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Abstract: The fine classification of crops is critical for food security and agricultural management.
There are many different species of crops, some of which have similar spectral curves. As a result, the
precise classification of crops is a difficult task. Although the classification methods that incorporate
spatial information can reduce the noise and improve the classification accuracy, to a certain extent,
the problem is far from solved. Therefore, in this paper, the method of spatial–spectral fusion
based on conditional random fields (SSF-CRF) for the fine classification of crops in UAV-borne
hyperspectral remote sensing imagery is presented. The proposed method designs suitable potential
functions in a pairwise conditional random field model, fusing the spectral and spatial features
to reduce the spectral variation within the homogenous regions and accurately identify the crops.
The experiments on hyperspectral datasets of the cities of Hanchuan and Honghu in China showed
that, compared with the traditional methods, the proposed classification method can effectively
improve the classification accuracy, protect the edges and shapes of the features, and relieve excessive
smoothing, while retaining detailed information. This method has important significance for the fine
classification of crops in hyperspectral remote sensing imagery.

Keywords: hyperspectral remote sensing imagery; conditional random fields; spectral–spatial fusion;
fine crop classification; unmanned aerial vehicle

1. Introduction

The accurate identification of crop types is an important basis of agricultural monitoring, crop
yield estimation, growth analysis, and determination of crop area and spatial distribution [1,2]. It is
also an important basis for rationally allocating resources, scientifically adjusting agricultural structure,
and planning economic development strategies in the agricultural production process [3–5]. Remote
sensing technology has been widely used in crop classification for its advantages of speed, simplicity,
and low cost [6]. However, the conventional multispectral remote sensing images are limited by low
spectral resolution. Furthermore, the spectra of different plants have many similar features, so the
traditional wide-band spectral data cannot be used to accurately identify crop types [7,8]. In contrast,
the high spectral resolution of hyperspectral images makes it possible to detect the subtle spectral
differences between crop species, which is conducive to fine crop classification [9,10].

In recent years, more and more scholars have used hyperspectral images for classification. There
are two main approaches used in this field: (1) Machine learning and pattern recognition; and
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(2) probability statistics. Among the methods in the first category, Cheng et al. [11] proposed a new
sparse-based hyperspectral image classification algorithm, which incorporates contextual information
in the sparse recovery optimization problem, achieving a classification performance that was better
than that of the classical supervised support vector machine classifier. Chen et al. [12] employed the
sparse auto-encoder (SAE) depth model to extract features of hyperspectral imagery and classify these
features via logical regression. Wang and Wu [13] analyzed the hyperspectral characteristic parameters
of eight common crops in the Jianghuai watershed area in China, and used a back propagation (BP)
neural network to classify them, achieving an accuracy of 91.8%. In the second category, there have
also been some notable achievements. Zhang et al. [14] designed a hybrid decision tree classification
algorithm, based on the spectral characteristics of hyperspectral data in the rice growing season,
and this method obtained an accuracy of 94.9% when it was used to classify hyperspectral image
data of the Jintan rice breeding farm in Changzhou, Jiangsu, China. Senthilnath et al. [15] used
principal component analysis (PCA) to reduce the dimension of an EO-1 Hyperion image and the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Indian Pines image, and used a hierarchical
artificial immune system to extract a variety of crops, obtaining a higher classification accuracy than
the traditional unsupervised classification methods. Mariotto et al. [8] used hyperspectral reflectance
data to accurately identify cotton, wheat, corn, rice, and alfalfa, achieving an accuracy improvement
of about 20% when compared to multispectral data. Finally, Chen [16] applied a spectrum analysis
method to analyze the spectral characteristics of typical wetland vegetation in different seasons.
Although these methods provide some ideas for the classification of hyperspectral remote sensing
images, their research objects involve spaceborne hyperspectral imagery, which generally has an
insufficient spatial resolution. Therefore, the classification models of the above methods mainly rely on
the image spectral information, and ignore the spatial information. As a result, it is difficult to achieve
a fine classification result.

In the south of China, the current situation of farmland fragmentation [17] and the low spatial
resolution of the spaceborne hyperspectral remote sensing images make it difficult to obtain good
classification results. With the rapid development of unmanned aerial vehicle (UAV) technology,
UAV-borne remote sensing has become an important means of Earth observation, providing support
for the development of precision agriculture. With their small size, low cost, flexible operation, and
short operating cycles [18–21], UAV-borne remote sensing systems can simultaneously obtain data
with high spatial and spectral resolutions, which enables us to obtain more accurate agricultural
information [22]. These advantages make up for the drawbacks of the existing spaceborne, airborne,
and ground-based remote sensing systems, making UAV-borne remote sensing systems more suitable
for small- and medium-scale agricultural remote sensing applications [23]. Therefore, this kind of
hyperspectral imagery has become a unique data source for the fine classification of crops. On the
one hand, however, as the dimension of hyperspectral data increases, the high redundancy between
bands poses great difficulties for classification [24]. On the other hand, the increased spatial resolution
makes such hyperspectral data contain more detailed features, resulting in spectral changes and
heterogeneity within the same feature, and a reduction in the spectral separability [25]. Therefore,
the simple use of spectral classification alone cannot meet the increasingly high spatial resolution.
The spatial features hidden in hyperspectral data are now gradually being utilized, and methods for
merging spectral–spatial features are being increasingly applied to crop classification [26].

