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Abstract: A multispectral image is a three-order tensor since it is a three-dimensional matrix, i.e.,
one spectral dimension and two spatial position dimensions. Multispectral image compression
can be achieved by means of the advantages of tensor decomposition (TD), such as Nonnegative
Tucker Decomposition (NTD). Unfortunately, the TD suffers from high calculation complexity and
cannot be used in the on-board low-complexity case (e.g., multispectral cameras) that the hardware
resources and power are limited. Here, we propose a low-complexity compression approach for
multispectral images based on convolution neural networks (CNNs) with NTD. We construct a new
spectral transform using CNNs, where the CNNs are able to transform the three-dimension spectral
tensor from large-scale to a small-scale version. The NTD resources only allocate the small-scale
three-dimension tensor to improve calculation efficiency. We obtain the optimized small-scale
spectral tensor by the minimization of original and reconstructed three-dimension spectral tensor
in self-learning CNNs. Then, the NTD is applied to the optimized three-dimension spectral tensor
in the DCT domain to obtain the high compression performance. We experimentally confirmed
the proposed method on multispectral images. Compared to the case that the new spectral tensor
transform with CNNs is not applied to the original three-dimension spectral tensor at the same
compression bit-rates, the reconstructed image quality could be improved. Compared with the full
NTD-based method, the computation efficiency was obviously improved with only a small sacrifices
of PSNR without affecting the quality of images.
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1. Introduction

Multispectral images are acquired by a multispectral camera that is able to collect the reflected,
emitted, or backscattered energy from an object or scene in multiple bands of the electromagnetic
spectrum [1–5]. Multispectral images are considered the holy grail of observation tools in Earth
observation because they can provide both spectral and spatial information of an object or scene.
A multi-spectral camera is usually used as a payload of a satellite in multiple applications, such
as monitor environments, surveying minerals, military targets, and so on [6–9]. Unfortunately, the
information content of a multispectral image with large spatial and spectral information (high spectral
and spatial resolution) [10,11] is much greater than the tolerance capabilities of current on-orbit
available memory [12] and image-transmission downlink bandwidth of satellites. Therefore, it is
helpful to compress remote sensing multispectral images without compromising quality.

Since multispectral images are three-dimensional, multispectral image compression
fundamentally removes spatial and spectral redundancies, which is slightly different from
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panchromatic image compression, which only needs to remove spatial redundancies [13–20].
To achieve the fundamental target, many compression approaches for multispectral images have been
developed [17–29]. To our best knowledge, multispectral image compression methods could be mainly
summarized into three main categories: (1) prediction-based approaches [30]; (2) vector quantization
approaches [31]; and (3) transform-based approaches [32]. Table 1 shows the comparison of different
methods for multispectral images. Prediction-based methods are the earliest multispectral compression
methods which are performed in a spatial or frequency domain, such as LUT [33], three-dimensional
(3D) prediction, DPCM, and CCSDS-MDC [34]. The main advantage of the prediction-based
approaches is their low complexity. These methods are lossless compression. Currently, these
methods are also extended as a part of other compression algorithms, such as CCSDS-IDC. The main
disadvantages of the prediction-based approaches are low compression performance and their weak
fault-tolerance ability. Vector quantization approaches (using the quantization technique) involves
two parts: grouping vectors and quantizing vector. The vector quantization approaches use a training
method to group a large set of vectors. Thus, it is difficult to become a fast algorithm, i.e., this
method is not easy to implement on a hardware platform. A transform-based method is a frequency
domain method, where the compression task is performed in the transformed domain. First, a 3D
transform (e.g., 3DWT, 3DCT, Karhunen–Loeve Transform + Discrete Wavelet Transform (KLT +
2DWT), and KLT+post wavelet transform) is able to regroup the energy distribution in a transform
domain. Second, existing encoders (e.g., bit-plane coding or entropy encoding methods) process the
transformed coefficients. This method has many advantages, such as high compression performance,
high fault-tolerance performance, and the possibility of fast calculations. Thus, the transform-based
approach is widely used in multispectral images and other images (e.g., panchromatic images) on the
ground or on-board cases. From the 3D data inherent structure aspect, the transform-based approaches
may crush the inherent structure of a multispectral image and mask redundancy information, which
would result in the high-order dependencies that still existed in images because the compression
process regards the multispectral image as a matrix.

