiDAR data points with high SLIER values can be
extracted, and their respective mean (and standard deviation) of elevation can be computed, resulting
in an estimation of the water surface for the entire study scene. Second, the extreme peaks of intensity
backscattered from the water surface close to the nadir region cause an analytical burden, if the LiDAR
intensity data are used as a feature set for land-water classification. Therefore, the extreme peaks
of intensity can be corrected based on a multivariate outlier detection method, i.e., the Mahalanobis
distance (MD):

MD =
√
(xl − µ)TV−1

l (xl − µ) (4)

where xl is a two by one matrix storing the intensity and SLIER’s value of each LiDAR data point l,
µ is a two by one matrix having the mean value of intensity and SLIER computed for all the LiDAR
data points and Vl is a two by two covariance matrix computed using the intensity and SLIER values.
With two variables having a confidence level of 95%, the chi-square value is 5.99, and thus, the square
root of it is 2.45. If any LiDAR data point has an MD value less than 2.45, this data point is treated as
an outlier (i.e., extreme peak intensity on water bodies), and they can be assigned with an extreme low
value (e.g., “one”) in order to serve the subsequent land-water classification. One should note that this
correction is not a physical correction of laser intensity signals for the water bodies; the main purpose
is to bring down the extreme peak intensity values so that they can be distinct from the ground data
points. Figure 3 shows different examples of the high variation of intensity data found on the water
bodies collected by NIR and green laser.

In practice, the workflow of the SLIER computation and its use to extract the water surface can be
summarized with the following steps. The process begins by first reading the xyz coordinates, intensity
(I), scan angle (θ) and scan direction flag from the LAS data files [32]. Through using the scan direction
flag, the LiDAR dataset can be separated in terms of individual scan line (i.e., the scan direction flag
with a value of zero refers to a positive scan direction, and vice versa). Subsequently, the SLIER
is computed either using Equation (2) or (3) by dividing the standard deviation of intensity by the
standard deviation of elevation along each scan line. Once the SLIER is determined for each scan line,
those extreme peak values of intensity backscattered from the water surface close to the nadir, which
are being treated as outliers, can be located and corrected through computing the MD. Samples of
water surface points are identified if they have high SLIER values. Finally, the water surface of the
study scene can be estimated through computing the mean and standard deviation of the elevation of
the sample water surface points [31].
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Figure 3. Examples of LiDAR intensity data having a high fluctuation of intensity values on water
bodies (top row = near-infrared (NIR) (1064 nm), bottom row = green (532 nm)).

Figure 4 summarizes the workflow of the SLIER computation and extraction of water bodies.
The SLIER can be treated as an automatic training data selection method for mapping water bodies,
since most of the existing work relies on either using historical coastline/tidal data or on manual
intervention for selecting data training points [33–36]. With the extracted data points representing
the water surface, a machine learning classifier can be trained using these data points in order to
delineate the land and water regions, where details can be found in Shaker et al. [37]. One should
bear in mind that there are certain assumptions when SLIER is being utilized. Firstly, SLIER can be
used for water surface extraction if and only if the swath width (or field of view (FOV)) of the airborne
LiDAR data entirely covers the water surface (as illustrated in Figure 2). Secondly, SLIER is mainly
designed for linear mode airborne LiDAR sensors operated with an oscillating/rotating mirror or
prism. Lastly, SLIER is mostly designed for open water bodies, such as the coastal environment. SLIER
is not suitable for a waterfall environment, where the elevation changes through the dataset. Rivers
and small streams can be detected if the first criterion is matched and also if sufficient LiDAR data
points are collected.
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Figure 4. Overall workflow of scan line intensity-elevation ratio (SLIER) computation and water
surface extraction.
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3. Experimental Testing