The random field method is a classification method that can effectively combine spatial contextual
information. The Markov random field (MRF) model was first used for image processing in 1984 [27,28],
and has since been widely used in classification problems [29,30]. The Markovian support vector
classifier (MSVC) is a new MRF-based classifier that integrates support vector machines (SVM) and
MRF, and uses iterated conditional modes (ICM) to optimize the energy function of the spatial
contextual classification [31]. The MRF model can fuse the spatial information in the label data, but it
only considers joint distributions in the label domain, which cannot simulate the spatial interactions
in the observed data [32]. The conditional random field (CRF) model is optimized on the basis
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of the MRF model, and can consider contextual information in both label data and observation
data [33]. For example, the support vector conditional random field classifier [34,35] is widely used to
combine spatial information, effectively overcoming salt-and-pepper classification noise. The pairwise
conditional random field model has also been successfully applied to the classification of remote
sensing images [36–38], where the unary potential function and the pairwise potential function can
better combine the spatial interactions in the local neighborhood. However, the many CRF-based
models all result in different degrees of smoothing when applied to classification [39]. In particular,
when using high spatial resolution hyperspectral images for the fine classification of crops, many small
but very important features will be treated as noise and removed, which greatly affects the result of
the fine classification.

Therefore, in this paper, we propose the method of spectral–spatial fusion based on conditional
random fields (SSF-CRF) for the fine classification of crops in hyperspectral imagery, which is designed
to fuse the spatial and spectral features of the high spatial resolution hyperspectral data by combining
suitable potential functions in a pairwise conditional random field model. In this method, to reduce the
spectral changes within homogenous regions, preserve details, and alleviate the problem of excessive
smoothing, SSF-CRF selects representative features from the perspectives of mathematical morphology,
spatial texture, and mixed pixel decomposition to form the spatial feature vector, and then combines
them with the spectral information of each pixel to form the spectral–spatial fusion feature vector. It
then models the relationship between the label and the fusion feature, and calculates the probability
estimate of each pixel independently, based on the feature vector, according to the given label, to obtain
the probability image. Finally, under the action of the spatial smoothing term and the local class label
cost term, the label field and the observation field simulate the spatial contextual information of each
pixel and its corresponding domain, considering the spatial correlation and reducing the noise while
retaining the detailed features. It thereby maintains the integrity of the homogeneous regions and the
shape structure of the features by simulating the spatial contextual information of each pixel and its
corresponding field through the label field and the observation field.

2. Methods

2.1. The Improved Conditional Random Field (CRF) Model

The CRF model simulates the local neighborhood interaction between random variables in a
uniform probability framework, which directly models the posterior probability of the label, given the
observed image data, as a Gibbs distribution [40,41]:

P(x|y) = 1
Z(y)

exp

{
−∑

c∈C
ψc(xc, y)

}
(1)

Z(y) = ∑
x

exp

{
−∑

c∈C
ψ

c

(xc, y)

}
(2)

where y =
{

y1, y2, . . . , yN
}

is the observed data; yi is the spectral vector of pixel i ∈ V = {1, 2, . . . , N};
V is the set of all the pixels of the observed data; N is the number of pixels in the observed data;
x = {x1, x2, . . . , xN} represents the class labels of the whole image; xi(i = 1, 2, . . . , N) comes from the
label set L = {1, 2, . . . , K}; K is the number of classes; Z is the normalization function; and ψc(xc, y) is
defined locally as the potential function, which is an arbitrary positive function of the clique c. C is the
set of all the cliques, which represents a fully connected subgraph.

The CRF model directly simulates the posterior distribution of the label x, given the observation y.
The corresponding Gibbs energy is as shown in Equation (2):

E(x|y) = − log P(x|y)− log Z(y) = ∑
c∈C

ψc(xc, y) (3)
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Correspondingly, the classified image finds the label image x that maximizes the posterior
probability P(x|y) by the Bayesian maximum a posteriori (MAP) rule. Therefore, the MAP label
xMAP of the random field is given by:

xMAP = argmaxP(x|y)
x

= argminE(x|y)
x

(4)

Thus, when the posterior probability P(x|y) is at its largest, the energy function E(x|y) is minimal.
The remote sensing classification problem can be described by designing suitable potential functions
for the pairwise conditional random field model:

E(x|y) = ∑
i∈V

ψi(xi, y) + λ ∑
i∈V,j∈Ni

ψij
(

xi, xj, y
)

(5)

where ψi(xi, y) and ψij
(

xi, xj, y
)

are, respectively, the unary potential function and pairwise potential
function defined in the local neighborhood Ni of i. In this paper, an eight-neighborhood system is
used to encode the pairwise interactions, as shown in Figure 1. The non-negative constant λ is an
adjustment parameter of the pairwise potential function, and is used to balance the effects of the unary
potential function and the pairwise potential function.
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2.1.1. Unary Potential

The unary potential function ψi(xi, y) models the relationship between the label and the observed
image data, and the cost of the individual pixels using the particular class label is calculated by the
spectral–spatial feature vector. Therefore, each pixel can be separately calculated by a discriminant
classifier, capable of giving a probability estimate of the label xi, and then obtaining a feature vector.
The unary potential plays a leading role in the classification process and can generally be the posterior
probability of a supervised classifier. It is usually defined as:

ψi(xi, y) = − ln{P[xi = lk| fi(y)]} (6)

where f is a feature mapping function, which maps an arbitrary subset of contiguous image cells to a
feature vector; and fi(y) represents the feature vector at position i. P[xi = lk| fi(y)] is the probability of
pixel i acquiring the label lk, based on the feature vector. Because the SVM classifier performs well in
the case of a small number of training samples in remote sensing image classification [42,43], we select
the SVM classifier with a radial basis function as the kernel type to obtain the probability estimate from
the spatial–spectral feature vector as the unary potential function. In this paper, the two parameters C
and γ are set as the default values.