Table 1. Compression methods for multispectral images.

Categories Methods Main Advantages Main Disadvantages

Prediction-based
approaches

DPCM, LUT,
CCSDS-MDC, etc. Low-complexity Low compression performance

Weak fault-tolerance ability

Vector quantization
approaches

Grouping vectors,
quantizing vector, etc.

Moderate compression
performance Without fast algorithm

transform-based
approaches

KLT + 2DWT, KLT +
2DCT, KLT + post

wavelet transform, etc.

High compression
performance

High-order dependencies still
exists

Tensor
decomposition-based

approaches

NTD + DWT, NTD +
DCT, etc.

High compression
performance

Without high-order
dependencies

High computation complexity

To exploit the high-order dependencies, tensor decomposition methods are recently applied to
compression of multispectral images [35–39]. A multispectral image is able to regard a three-order
tensor. The compression results could be achieved by a Tucker Decomposition (TD) approach. Karami
et al. used TD in conjunction with 3D-DCT to compress hyper-spectral images. The 3D-DCT+TD
approaches could reach 38–22 dB at 10–100 of CR, which is able to improve 3 dB and 4 dB compared to
only TD and only 3D-DCT [35]. Karami et al. [36] combined DWT and TD to compress hyper-spectral
images. The experimental results show that this approach could reach 49.5–58.1 dB for Cuprite at
0.05–1 bpp, and 40.1–55.3 dB for Moffett Field at 0.05–1 bpp. Moreover, this method gains higher PSNR
compared with Principal Components Analysis (PCA) + JPEG2000 and 2D Set Partitioned Embedded
Block Coder (SPECK). These two investigations indicate that the TD-based approach is able to gain
better compression performance for multispectral image compression. Unfortunately, this method
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suffers high calculation complexity (see Table 1) and conflicts with the low-complexity requirements of
on-board multispectral cameras.

In our previous works, we investigated the tensor decomposition compression methods to
achieve low complexity. In [40], Tucker decomposition is applied to multispectral images with
comparatively few bands in the post-transform domain. In [41], an accelerated nonnegative tensor
decomposition (i.e., a pair-wise multilevel grouping approach) for hyperspectral image compressions
was developed. This method is able to reduce the calculation complexity through the slight sacrifice of
the compression performance.

In this work, we propose a new spectral tensor transform using convolutional neural networks
(CNNs) to reduce the computational complexity of a large-scale tensor decomposition. We use the
constructed spectral tensor transform in conjunction with nonnegative tensor decomposition (NTD)
in the DCT domain to compress multispectral images, which is able to reduce the total resources
utilization of tensor decomposition. This method focuses on transforming large-scale spectral tensors
into the small-scale version. NTD resources are only allocated to small-scale spectral tensor in the
DCT domain; thus, the low computation complexity is achieved. By means of exploiting the compact
spectral information hidden in multispectral image tensor, this method uses the relatively small total
NTD resources are, which can achieve efficient calculations.

The remainder of the paper is organized as follows. Section 2 presents the proposed compression
framework, including the compression principle of NTD, the spectral transform of the CNNs, and
the compression scheme. Experimental results are reported in Section 3. In Section 4, we conclude
this paper.

2. Materials and Methods

In Section 2.1, we present the principle of multispectral compression based on NTD, followed
in Section 2.2 by the proposed spectral transform of the CNNs. Finally, Section 2.3 demonstrates the
proposed compression scheme using the CNNs.