3.1. Multispectral Airborne LiDAR Dataset

We utilized a multispectral airborne LiDAR dataset collected by Optech Titan for experimental
testing and evaluation of the SLIER. The Optech Titan is equipped with three laser channels, where
Channel 2 (1064 nm) points at nadir and Channel 1 (1550 nm) and Channel 3 (532 nm) are tilted in the
forward direction with 3.5◦ and 7◦ off nadir, respectively. Table 1 summarizes the configuration of the
multispectral airborne dataset. Most previous research has investigated areas with substantial height
differences for man-made shore regions [31,38]; therefore, we intentionally acquired a multispectral
LiDAR dataset that mostly covers a natural shore water environment. This dataset is an open dataset
found available under the ISPRS Commission 3 website with courtesy of Teledyne Optech [39].
Eight multispectral airborne LiDAR data strips were collected by Optech Titan covering a natural
rocky shore area located in Tobermory, Ontario, Canada. The survey was accomplished during July
2015 with a flying height of approximately 500 m and a flying speed 140 kn. With a scan angle of ±20◦,
the survey extent covers an area of approximately 26.82 km2. Since a relatively high PRF was used
(roughly 625 kHz), a high density of data was collected during the flight mission. The total number of
data points collected was 787 million, leading to a mean point density of 8.97–11.38 points/m2 and a
mean point spacing of approximately 0.3 m. Figure 5 shows the multispectral airborne LiDAR dataset
colourized based on the elevation.

Table 1. Summary of multispectral airborne LiDAR data used for experimental testing.

Dataset

Type Rocky shore

Date 3 July 2015

Altitude ∼500 m

Flying speed 140 kn

Pulse repetition frequency (PRF) 625 kHz

Scan frequency (SF) 35 Hz

Scan angle (SA) ±20◦

Number of strips 8

Survey area ∼26.82 km2

Laser wavelength
C1: 1550 nm
C2: 1064 nm
C3: 532 nm

Number of points
C1: 223 million
C2: 249 million
C3: 315 million

Mean point density
C1: 8.87 pts/m2

C2: 9.41 pts/m2

C3: 11.38 pts/m2

Mean point spacing
C1: 0.34 m
C2: 0.33 m
C3: 0.30 m
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Figure 5. Multispectral airborne LiDAR dataset collected on a rocky shore environment.

3.2. Separability Analysis

Since the dataset included eight data strips with each having three laser channels, a total of 24 LAS
files were processed to compute the SLIER, as well as correct the extreme peak intensities backscattered
from the water surface. To justify the use of SLIER to provide a good estimate of water surface over the
ground, we employed two separability analyses, i.e., transformed divergence (TD) and Bhattacharyya
distance (BD), to assess the data separability of land and water. We intentionally compared the results
of SLIER, NDWIs derived from original LiDAR intensity and NDWIs derived from the corrected
intensity (after being identified by Equation (4)) so as to demonstrate the merit of using SLIER over
NDWIs for water surface extraction. The equation of TD can be computed as below:

TD = 2
[
1− exp(−D

8
)
]

(5)

where:
D =

1
2

tr
[
(Ci − Cj)(C−1

j − C−1
i )
]
+

1
2

tr
[
(C−1

i + C−1
j )(Mi −Mj)(Mi −Mj)

T
]

(6)

where tr refers to the trace of the matrix, i.e., the sum of the diagonal element within the derived
matrix. Ci and Cj refer to the variance-covariance matrix of class i and j, respectively, and Mi and Mj
refer to the mean vector of class i and j, respectively. As a result, the separability between the land and
water sample data points were used to compute the TD and BD based on their values of SLIER and
NDWIs. Similarly, BD can be computed as follows:

BD = 2
[
1− exp(−B)

]
(7)

where:

B =
1
8
(Mi −Mj)

T
(Ci + Cj

2

)−1
(Mi −Mj) +

1
2

log

[
|Ci+Cj

2 |√
|Ci| · |Cj|

]
(8)

Regardless of the TD or BD, the computed values are normalized from 0–2 based on Equations (5)
and (7). As a rule of thumb, the TD or BD values ranging from 1.9–2.0 imply a good separability
between the pair of classes. Values between one and 1.9 refer to poor separability, and values less
than one imply that the stated spectral/ratio index cannot provide a good separation between the two
classes, where a high mixture of the stated index value exists between the two classes [40].