1. Spectral Characteristics

Minimum noise fraction (MNF) rotation is a commonly used method for extracting spectral
features, and it is both simple and easy to implement. After MNF transformation, the components are
arranged according to the signal-to-noise ratio, where the information is mainly concentrated in the
first component. As the components increase, the image quality gradually decreases. Studies have
shown that, compared with the original high-dimensional image data and the feature image obtained
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by PCA transformation, the low-dimensional feature image obtained by MNF transformation can
extract the spectral information more effectively [44]. Therefore, we choose this method to extract the
spectral information of the high spatial resolution hyperspectral imagery.

2. Spatial Characteristics

A. Morphological Feature

Mathematical morphology is an effective image feature extraction tool that describes the local
characteristics of images. The basic morphological operations are corrosion, expansion, and opening
and closing operations, which act on the image through a series of shape regions called structural
elements (SEs). The morphological opening and closing reconstructions are another common kind
of operator, which has a better shape preservation ability than the classical morphological filters.
Since the shape of the SEs used in the filtering is adaptive, with respect to the structures present
in the image itself, it nominally introduces no shape noise [45,46], as shown in Figure 2. In this
paper, we extract the spatial information of the images, based on “opening reconstruction followed by
closing reconstruction” (OFC), which can simultaneously smooth out the bright and dark details of
the structure while maintaining the overall feature stability and improving the consistency within the
object area [47,48].
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The OFC operator is a hybrid operation of opening by reconstruction (OBR) and closing by
reconstruction (CBR), which can be defined as:

OFCSE( f ) = γSE
R (ϕSE

R ( f )) (7)

where ϕSE
R ( f ) indicates the closing reconstruction of image f and γSE

R (ϕSE
R ( f )) is the opening

reconstruction of the closing reconstruction image.

B. Texture Feature

Hyperspectral remote sensing images not only have continuous and abundant spectral
information, but also rich texture information. Some studies have demonstrated the efficiency of
texture for improving land-cover classification accuracy [49,50]. Image textures are complex visual
patterns composed of entities or regions with sub-patterns with the characteristics of brightness, color,
shape, size, etc. Texture is an intrinsic property common to the surface of all objects, and contains
important information about the organization of the surface structure of the object and its relationship
with the surrounding environment. The gray-level co-occurrence matrix (GLCM) is a commonly used
method for extracting texture information with a better discriminative ability [51,52]. The principle is
to establish a GLCM between two pixels in a certain positional relationship in the image and to extract
the corresponding feature quantity from this matrix for the texture analysis.
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If we let f (x, y) be a two-dimensional digital image with the size of M× N, and the gray level is
Ng, then the GLCM satisfying a certain spatial relationship is:

P(i, j) = #{(x1, y1), (x2, y2) ∈ M, N| f (x1, y1) = i, f (x2, y2) = j} (8)

where #(x) is the number of elements in the set x, and P is the matrix of Ng× Ng. If the distance
between (x1, y1) and (x2, y2) is d and the angle is θ, then the GLCM P(i, j, d, θ) of various spacings and
angles is:

P(i, j, d, θ) = #{(x1, y1), (x2, y2) ∈ M, N| f (x1, y1) = i, f (x2, y2) = j} (9)

In this paper, we use the following texture metrics:

(1) Homogeneity—reflects the uniformity of the image grayscale;

Hom =
L−1

∑
i=0

L−1

∑
j=o

p(i, j)
1 + (i− j)2 (10)

(2) Angular second moment—reflects the uniformity of the grayscale distribution of the image and
the thickness of the texture;

ASM =
L−1

∑
i=0

L−1

∑
j=0

p(i, j)2 (11)

(3) Contrast—reflects the amount of grayscale change in the image;

Con =
L−1

∑
n=0

n2

{
L−1

∑
i=0

L−1

∑
j=0

p(i, j)

}
n=|i−j|

(12)

(4) Dissimilarity—measures the degree of dissimilarity of the gray values in the image;

Dis =
L−1

∑
i=0

L−1

∑
j=0
|i− j|p(i, j) (13)

(5) Mean—indicates the degree of regularity of the texture;

Mean =
1

n× n∑
i

∑
j

f (i, j) (14)

(6) Entropy—reflects the complexity or non-uniformity of the image texture.

Ent = −
L−1

∑
i=0

L−1

∑
j=0

p(i, j) log2 p(i, j) (15)

C. Endmember Component

There are a large number of mixed pixels in high spatial resolution hyperspectral images. For
mixed pixels, if using hard classification technology, a lot of information will be lost. If a method of
mixed pixel decomposition is used, the corresponding percentage of each class in the mixed pixel can
be expressed, thereby obtaining an abundance image equal to the number of classes. The endmember
is a physical quantity associated with a mixed pixel. It is the main parameter describing the linear
mixed model, representing the characteristic feature with a relatively fixed spectrum. The endmember
extraction can obtain more detailed information of the image. In the proposed method, the sequential
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maximum angle convex cone (SMACC) endmember model is used to extract the endmember spectra
and the abundance image, to form the endmember component [53], which can be defined as:

H(c, i) =
N

∑
k

R(c, k)A(k, j) (16)

where H is the spectral endmember; c and i are the band index and the pixel index, respectively; k
and j represent an index from 1 to the largest endmenber; R is the matrix containing the endmember
spectra; and A is the abundance matrix containing endmember j to endmenber k in each pixel.