2.1. NTD for Multispectral Compression

A multispectral image is a 3D matrix and fundamentally includes both spatial redundancy and
spectral redundancy. The multispectral compression aims at removing both redundancies. Figure 1
shows the general principle for multispectral compression using NTD approaches. The NTD-based
compression method involves three steps. In the first step, a two-dimensional (2D) transform (e.g.,
2D-DWT and 2D-DCT) is utilized to remove spatial correlation in intra-band. In the second step, all
transformed bands form a three-dimensional tensor. After that, a Tucker Decomposition is applied
to the three-dimensional tensor to generate a core tensor and several factor matrixes. In the last step,
an adaptive arithmetic encoder is used to process the core tensor and factor matrixes.
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Figure 1. Schematic of multispectral compression based on NTD.
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A tensor is a multi-way array or multi-dimensional matrix. We use Y ∈ RI1×I2×I3 to express a
three-dimensional tensor, where each element is a transformed coefficient. Here, I1 × I2 × I3 is the
dimension of the tensor Y. The decomposition of a three-dimensional tensor is that a given tensor is
decomposed into three component (or factor) matrixes. We provide the important notations shown in
Table 2 to demonstrate the principle of the three-dimensional tensor decomposition. When a Tucker
decomposition (also called the best rank approximation) is applied to the three-dimensional tensor,
a low-dimension core tensor and several factor matrixes are generated [42]. Here, the low-dimension
core tensor is denoted by G ∈ RJ1×J2×J3 (J1 × J2 × J3 is the dimension of the tensor G). Factor matrixes
are denoted by A(n) = [a(n)1 , a(n)2 , . . . , a(n)Jn

] ∈ RIn×Jn (n = 1, 2, 3). Given a tensor Y, a core tensor G and

three-component matrixes A(n) are found, which perform the following approximate decomposition:

A =
J1
∑

j1=1

J2
∑

j2=1

J3
∑

j3=1
gj1 j2 j3 a(1)j1

◦ a(2)j2
◦ a(3)j3

+ E

= G×1 A(1) ×2 A(2) ×3 A(3) + E
= G× {A}+ E = Ŷ + E ≈ Ŷ

(1)

where E is an estimation error of tensor Y in the decomposition process, and Ŷ is an equivalent
tensor (i.e., approximately evaluated tensor) using the generated core tensor and factor matrixes.
Figure 2 shows the graphic illustration of the Tucker Decomposition of Equation (1) on the
three-dimensional tensor.

Table 2. Notations of NTD (nonnegative tensor decomposition).

Notation Description

Rn n-dimensional real vector space
◦ Outer product
×n n-mode product of a tensor by matrix

A(n) n-mode matrix in Tucker model
× Product operator
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To achieve Equation (1), the Tucker decomposition is a search process for the optimal core tensor
and factor matrixes to make the minimized residual error tensor.

min 1
2‖Y− G×1 A(1) ×2 A(2) ×3 A(3)‖2

F
s.t. G ∈ RJ1×J2×J3 , A(n) ∈ RIn×Jn , n = 1, 2, 3

(2)

The Tucker decomposition is able to achieve the compression results because original high
dimension tensor is able to become into a lower dimension core tensor. The tensor decomposition
is performed on the whole multispectral image, which means it can simultaneously remove the
spectral and residual spatial redundancies. Here, we use a fast algorithm based on HALS-NTD [43,44]
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to implement the Tucker decomposition. The important notations of the decomposition algorithm
with HALS-NTD are in Table 3. Algorithm 1 shows the HALS-NTD to process a three-order tensor.
In Algorithm 1, Step 11 and Step 16 are the learning rules for NTD factors A and core tensor G.
The detailed explanations of the learning rules can be found in [43,44].

Algorithm 1 [43,44]:

1: Input: a given tensor Y, its size is I1 × I2 × . . .× IN , N = 3;
The core tensor size is J1 × J2 . . .× JN .
2: Output: a core tensor G ∈ RJ1×J2 ...×JN ,

N factors A(n) =
[

a(n)1 , a(n)2 , . . . , a(n)Jn

]
∈ RIn×Jn

+ .

3: Begin
4: Initializing G and all A(n).

5: Normalizing all a(n)jn
for n = 1, 2, . . . , N to unit length.

6: Calculating the residual tensor as E = Y− Ŷ.
7: Repeat
8: for n = 1 to N do
9: for jn = 1 to jn = Jn do

10: Calculate prediction tensor: Y(jn)
(n) = E(n) + a(n)jn

[
G(n)

]
jn

A⊗−nT

11: Update factors: a(n)jn
←
[

Y(jn)
(n)

[
(G×−n {A})(n)

]T

jn

]
+

12: Normalizing factors: a(n)jn
←

a(n)jn

‖a(n)jn ‖p

13: Update errors: En ← Y(jn)
(n) − a(n)jn

[
G(n)