3.3. Land-Water Classification

After computing the SLIER for each scan line for the three laser channels, the LiDAR data points
with “high” SLIER values were treated as water data points. The elevation of these sample water
data points was computed, where the instantaneous water surface was estimated with the respective
mean and standard deviation of the sample water data points [37]. The estimated water surface points
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were used to train a statistical classifier, i.e., likelihood model, to perform land-water classification.
The likelihood model is listed as:

P(l|ωi) =
1√

(2π)
1
2 σ2

i

exp
[
− (l − µi)

2

2σ2
i

]
, ∀l ∈ L (9)

where ωi refers to the class i, µi refers to the feature set mean vector of class ωi and σi refers to the
feature set variance-covariance matrix of ωi. µi and σ2

i can be created by obtaining all the data points
of water/land with features, including elevation, intensity, elevation variation, intensity variation and
NDWIs (if multispectral LiDAR data are available). Details of the classification feature sets can be
found in Shaker et al. [37]. Finally, for all data points l in L, the data point l is assigned to class ωi, if
the computed probability P(l|ωi) is greater than that of P(l|ωj), i.e.,

l ∈ ωi if P(l|ωi) > P(l|ωj), ∀i 6= j (10)

Since there is a lack of field survey or existing archived coastline for the land-water boundary,
the classified point clouds were checked against the reference land and water polygons that were
manually digitized with reference to the aerial photos and the LiDAR data. Accuracy assessment was
performed by computing the kappa statistics, overall accuracy (OA) and the respective producer’s
accuracy (PA) and user’s accuracy (UA) for the land and water class. Various rounds of experimental
tests were conducted in order to compare the difference of using monochromatic LiDAR and
multispectral LiDAR data for land-water classification.

4. Results and Analysis

4.1. Analysis of the Scan Line Profile

To justify how the three laser channels interact differently between the land and water bodies,
we intentionally selected two subsets from one data strip with an area approximately 380 m by 380 m
in each to assess the number of data returns. The rationale of selecting 380 m as a sample size is mainly
due to the swath width, where data points between the two swath edges can be analysed. The sample
data points within these two subsets having either purely land or water are plotted as a data histogram
in Figure 6 with respect to the scan angle for the three LiDAR data channels.
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Figure 6. Histograms of LiDAR data returns collected on the land and water regions with respect to
the scan angle.

As shown in the upper row of Figure 6, the data histograms of land had a similar pattern among
the three data channels, where the data points were evenly distributed, except a higher number of data
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returns being found at both ends of the scan. This can be explained by the mechanism of the oscillating
mirror, where the speed of the mirror decelerates at the edges of the scan. Once the mirror stops and
changes the scanning direction, the oscillating mirror accelerates to carry on the laser scanning in the
opposite direction. Since the PRF remains unchanged during this process, a larger number of data
returns can be found at the swath edge due to this speed change [41].

Regarding the water bodies, the histogram of the data returns of the IR and NIR laser channels
(i.e., Channels 1 and 2) both had a higher number of data returns at the close to the nadir region and a
lesser number of data returns at large scan angles. The fewer number of data points at large incidence
angles can be explained by the effect of laser dropouts [26]. The difference of the number of data
returns between the nadir and the swath edge was up to 97% in these two histograms. As a result, the
histogram pattern appeared similar to a normal distribution. Regarding the histograms of the green
data channel (Channel 3), the data return pattern on the water bodies was similar to those collected
from the ground. Based on this observation, one can note that the water bodies had a fewer number of
data points at the swath edge (i.e., large incidence angles), leading to a fewer number of data points
for each scan line in Channels 1 (1550 nm) and 2 (1064 nm). This justifies the use of the number of data
points (ns) and the cosine of the scan angle (θ) in Equation (3) to derive SLIER, so as to make the water
bodies discriminated from the land.

To describe statistically the difference among the data histograms, we employed the
Kolmogorov–Smirnov (KS) test to measure the similarity between a pair of histograms [42]. The KS test
aims to compute the cumulative distribution function of any two histograms and to look for the largest
difference between the two distribution functions (named D-statistic). Table 2 shows the computed
D-statistic of the KS test between a pair of data histograms from the three data channels. With all
the computed D-statistic, we compared these values with their respective critical value with, say, the
99.9% confidence interval (i.e., p = 0.001). Based on the statistical analysis, it was found that only the
D-statistic between histograms of C1 (water) and C2 (water) was less than or equal to the critical value
(i.e., 0.0017), where the rest of the D-statistic values were larger than their respective critical value.
Despite that, some of the D-statistic values were small and close to the critical value, including C1
(land) vs. C2 (land), C1 (water) vs. C3 (water) and C2 (water) vs. C3 (water). By running the KS test,
we concluded that the histograms of C1 (water) and C2 (water) were similar, whereas the rest of the
histograms were slightly or significantly different from each other.