2.1.2. Pairwise Potential

The pairwise term simulates the spatial contextual information between each pixel and its
neighborhood by considering the label field and the observation field. Although the spectral values of
adjacent pixels in a uniform image may look different due to spectral changes and noise, they are likely
to be the same class, due to spatial correlation. The pairwise potential function models this smoothness
and takes the label constraints into account, which facilitates the classification of pixels with the same
features in a uniformly distributed region and preserves the edges of adjacent regions. The pairwise
potential function is defined as follows:

ψij
(

xi, xj, y
)
=

{
0 i f xi = xj
gij(y) + θ ∗ΘL

(
xi, xj|y

)
otherwise

(17)

where ΘL
(

xi, xj|y
)

is the local class label cost term with the size of |L| × |L|, which represents the cost
between xi and xj in the neighborhood. The parameter θ is the interaction coefficient that controls the
degree of the label cost term. The range of parameter θ is usually [0–4]. gij(y) is the smoothing term
related to y, which simulates the interaction between adjacent pixels i and j, and is used to measure the
difference between adjacent pixels, as defined below:

gij(y) = dist(i, j)−1 exp
(
−β‖yi − yj‖2

)
(18)

where (i, j) is the spatial position of adjacent pixels, and the function dist(i, j) is their Euclidean
distance, which is in the real space, not in the feature space. yi and yj are spectral vectors representing
pixels i and j that can correlate the strength of the interactions within the neighborhood with the image
data and promote consistency in similar regions. Parameter β is the mean squared error between the

spectral vectors of all the adjacent pixels in the image (β =
(

2
〈
‖yi − yj‖2

〉)−1
, where

〈
‖yi − yj‖2

〉
is

the average over the image).
The local class label cost term ΘL

(
xi, xj|y

)
simulates the spatial relationship between different

neighborhood class labels and the observed image data, and is defined as:

ΘL
(

xi, xj|y
)
=

min
{

P[xi| fi(y)], P
[
xj| f j(y)

]}
max

{
P[xi| fi(y)], P

[
xj| f j(y)

]} (19)

where P[xi| fi(y)] is the label probability of the feature vector fi(y) given by the SVM classifier. The
term takes the current class label xi into account to measure the correlation between the labels of
adjacent elements i and j. When there is a strong overlap of classes in the feature space, it changes the
label of the pixel through the neighborhood space label information. Therefore, the local class label cost
term associated with the current thematic label considers the spectral information by the probability
distribution estimation form of the thematic category label to perform appropriate smoothing, while
considering the spatial contextual information.
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2.2. Algorithm Flowchart

The flowchart of the SSF-CRF method proposed in this paper is provided in Figure 3. According
to the characteristics of high spatial resolution hyperspectral data, SSF-CRF combines the spatial and
spectral features of pixels to form a spectral–spatial fusion feature vector, which is set to the unary
potential function in the CRF framework. The local class label cost term is then set to the pairwise
potential function. The method is described as follows:

(1) MNF rotation is performed on the original image, and the noise covariance matrix in the principal
component is used to separate and readjust the noise in the data, so that the variance of the
transformed noise data is minimized and the bands are not correlated;

(2) Representative features are selected from the perspective of mathematical morphology, spatial
texture, and mixed pixel decomposition, and then combined with the spectral information of
each pixel to form a spectral–spatial fusion feature vector. The SVM classifier is used to model
the relationship between the label and the fusion feature and the probability estimate of each
pixel is calculated independently, based on the feature vector, according to the given label;

(3) The spatial smoothing term and the local class label cost term simulate the spatial contextual
information of each pixel and its corresponding neighborhood through the label field and the
observation field. According to spatial correlation theory, both the spatial smoothing term and
the local class label cost term have the effect of adjacent pixels having the same class label.
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3. Experimental Results and Discussion

3.1. Study Areas

The two datasets cover the cities of Hanchuan (113◦22′–113◦57′E, 30◦22′–30◦51′N) and Honghu
(113◦07′–114◦05′E, 29◦39′–30◦12′N) in Hubei, China (see Figures 4 and 5).
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Honghu in Hubei province. (c) The study site.

The city of Hanchuan is located in the central part of Hubei province, China, on the lower reaches
of the Han River and in the middle of Jianghan Plain, where the terrain is flat and low-lying. The area
is dominated by a subtropical humid monsoon climate. A wide variety of crops are grown in the area,
including rice, wheat, cotton, and rapeseed.

The city of Honghu is located in the south-central part of Hubei province, on the middle and
lower reaches of the Yangtze River, and in the southeast of Jianghan Plain. The terrain in this region is
higher in the north and south of the area. The climatic characteristic of Honghu is similar to that of
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Hanchuan, and they both belong to the subtropical monsoon climate zone. The main crops grown in
Honghu are cotton, rice, wheat, barley, broad beans, sorghum, and rapeseed.