]
jn

A⊗−nT

14: End
15: End
16: Update core tensor: G ←

[
G∅
(
Y� Ŷ

)
×
{

AT}]
+

17: For each j1 = 1, . . . , J1, j2 = 1, . . . , J2, . . . , jN = 1, . . . , JN do
18: Calculate core tensor:

gj1 j2 ...,jN ← gj1 j2 ...,jN + E×1 a(1)j1
×2 a(2)j2

· · · ×N a(N)
jN

19: Calculate error tensor:

E← E + ∆gj1 j2...,jN
a(1)j1
◦ a(2)j2

· · · ◦ a(N)
jN

20: End
21: Until the converge condition is achieved.
22: End
23: Return G and A(n).

Table 3. Notations of HALS-NTD.

Notation Description

∅ Hadamard product
� Element-wise division
⊗ Kronecker product

A⊗−n A⊗−n = A(N) ⊗ . . .× A(n+1) ⊗ A(n−1) ⊗ . . . A(1)

G×−n {A} G×−n {A} = G×1 A(1) . . .×n−1 A(n−1) ×n+1 A(n+1) . . .×N A(N)

[x]+ [x]+ = max{0, x}
‖x‖p p-norm (length) of the vector x, where p = 1, 2

2.2. Proposed Multispectral Tensor with CNNs

Here, we propose an efficient spectral tensor transform method using convolution neural networks
to compress remote sensing multispectral image tensors. Different from the traditional NTD method
directly applied to a large-scale original multispectral tensor representation, the proposed concept is
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that the use of a learning network transforms the original large-scale spectral tensor into the small-scale
version. Then, the NTD is applied to the small-scale spectral tensor in the DCT domain. Thus, the
total NTD resources are relatively small, which can achieve efficient calculation. Considering that the
transform is an unsupervised learning task, we construct a self-learning network using two convolution
neural networks. Figure 3 shows the spectral transform schematic of convolution neural networks.
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Here, the CNN in the forward channel is called the forward CNN. Accordingly, the CNN in
the backward channel is called the backward CNN. We use X ∈ RN to express a multispectral
three-dimension tensor, which is the input of the forward CNN. The first step of the CNN is
a convolution operation between X and a filter with m1 learned filters having the length of n0.
The convolution can be modeled using a matrix multiplication as

X1 = WT
1 X (3)

where W1 is the convolution filter of the first layer and X1 is the created feature map. In the second
step, a nonlinear function is applied to the created feature map to obtain the first layer CNN feature
denoted by Z1, which can be expressed as:

Z1 = Ψ
(

WT
1 X
)

(4)

where Ψ can be implemented using a Rectifier Linear Unit (ReLU), Ψ(t) = max(t, 0). The second layer
can be obtained as the same method as:

Z2 = Ψ
[
WT

2 Z1

]
= Ψ

[
WT

2 Ψ
(

WT
1 X
)]

(5)

where W2 is the convolution filter of the first layer. Using the same principle, other layers can be
obtained. The nth layer can be expressed as:

Zn = Ψ
[
WT

n Zn−1

]
(6)
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We use the C1 (·) to express the whole operation model of the forward CNN. We use V to express
the resultant representation through the CNN. Equation (6) of the forward CNN can be expressed as:

V = C1(W, X) (7)

where W is the filter parameter of the forward CNN. The DCT transform is applied to the resultant
representation from the forward CNN, where the calculation model can be expressed as

F = DT(V) = BVBT (8)

where DT(·) express the DCT transform, B is the DCT basis.
To obtain the optimized features, i.e., V∗, we add the back-forward channel constituting an inverse

DCT transform and a CNN. Moreover, the DCT transform basis is an orthogonal basis, which means
B−1 = BT. The backward CNN can be expressed by X̂ = C2(U, V̂), where U is the filter parameter of the
CNN and C2 (·) is the calculation function of the CNN. V̂ is the inverse DCT transform signal, V̂ =
DT−1(F). The back-forward calculation model can be expressed as

X̂ = C2(U, V̂) = C2

(
U, DT−1(F)

)
= C2

(
U, BT FB

)
(9)

where C2(•) is the calculation model of the backward CNN in the back-forward channel. To obtain
the best wavelet representation (i.e., V∗), we minimize the error between the input X signal and the
reconstructed X̂ to perform the learning goal as