Table 2. Similarity measures among the land and water data histograms based on the KS test.

C1(W) C2(W) C3(W) C1(L) C2(L) C3(L)

C1(W)
C2(W) 0.0017
C3(W) 0.0089 0.0083
C1(L) 0.2608 0.2606 0.2540
C2(L) 0.2514 0.2510 0.2443 0.0340
C3(L) 0.0680 0.0676 0.0605 0.1936 0.1840

4.2. Separability Analysis

Figure 7 shows a shore region of the multispectral LiDAR data displayed in individual channels
together with the derived SLIER. Based on the displayed figures, one can easily note that the laser
dropouts appeared significantly in the water region at large scan angles, particularly in Channels 1
and 2, resulting in a large portion of missing data found at the swath edge. Since the green channel
is capable of collecting both the water surface and the bottom, the effect of laser dropouts was not
obvious in Channel 3. Regarding the intensity value, extreme peak intensity values were found close
to the nadir region, regardless of the laser channel. All these properties resulted in high SLIER values
being computed in Channels 1 and 2 on the water region, whereas this effect was not obvious in the
SLIER computed using Channel 3.
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Figure 7. Computed SLIER based on the three LiDAR data channels’ elevation and intensity.

Since multispectral airborne LiDAR datasets were acquired in this study, two NDWIs could be
derived based on Equation (1). NDWI1 here refers to the NDWI derived by using the intensity of
Channel 3 (532 nm) as ρg and the intensity of Channel 2 (1064 nm) as ρnir. On the other hand, NDWI2
was derived using the intensity of Channel 3 (532 nm) as ρg and the intensity of Channel 1 (1550 nm)
as ρir. Since the values of SLIER and NDWIs are unitless, it is not scientifically sound to compare
their absolute values. Therefore, the values of SLIER and NDWIs were first normalized using their
respective mean and standard deviation based on the z-score. Afterwards, the boxplots of land and
water data samples were generated based on SLIER, the two NDWIs derived using the corrected
intensity data (as reported in Equation (4)) and the two NDWIs derived using the original intensity
data (see Figure 8), where the box represents the interquartile range (IQR) of the data (i.e., 25th–75th
percentiles). One should note that the corresponding row shown in Figure 8 refers to the selection of
the core channel. For instance, the first row indicates that C1 is the core channel, where the intensity
values of the nearest C2’s and C3’s points are assigned to C1 in order to compute the NDWIs.
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Figure 8. Normalized SLIER and NDWIs of land and water samples, i.e., NDWI(O) and NDWI(C) refer
to the NDWI computed based on original intensity and corrected intensity, respectively.
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One can easily observe that the use of SLIER, particularly derived by Channels 1 and 2, offered a
high separability between land and water, since their corresponding boxplots do not have any overlap.
The normalized values of SLIER in Channels 1 and 2 were significantly greater than zero, where their
median value was close to six. Contradictorily, SLIER derived using Channel 3 did not appear in
the same manner as Channels 1 and 2. This can be ascribed by the computation of SLIER through
reading the individual scan line, where both water surface and bottom returns are included in each
scan line. As a result, a high variation of elevation along each scan line cannot yield a high value of
SLIER for water bodies. Regardless of the laser channel, SLIER still outperformed NDWIs in terms of
separating land and water regions. When using original intensity data to derive NDWI (i.e., NDWI(O)),
both NDWI1(O) and NDWI2(O) were observed with a high mixture of values between land and
water regions in Channels 1 and 2 (i.e., their corresponding boxplots had large overlap). However,
the corrected intensity was able to reduce the variance of water bodies, where there existed a good
separation between the boxplots of land and water, leading to a reduction of variance of NDWI1(C)
and NDWI2(C) in these two channels. In Channel 3, a high variance of NDWIs was found on land,
whereas the NDWIs of water bodies were well above the land values, whether the original or corrected
intensity data were used. Figure 9 shows the results of NDWI1(O) and NDWI2(O).