3.2. Data Acquisition

The two datasets used to verify the proposed SSF-CRF method were provided by the Intelligent
Data Extraction and Remote Sensing Analysis Group of Wuhan University (RSIDEA). The data
were collected by the use of a DJI Matrice 600 Pro drone. The hyperspectral imager used was a
Nano-Hyperspec hyperspectral imaging sensor. The parameters of the Nano-Hyperspec imager are
listed in Table 1.

Table 1. Nano-Hyperspec hyperspectral imaging sensor parameter information.

Class Parameter Class Parameter

Wavelength range 400–1000 nm Field of view 33 22 16
Number of spectral

channels 270 IFOV single pixel
spatial resolution 0.9 0.61 0.43

Number of spatial
channels 640 Instrument power

consumption <13 W

Spectral sampling
interval 2.2 nm/pixel Bit depth 12 bit

Spectral resolution 6 nm @ 20 um Storage 480 GB
Secondary sequence

filter Yes Cell size 7.4 um

Numerical aperture F/2.5 Camera type COMS

Light path design Coaxial reflection imaging
spectrometer Maximum frame rate 300 fps

Slit width 20 um Weight <0.6 kg(no lens)

Lens focal length 8 mm 12 mm 17 mm Operating
temperature 0–50 ◦C

The Hanchuan dataset includes a hyperspectral image of 303 × 600 pixels and 270 bands, with a
spatial resolution of 0.1 m. The image contains the nine land-cover classes of red roof, gray roof, tree,
road, strawberry, pea, soy, shadow, and iron sheet. The true-color image is shown in Figure 6a and the
corresponding ground-truth map is displayed in Figure 6b.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 21 
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The Honghu dataset includes a hyperspectral image of 400 × 400 pixels with 274 bands and a
spatial resolution of 0.4 m. The image contains the 18 land-cover classes of red roof, bare soil, rape,
cotton, Chinese cabbage, pakchoi, cabbage, tuber mustard, Brassica parachinensis, Brassica chinensis,
small Brassica chinensis, Lactuca sativa, celtuce, film-covered lettuce, romaine lettuce, carrot, white
radish, and sprouting garlic. The true-color image is shown in Figure 7a and the corresponding
ground-truth map is shown in Figure 7b.
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3.3. Experimental Description

The high spatial resolution hyperspectral datasets of the cities of Hanchuan and Honghu in
China were used to verify the proposed SSF-CRF method. The comparison algorithms were the
traditional pixel-based SVM classification algorithm with a radial basis function as the kernel type, the
object-oriented classification approach of mean shift segmentation (MS) [30], and a number of random
field-based classification methods. The random field-based methods were the Markovian support
vector classifier (MSVC) [31], the support vector conditional random field classifier with a Mahalanobis
distance boundary constraint (SVRFMC) [37], and the detail-preserving smoothing classifier based on
conditional random fields (DPSCRF) [54]. The MSVC algorithm integrates SVM with the MRF model,
and obtains the final classification result through the ICM algorithm, using the Gaussian radial basis
function and the Potts model as the kernel function and the local prior energy function, respectively.
SVRFMC is a CRF-based classification algorithm based on Markov boundary constraints, where the
spatial term is constrained by the Markov distance boundary to maintain the spatial details of the
classification results. DPSCRF considers the interaction of segmentation and classification in the CRF
model, and adds large-scale spatial contextual information by segmentation.

In the experiments, for each algorithm, we randomly selected 1%, 3%, 5%, and 10% of the training
samples to classify, and the remaining 99%, 97%, 95%, and 90% of the samples were used for precision
verification. Three kinds of accuracies are used in this paper to assess the quantitative performance:
The accuracy of each class, the overall accuracy (OA), and the Kappa coefficient (Kappa) [55].

3.4. Classification Results and Discussion

For the Hanchuan and Honghu datasets, the classification maps obtained using the SVM, MS,
MSVC, SVRFMC, DPSCRF, and SSF-CRF algorithms under 1% training samples are shown in Figures 8
and 9, respectively. The corresponding classification accuracies and confusion matrices are provided
in Tables 2–5.
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Figure 8. Hanchuan dataset classification results: (a) support vector machine (SVM); (b) mean shift
segmentation (MS); (c) support vector conditional random field classifier with a Mahalanobis distance
boundary constraint (SVRFMC); (d) detail-preserving smoothing classifier based on conditional random
fields (DPSCRF); (e) Markovian support vector classifier (MSVC); (f) spatial-spectral fusion based on
conditional random fields (SSF-CRF).

Table 2. The confusion matrix of SSF-CRF for the Hanchuan dataset (%).

Class Red
Roof Tree Road Strawberry Pea Soy Shadow Gray

Roof
Iron

Sheet Total

Red roof 82.16 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 3.87
Tree 0.05 96.12 0.00 0.22 0.00 1.29 0.31 0.00 0.60 8.15
Road 0.00 0.00 76.42 0.00 0.00 0.00 0.13 0.00 0.00 3.97

Strawberry 0.00 0.01 5.77 98.00 0.34 2.42 0.37 0.00 5.77 16.07
Pea 0.00 1.06 0.00 0.00 91.66 0.00 0.07 0.00 0.20 7.55
Soy 0.00 0.00 0.00 0.00 0.00 89.26 0.00 0.00 0.00 0.83

Shadow 17.79 2.28 17.81 1.78 8.00 7.03 98.07 23.12 3.68 56.18
Gray roof 0.00 0.00 0.00 0.00 0.00 0.00 0.21 76.88 17.79 2.83
Iron sheet 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 71.97 0.55

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Figure 9. Honghu dataset classification results: (a) SVM; (b) MS; (c) SVRFMC; (d) DPSCRF; (e) MSVC;
(f) SSF-CRF.