NDWI1(O)

C1 C2 C3

-11

C1 C2 C3

NDWI2(O)

-11

C1 C2 C3

SLIER

HighLow

Figure 9. A comparison of NDWI1(O), NDWI2(O) and SLIER.

To describe the separability statistically, we employed the BD and TD measures as mentioned
in Section 3.2. Table 3 shows the results of BD and TD computed using the land and water data
points. Only the SLIER derived by Channels 1 and 2 offered a high separability in terms of TD and
BD, where their respective values were consistently greater than 1.9. Although the TD measure of
SLIER, NDWI1(C) and NDWI2(C) was above 1.9 in Channel 3, their corresponding BD value ranged
only from 1.1–1.5, offering a mild separability. The rest of the other values, particularly those NDWIs
derived using original intensity data, were mostly below one. The TD and BD of NDWI1(O) and
NDWI2(O) were even less than 0.2 in Channels 1 and 2. However, removal of those extreme peak
intensities on water surface can result in an improvement of separability between land and water,
where their respective TD and BD values were improved up to 0.5 and 0.8. Therefore, our experimental
comparison proved that SLIER outperformed the traditional NDWIs, particularly in Channels 1 and 2,
in terms of providing a good separability between land and water regions.
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Table 3. Separability analysis of SLIER and NDWIs between land and water bodies (i.e., NDWI(O) and
NDWI(C) refer to the NDWI computed based on the original intensity and corrected intensity, respectively).

TD SLIER NDWI1(O) NDWI1(C) NDWI2(O) NDWI2(C)

C1 2.000 0.075 0.563 0.172 0.817
C2 2.000 0.129 0.636 0.101 0.545
C3 1.992 0.755 1.943 0.835 1.974

BD SLIER NDWI1(O) NDWI1(C) NDWI2(O) NDWI2(C)

C1 1.977 0.072 0.563 0.150 0.783
C2 1.979 0.117 0.572 0.094 0.540
C3 1.125 0.731 1.387 0.833 1.487

4.3. Determination of the SLIER Threshold for Water Surface Extraction

Based on the above-mentioned analyses, it is proven that SLIER is able to provide a good
separability between land and water regions. Unlike traditional NDWIs where a threshold of zero can
be used as a cut-off value for extracting certain water bodies, we should analyse the strategy of how
“large” the SLIER value should be in order to identify the data sample points and determine the water
surface region. As a result, we plot Figure 10, which shows the top “X” percentage of SLIER with
respect to the extracted data sample points’ elevation for the three LiDAR data channels. The dotted
grey line represents the instantaneous water surface elevation computed based on the identifying
water region from the aerial photos.
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Figure 10. Illustration of the top percentage of SLIER in the three laser channels.

It is obvious that the elevation of the extracted data points based on the top 1–97% of the SLIER
value was very close to the instantaneous water surface (∼138.56 m), where the elevation of the
extracted data points were 138.55 ± 0.05 m, 138.53 ± 0.07 m and 138.51 ± 0.04 m for Channels 1–3,
respectively. Since there was no significant difference between the top 1–97% of the SLIER value for
extracting the data sample points, we identified the top 10% of the SLIER value as a recommended
setting for the subsequent experiments. Once the water surface was estimated, all the data points below
this surface (mean elevation plus two S.D.) were treated as training data for water bodies, whereas all
the data points above such an elevation were regarded as training data for land. One should bear in
mind that such a strategy of water surface estimation can be modified if a land depression is found in
the near shore region; details are reported in Shaker et al. [37].

4.4. Land-Water Classification

Finally, the SLIER-derived training datasets were utilized to train the maximum likelihood model,
as reported in Section 3.3, to conduct the land-water classification. Various feature sets were created to
train the likelihood model, including the elevation (E), three intensity data (I532, I1064, I1550), intensity
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variation (IV), elevation variation (EV) and number of returns (N). The intensity value here refers to the
corrected intensity after removing the extreme peak intensity through Equation (4). Since multispectral
LiDAR data were available in our experiment, three normalized difference feature indices (NDFIs)
(i.e., NDWI1, NDWI2 and the other one derived using 1064 nm and 1550 nm) were also incorporated
as feature sets to improve the classification capability [37]. A core channel was first selected, and the
intensity values from the other two channels were assigned to the core channel. As a result, three
rounds of experiments were conducted for the land-water classification with each of the three channels
being selected as the core channel together with ten feature sets (E, IV, EV, N, I532, I1064, I1550, NDFI1,
NDFI2 and NDFI3). One should note that the NDFI3 refers to the ratio index computed based on the
NIR and IR channel. To demonstrate the merit of having multispectral LiDAR intensity data, we also
conducted the land-water classification using monochromatic LiDAR feature sets (i.e., I, E, IV, EV, N),
which all can be derived based on any single laser channel.

The overall accuracy was derived based on comparing the classification results with the digitized
land-water boundary with reference to the aerial photos and the LiDAR data. Table 4 summarizes the
OA, UA, PA and kappa statistics of the experimental trials for land-water classification. Figure 11 shows
the classification results using monochromatic or multispectral LiDAR data. The OA of land-water
classification using either Channel 1 or 2 as a core channel was 99.14% and 99.15%, respectively,
using the monochromatic LiDAR data (five feature sets). A slight improvement of OA by 0.1–0.2% was
achieved while using the multispectral LiDAR data (ten feature sets). Indeed, the accuracy of water
mapping was over 99.5% (i.e., PA of water) in both cases, whereas the accuracy of land mapping was
slightly less than that of water (∼97–98%). The use of Channel 3 as a core channel for classification
produced a slightly lower accuracy, for which the OA was close to 94.3% in the case of using five
feature sets. As shown in Figure 11, the water surface estimated by SLIER seemed to be higher than
its actual elevation, resulting in the near shore land region being misclassified as water. However,
if multispectral LiDAR intensity and NDWIs were used, the classification result was improved by 4%,
resulting in an OA of 98.36%. The water mapping accuracy was around 99% when using five or ten
feature sets. Nevertheless, the land mapping accuracy was significantly improved from 89.23–97.40%
when the multispectral LiDAR dataset was used. The relatively lower accuracy in Channel 3 can be
attributed to the multiple returns from the water surface and bottom, which caused the elevation
estimated by the “high” SLIER value having a higher standard deviation. That would subsequently
lead to a less accurate water surface being estimated. In addition, the recorded intensities of Channels
1 and 2 both had a high reflectance value for the rocky shore. It thus helped Channels 1 and 2 (both
NIR and IR lasers) to produce a better accuracy than that of Channel 3 for the land-water classification.
Such a phenomenon can also be justified by the spectral reflectance profile shown in Figure 1. Figure 12
shows the multispectral LiDAR data classification result using Channel 1 as the core channel.

Table 4. Accuracy assessment of land-water classification.

Monochromatic LiDAR Multispectral LiDAR

PA UA OA Kappa PA UA OA Kappa

Channel 1 Land 99.01% 99.84% 99.14% 97.76% 99.15% 99.83% 99.25% 98.02%Water 99.56% 97.15% 99.52% 97.56%

Channel 2 Land 98.97% 99.88% 99.15% 97.84% 99.29% 99.84% 99.36% 98.37%Water 99.67% 97.20% 99.56% 98.06%

Channel 3 Land 90.46% 99.22% 94.30% 88.57% 97.89% 99.15% 98.36% 96.68%Water 99.11% 89.23% 98.95% 97.40%
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Figure 11. Classification results using monochromatic or multispectral LiDAR.

Figure 12. 3D view of multispectral LiDAR classification result (Channel 1 as the core channel).