Table 3. The classification accuracies for the Hanchuan dataset.

Class
Accuracy (%)

SVM MS SVRFMC DPSCRF MSVC SSF-CRF

Red roof 49.72 48.89 64.75 49.96 67.43 82.16
Tree 67.30 73.95 92.47 80.38 84.33 96.12
Road 65.07 66.77 74.91 62.58 75.39 76.42

Strawberry 94.55 95.37 97.54 96.89 95.74 98.00
Pea 64.12 65.49 79.55 67.51 78.37 91.66
Soy 35.78 29.95 47.81 13.92 78.67 89.26

Shadow 97.19 97.41 98.84 97.53 97.83 98.07
Gray roof 53.90 53.67 74.21 64.06 72.05 76.88
Iron sheet 42.25 43.54 22.07 37.57 43.84 71.97

OA 85.51 86.41 91.98 87.40 90.91 94.60
Kappa 0.7757 0.7890 0.8760 0.8043 0.8607 0.9177
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Table 4. The confusion matrix of SSF-CRF for the Honghu dataset (%).

Class Red
Roof

Bare
Soil Cotton Rape Chinese

Cabbage Pakchoi Cabbage Tuber
Mustard

Brassica
parachinensis

Brassica
chinensis

Small
Brassica
chinensis

Lactuca
sativa Celtuce

Film-
Covered
Lettuce

Romaine
Lettuce Carrot White

Radish
Sprouting

Garlic Total

Red roof 98.49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5
Bare soil 0 99.66 0.99 0 0 0 0.03 0 0 0.64 0 0.04 0 0 0 0 0 0 8.17
Cotton 1.51 0 99.01 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0 0 1
Rape 0 0 0 99.91 0 0 0 0.02 0.02 0 0.04 1.03 0 0.01 0 0 0.74 0 26.21

Chinese
cabbage 0 0 0 0 99.44 0 0.16 0 1.57 0.82 0.13 0.02 2.62 0 0 0 0 0 7.56

Pakchoi 0 0 0 0 0.02 87.5 0 0 0.42 0 0 0 8.56 0 0 0 0 0 2.53
Cabbage 0 0 0 0 0 0 99.57 0.23 0 0 0 0 1.71 0.07 0 0.22 0 0 7.12

Tuber mustard 0 0 0 0 0 0 0 98.49 0 0 0.1 0.06 0 0 0 0.07 1.98 0 7.85
Brassica

parachinensis 0 0 0 0 0 0 0.09 0 97.63 0 0 0 8.96 0 0 0 0 1.42 4.33

Brassica
chinensis 0 0.01 0 0 0 0 0 0 0 98.45 4.6 0.08 0 0.08 0 0 4.53 0 5.57

Small Brassica
chinensis 0 0.09 0 0.09 0 0 0 0.09 0 0.08 94.98 1.59 0 0.08 1.07 4.3 0.3 0 10.89

Lactuca sativa 0 0 0 0 0.22 0 0 0.66 0 0 0 97.18 0 0 0 0 0 0 3.6
Celtuce 0 0 0 0 0.02 0 0 0 0 0 0 0 78.15 0 0 0 0 0 0.54

Film-covered
lettuce 0 0 0 0 0 0 0.13 0 0 0 0 0 0 99.74 3.29 0 0 0 5.08

Romaine
lettuce 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 95.64 0 0 0 1.99

Carrot 0 0 0 0 0 0 0 0.46 0 0 0.11 0 0 0 0 95.41 0 0 1.89
White radish 0 0 0 0 0 0 0.03 0 0.21 0 0.03 0 0 0 0 0 92.45 1.37 2.64

Sprouting
garlic 0 0.25 0 0 0.31 3.99 0 0 0.16 0 0 0 0 0 0 0 0 97.12 1.55

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Table 5. The classification accuracies for the Honghu dataset

Class
Accuracy (%)

SVM MS SVRFMC DPSCRF MSVC SSF-CRF

Red roof 77.59 93.77 99.40 86.16 89.18 98.49
Bare soil 93.86 94.97 98.12 96.07 94.02 99.66
Cotton 83.55 95.89 98.58 97.09 91.77 99.01
Rape 96.19 98.90 99.80 98.11 98.73 99.91

Chinese cabbage 88.00 94.60 99.00 93.86 93.04 99.44
Pakchoi 1.79 14.92 13.87 3.76 10.76 87.50
Cabbage 94.13 97.28 99.30 97.29 96.32 99.57

Tuber mustard 63.15 77.96 90.17 80.52 70.80 98.54
Brassica parachinensis 62.36 72.72 93.69 83.51 67.32 97.63

Brassica chinensis 39.02 66.02 75.20 34.38 65.76 98.45
Small Brassica chinensis 77.68 82.67 92.68 84.31 83.46 94.98

Lactuca sativa 71.63 76.38 85.75 74.75 80.65 97.18
Celtuce 42.30 68.98 87.51 46.02 71.40 78.15