4.5. Additional Experiment on Monochromatic LiDAR Data

The above experiment successfully demonstrated that SLIER is capable of removing the extreme
intensity values on the water surface and improving the separability between land and water regions.
All these can subsequently lead to an accurate land-water classification using multispectral airborne
LiDAR data. To prove the same capability of SLIER toward monochromatic airborne LiDAR data,
additional experiments were carried out using a single-wavelength (1064 nm) LiDAR dataset collected
by an Optech Galaxy on a near-shore region of Lake Ontario, Bowmanville, Ontario, Canada. The data
were acquired on 30 May 2018, where the system settings of Galaxy were: PRF = 350 kHz, SF = 40 Hz,
SA =±30◦ and flying altitude≈600 m. We intentionally examined two data strips collected in different
directions, where the first data strip was collected perpendicular to the shore while the second strip
was acquired parallel to the shore. The following Figure 13 shows the LiDAR intensity data of the two
data strips.

Since the first data strip had a full FOV covering the water region, SLIER was first implemented
on this data strip in order to estimate the elevation of the water surface (mean and standard deviation)
by extracting those data points with the top 10% of the SLIER value. As the second data strip did
not have a full coverage of the water region in any part of the data, SLIER should not be used under
this circumstance. Thus, the estimated statistics of water surface from the first data strip were then
transferred to the second data strip for training data selection. Following the land-water classification
workflow as previously proposed in [37], feature sets including I, E, IV, EV and N were used to train a
likelihood model to perform the land-water classification. Figure 14 shows the land-water classification
result using the Optech Galaxy dataset. Accuracy assessment was conducted with reference to a set of
land and water polygons digitized based on the aerial photos and the LiDAR data.
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Figure 13. Monochromatic LiDAR intensity data (1064 nm) for a near-shore region located in Lake
Ontario, Ontario, Canada.

Figure 14. 3D view of the monochromatic LiDAR classification result.

The computed OA based on the reference data yielded 99.27% in this case study, which is similar
to the aforementioned case study. The PA of land and water was 99.54% and 98.42%, respectively,
whereas the UA of land and water was 99.51% and 98.53%, respectively. The classification result
successfully identified the shore boundary and preserved those near-shore features, such as the
two rocky piers near Port Darlington, Ontario, Canada. One can note that the misclassified points
can be attributed to the appearance of aquatic vegetation and wetland found on the Bowmanville
Marsh. Since the study area has an obvious elevation difference between the land and water
regions, a monochromatic airborne LiDAR dataset is mostly capable of producing a high accuracy in
land-water classification.

4.6. Discussion

Based on the above analyses, our experiment successfully demonstrated SLIER to be a reliable
ratio index that is able to provide a high separability between the land and water regions for both
monochromatic and multispectral airborne LiDAR data. Unlike traditional passive remote sensing
data that require different spectral bands to derive the water index, SLIER can be implemented on
either monochromatic or multispectral airborne LiDAR data. As long as some of the airborne LiDAR
data scan lines are completely collected over the water region, the computed SLIER reaps the benefit
of the high variation of intensity backscattered from a relatively flat water surface, and thus provides
a high separability between the water and ground. SLIER does not have any restriction toward the
flight direction, where the LiDAR scan can be either conducted parallel or perpendicular to the open
water environment. In addition, SLIER can be applied to the inland river environment, as long as
the river region is completely covered by some of the scan lines that have sufficient data returns.
However, SLIER may not be suitable for waterfalls or rivers with significant changes of elevation.
If the elevation difference found on the ground is close to the elevation difference found on the water
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region, the denominator of SLIER (i.e., standard deviation of elevation along each scan line) cannot
give a boost to further distinguish these two classes. One should bear in mind that SLIER is suitable
only for those airborne LiDAR data collected by sensors operated with a rotating prism or oscillating
mirror, resulting in a scan line pattern. Since the green laser signal is capable of collecting returns from
both the water surface and bottom, the NIR/IR lasers operated with wavelengths 1064 nm and 1550
nm are deemed to be appropriate for SLIER due to their unique return of the water surface.

The significance of SLIER’s development can be justified in various ways. Some of the existing
approaches of land-water classification using airborne LiDAR data require supplementary information,
such as historical coastline [35], tidal data [36] or manual intervention to define the training data [33,34].
Furthermore, for a classification approach such as the use of the Gaussian mixture model to split
preliminarily the elevation histogram for estimating land and water [37], users are required to define
manually or utilize model selection methods (such as the Akaike information criterion or Bayesian
information criterion) to input the number of components. SLIER can remove the necessity of prior
information or manual intervention in order to provide a robust estimation of the water surface,
which leads to an accurate land-water classification. Finally, based on our experimental tests, SLIER
outperforms traditional NDWIs in terms of providing a high separability between the land and
water regions, particularly for the SLIER derived by Channel 1 (1550 nm) and channel 2 (1064 nm).
Furthermore, the water surface extracted by SLIER can aid in generating the hydro-flattened digital
elevation model. As a result, SLIER does not require any selection of parameters, training samples or
iteration, and thus gives this approach a high degree of automation and significant practical relevance.

5. Conclusions

An airborne LiDAR-based ratio index, named SLIER, was proposed for serving the purpose of
automatic extraction of the water surface from airborne LiDAR 3D data point cloud. SLIER maximizes
the benefits of using both the geometric and radiometric components of airborne LiDAR data, and it
is mainly computed by dividing the standard deviation of intensity over the standard deviation of
elevation along each scan line. As attributed to the uniqueness of how the laser interacts with the water
bodies, higher SLIER values are always found on the water bodies compared to the land. As a result,
the instantaneous water surface can be estimated through extracting those LiDAR data points with
high SLIER values and subsequently computing their mean elevation. The estimated water surface can
be used as training data to serve the subsequent land-water classification. Based on our experiments
of SLIER on monochromatic and multispectral airborne LiDAR datasets, the following conclusions
are drawn.

• Since the NIR/IR laser (1064 nm or 1550 nm) is usually backscattered from the water surface,
the implementation of SLIER on NIR/IR laser data has a better estimation of the water surface
than that derived from the green laser data (532 nm), where multiple returns are found on the
water surface and column.

• Unlike a traditional spectral water index derived from optical remote sensing image, SLIER can be
computed using either monochromatic or multispectral airborne LiDAR data and is not affected
by the presence of shadow or other low albedo dark features. In addition, SLIER outperforms the
traditional NDWIs in terms of providing high separability between the land and water regions,
regardless of the laser channel.

• Extreme peaks of intensity found on the water surface can be identified and removed by
computing the Mahalanobis distance using the original intensity and SLIER values.

• With the water surface being extracted from the LiDAR data points having “high” SLIER values
(the top 10% is recommended), the estimated water surface can be used to train a machine
learning model for land-water classification.

• A land-water classification accuracy of over 98% was achieved using the SLIER-derived training
data, regardless of the laser channel being used. In particular, Channels 1 (1550 nm) and 2
(1064 nm) produced over 99% of land-water classification accuracy and water mapping accuracy,
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whether using monochromatic LiDAR or multispectral LiDAR feature sets. When Channel 3
was used as the core channel, the overall accuracy was only 94.3%, and the overall accuracy
was improved up to 98.36% when multispectral LiDAR intensity and NDWIs were incorporated
for classification.

To implement SLIER for estimating the water surface, one should bear in mind the following
requirements during data collection. Firstly, the study area should be surveyed by a linear mode
airborne LiDAR system operated with an oscillating mirror or a rotating prism, resulting in a scan
line pattern. SLIER may not work well if it is directly implemented on those data collected by conical
scanning systems (such as CZMIL or Chiroptera). Furthermore, the airborne LiDAR survey should
cover both land and water regions. However, the flight mission should be planned and configured so
that some of the scan lines completely cover the water region. Lastly, SLIER is mainly designed for
mapping a water surface that does not have a significant change of elevation, including any near-shore,
open water or inland delta environment. Waterfalls, rivers with dramatic elevation changes or shore
regions with high tidal waves may not be appropriate. It is hoped that SLIER can be widely adopted by
the airborne LiDAR community as a robust water ratio index, similar to the NDWIs being universally
used in the optical remote sensing images.
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Abbreviations

The following abbreviations are used in this manuscript:

BD Bhattacharyya distance
FOV Field of view
IR Infrared
LiDAR Light Detection and Ranging
MD Mahalanobis distance
NDWI Normalized difference water index
NIR Near-infrared
OA Overall accuracy
PA Producer’s accuracy
SLIER Scan line intensity-elevation ratio
TD Transformed divergence
UA User’s accuracy
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