Film-covered lettuce 88.65 96.37 98.69 97.68 95.61 99.74
Romaine lettuce 31.23 36.30 27.31 8.45 43.17 95.64

Carrot 34.89 48.48 82.43 58.68 60.48 95.41
White radish 51.31 72.64 89.46 59.35 78.33 92.45

Sprouting garlic 39.20 61.29 82.94 21.80 71.16 97.21
OA 76.97 84.77 91.08 81.97 84.32 97.95

Kappa 0.7367 0.8262 0.8985 0.7936 0.8217 0.9768

3.4.1. Experiment 1: Hanchuan Dataset

The first experiment was with the Hanchuan dataset, for which the MNF transformation
reduced the original image from 270 bands to 10 bands. According to the characteristics of the
data, several experiments were conducted with selected suitable features to minimize the noise. The
four endmembers of shadow, tree, strawberry, and red roof were then extracted. The four texture
features of homogeneity, angular second moment, contrast, and mean were extracted from the image
with a window size of 7 × 7. The morphological features were extracted with a disk-shaped SE with a
size of 8.

As can be seen from Figure 8 and the confusion matrix of SSF-CRF in Table 2, the classification
result of the SVM algorithm shows a lot of salt-and-pepper noise because it does not consider the
neighborhood spatial contextual information. Figure 8b is the result of the object-oriented classification
approach (MS), and Figure 8c–f shows the results of the random field-based methods (SVRFMC,
DPSCRF, MSVC, and SSF-CRF). These classification maps present a better visual performance, as the
neighborhood interaction is taken into consideration. Although all these methods are able to consider
the spatial contextual information, they differ in detail. As highlighted in the black boxes and red
boxes, SSF-CRF can better maintain the integrity of the shape structure of the red roof and tree classes,
while the other algorithms lose most of these parts, and the results still contain classification noise.
Furthermore, the soy class in the images is wrongly classified to pea and tree by most methods, except
SSF-CRF, as displayed in the blue boxes. Correspondingly, we can see from the confusion matrix that
these three types of features are less often misclassified into other categories by SSF-CRF. Overall,
the SSF-CRF algorithm not only shows a good performance in maintaining details and keeping good
boundary information, but it can also better distinguish the crops with similar spectra.

The quantitative metrics (the accuracy of each class, the OA, and the Kappa) of the different
algorithms are listed in Table 3. From the table, we can see that, compared with the traditional
pixel-based classification method (SVM), the object-oriented method (MS) and the random field-based
classification methods (SVRFMC, DPSCRF, MSVC, and SSF-CRF) show an improvement of more than
3% in terms of OA and Kappa, which confirms the importance of spatial contextual information for
classification. Having added in the spatial feature vector, the OA of SSF-CRF reaches 94.60%, which is
an increase of about 9% over SVM. For the accuracy of each class, SSF-CRF also outperforms the other
algorithms. For example, for the soy class, the accuracy of most of the algorithms is below 79%, but
SSF-CRF achieves an accuracy of 89.26%, which demonstrates that it performs well in separating similar
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crops and solving the problem of spectral variation and heterogeneity within the same land-cover
class. On the whole, SSF-CRF obtains greatly improved classification results, in terms of the accuracy
of each class, the OA, and Kappa.

3.4.2. Experiment 2: Honghu Dataset

The second experiment was with the dataset from the city of Honghu. According to the
characteristics of the data, several experiments were conducted with selected suitable features to
minimize the noise. The original 274-dimension hyperspectral image was reduced to 10 dimensions
by the MNF transformation, and the endmember characteristics of bare soil, rape, and film-covered
lettuce were extracted. The four texture features of homogeneity, mean, dissimilarity, and entropy were
extracted with a window size of 7 × 7. The morphological features were collected with a disk-shaped
SE, with a size of 8.

The classification results shown in Figure 9 and the confusion matrix of SSF-CRF in Table 4 allow
us to conclude that the algorithms fusing spatial contextual information can improve the classification
accuracy and show a smoother classification effect, which was also the case for the Hanchuan dataset.
The SVM algorithm again displays a result containing a lot of noise. Figure 9b is the result of the
MS algorithm, which shows less noise as a result of considering the spatial contextual information.
Although the random field-based methods (SVRFMC, DPSCRF, MSVC, and SSF-CRF) exhibit a better
visual performance, as presented in Figure 9c–f, for crops with similar spectra, there are still spectral
variations and heterogeneity problems. For example, the romaine lettuce in the yellow boxes is
almost completely classified as film-covered lettuce by the SVM and DPSCRF algorithms, but it is
well maintained in the SSF-CRF classification result. The sprouting garlic and Brassica chinensis classes
in the red and blue boxes keep a relatively complete shape structure under the action of the spatial
features in SSF-CRF, but the results of the other methods are poor.

It can be clearly seen from the quantitative evaluation results in Table 5 that, having taken the
neighborhood interaction into consideration, the OAs of MS, SVRFMC, DPSCRF, and MSVC are
improved, compared with SVM, and the accuracies for each class are also improved, except for pakchoi
and romaine lettuce. Because the spectral difference between pakchoi, romaine lettuce, and the other
crops is not obvious, and the area is small, they are completely misclassified by SVM and DPSCRF,
and the improvement of MS, SVRFMC, and MSVC is also limited. After considering the texture,
morphology, and endmember features, the SSF-CRF algorithm effectively distinguishes these classes,
obtaining an OA of 97.95%, and the accuracies of most classes are more than 90%. For the pakchoi
and romaine lettuce classes, most of the other algorithms obtain an accuracy of around 15% and 44%,
respectively, but SSF-CRF obtains an accuracy of 87.50% and 95.64%, respectively.

3.5. Sensitivity Analysis for the Training Sample Size

The Hanchuan and Honghu datasets were both used to analyze the influence of different training
sample sizes on the different classification algorithms. In this experiment, we randomly selected 1%,
3%, 5%, and 10% of each type of training sample from the corresponding ground-truth distribution
map, and the remaining 99%, 97%, 95%, and 90% of the samples were used as verification samples to
evaluate the classification accuracy. The classification OAs of the different classification algorithms
under different training sample sizes are shown in Figure 10.

As can be seen from Figure 10, as the training sample size increases, the classification accuracies
of all the algorithms increase. The object-oriented MS algorithm performs better in the Honghu
dataset than in the Hanchuan dataset because the Hanchuan dataset is more fragmented. The random
field-based classification methods (SVRFMC, MSVC, DPSCRF, and SSF-CRF) show similar effects
in both datasets. All the algorithms are superior to the pixel-based SVM classification algorithm,
which simply considers the spectral information. In summary, the SSF-CRF algorithm obtains the best
classification performance in this experiment with different training sample sizes.



Remote Sens. 2019, 11, 780 17 of 20

Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 21 

 

3.5. Sensitivity Analysis for the Training Sample Size 

The Hanchuan and Honghu datasets were both used to analyze the influence of different 
training sample sizes on the different classification algorithms. In this experiment, we randomly 
selected 1%, 3%, 5%, and 10% of each type of training sample from the corresponding ground-truth 
distribution map, and the remaining 99%, 97%, 95%, and 90% of the samples were used as verification 
samples to evaluate the classification accuracy. The classification OAs of the different classification 
algorithms under different training sample sizes are shown in Figure 10. 

  

(a) (b) 

Figure 10. Sensitivity analysis for the training sample size: (a) Hanchuan dataset; (b) Honghu dataset. 

As can be seen from Figure 10, as the training sample size increases, the classification accuracies 
of all the algorithms increase. The object-oriented MS algorithm performs better in the Honghu 
dataset than in the Hanchuan dataset because the Hanchuan dataset is more fragmented. The random 
field-based classification methods (SVRFMC, MSVC, DPSCRF, and SSF-CRF) show similar effects in 
both datasets. All the algorithms are superior to the pixel-based SVM classification algorithm, which 
simply considers the spectral information. In summary, the SSF-CRF algorithm obtains the best 
classification performance in this experiment with different training sample sizes. 

4. Conclusions 

High spatial resolution hyperspectral data have rich spectral and spatial detailed information, 
which makes the land-cover classes and the spatial distribution in the imagery more complicated. 
The traditional classification methods cannot solve the problem of the many species of crops and their 
similar spectral curves. In this paper, the SSF-CRF classification method was proposed to solve the 
problem of the accurate identification of crops. Aiming at the characteristics of the data, three 
representative features were selected from three angles—mathematical morphology, spatial texture, 
and mixed pixel decomposition—and combined with the spectral features to form a spectral–spatial 
feature vector, which was integrated into the CRF model to alleviate the spectral changes and 
heterogeneity within the same feature. At the same time, considering the local class label cost 
constraint relieves the over-smoothing of the CRF model. Experiments with two high spatial 
resolution hyperspectral datasets from the cities of Hanchuan and Honghu in China demonstrated 
that the SSF-CRF classification method can obtain a competitive accuracy and visual performance, 
compared with the traditional classification methods. 

Due to the characteristics of crop planting in southern China and the limitation of the flight time 
of UAVs, the experimental datasets used in this paper were small, and the method proposed in this 
paper can be deemed suitable for small- and medium-scale crop classification applications. When the 
method is applied to a wider range of crops, more appropriate features should be selected to 

Figure 10. Sensitivity analysis for the training sample size: (a) Hanchuan dataset; (b) Honghu dataset.

4. Conclusions

High spatial resolution hyperspectral data have rich spectral and spatial detailed information,
which makes the land-cover classes and the spatial distribution in the imagery more complicated.
The traditional classification methods cannot solve the problem of the many species of crops and
their similar spectral curves. In this paper, the SSF-CRF classification method was proposed to solve
the problem of the accurate identification of crops. Aiming at the characteristics of the data, three
representative features were selected from three angles—mathematical morphology, spatial texture,
and mixed pixel decomposition—and combined with the spectral features to form a spectral–spatial
feature vector, which was integrated into the CRF model to alleviate the spectral changes and
heterogeneity within the same feature. At the same time, considering the local class label cost
constraint relieves the over-smoothing of the CRF model. Experiments with two high spatial resolution
hyperspectral datasets from the cities of Hanchuan and Honghu in China demonstrated that the
SSF-CRF classification method can obtain a competitive accuracy and visual performance, compared
with the traditional classification methods.

Due to the characteristics of crop planting in southern China and the limitation of the flight time
of UAVs, the experimental datasets used in this paper were small, and the method proposed in this
paper can be deemed suitable for small- and medium-scale crop classification applications. When
the method is applied to a wider range of crops, more appropriate features should be selected to
participate in the classification, based on the characteristics of the data and crops. In our future work,
we will attempt to classify a wider range of crops.
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