H(Ŵ, Û) = argmin
W,U
‖C2(U, DT−1(DT(C1(W, X))))− X‖2

2 (10)

To fast solve Equation (10), we use an alternate iteration concept, which can be divided into
two steps:

Step 1:

Ŵ = argmin
W
‖C2(Û, DT−1(DT(C1(W, X))))− X‖2

2 + λ1‖W‖2
2 (11)

Step 2:

Û = argmin
U
‖C2(U, DT−1(DT(C1(Ŵ, X))))− X‖2

2 + λ2‖U‖2
2 (12)

where λ1 and λ2 are the regularization parameters. To efficiently calculate Ŵ and Û, here, we use
Equations (13) and (14) to replace Equations (11) and (12) by adding a regularization term as:

Step 1:

Ŵ = argmin
W
‖C2(Û, (C1(W, X)))− X‖2

2 + λ1‖W‖2
2 + β1‖C1(W, X)− DT−1(DT(C1(W, X)))‖2

2 (13)

Step 2:
Û = argmin

U
‖C2(U, V̂)− X‖2

2 + λ2‖U‖2
2 + β2‖C1(Ŵ, X)− V̂‖2

2 (14)

where β1 and β2 are the regularization parameters. The detailed derivation procedure from
Equations (11) and (12) to Equations (13) and (14) can be seen in Appendix A. The two-step learning
algorithm of the multispectral transform can be summarized, as given below, which is used to obtain
the best small-scale spectral tensor and CNN parameters. By the new spectral tensor transform with
two CNNs, the best small-scale spectral tensor can be obtained. The best small-scale spectral tensor
is a small-scale version of the original large-scale spectral tensor, which is able to preserve structural
information of the original spectral tensor, has a small size and therefore is able to reduce the utilization
of the total NTD resources.
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Algorithm 2: Spectral tensor transform using two CNNs

1: Input: The original spectral tensor, denoted by X;
2: Output: The learnable parameters of two CNNs Ŵ∗, U∗. The best small-3: scale spectral tensor V̂∗

3: Initialization: initial learnable parameters, Ŵ0, Û0 for two CNNs, alternate iteration number k = 0.
4: While do {
5: k = k + 1;
6: Step 1:
7: V = V̂k

8: Update Uk by training the backward CNN to compute Equation (14).
9: Step 2:
10: U = Ûk

11: Update Ŵk by training the forward CNN to compute Equation (13).
12: Until iteration condition is met, here, the iteration condition is k = K.
13: Return: V̂∗ = V̂k, U∗ = Ûk, Ŵ∗ = Ŵk

2.3. Proposed Multispectral Compression Scheme with CNNs

We use CNNs and NTD to construct an image compressor to obtain both low-complexity and
high compression performance. The overall architecture of the proposed compression approach is
shown in Figure 4. The overall architecture of the whole algorithm includes three parts: an encoding
CNN channel, a decoding CNN channel, and an NTD channel. The encoding CNN channel and
decoding CNN channel form a closed-loop link to train the filter parameters of two CNNs. First,
multispectral training images are input to the closed-loop link. The two-step algorithm (i.e., Algorithm
2) is performed to obtain the optimized filter parameters of two networks. Second, a multispectral
image passes through the encoding CNN channel, NTD channel, and Entropy coding unit to complete
the compression task. In the encoding CNN channel, a CNN firstly transforms the large-scale image
representation into small-scale features (i.e., compact image tensors). After that, a 3D-DCT is applied to
the small-scale image tensors to obtain the DCT tensors. The NTD channel performs the NTD process
and completes the final encoding in connection with entropy encoders. When the decompression task
is required, the compressed bit-streams can be used to reconstruct the original multispectral images via
the decoding CNN channel. The decoding CNN channel has two functions. The first is that the use of
another CNN helps the encoding channel’s CNN to obtain the best small-scale wavelet representation.
The second is that it is used to decode compressed bit-streams when a reconstruction task is required.
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Given the training data S of input-target pairs {X(m), Û}, the first CNN proceeds by minimizing
the mean squared error (MSE) between the reconstructed spectral image via the second CNN and
original spectral image as

g1(W) =
1

MS
∑

X(m)∈S

∥∥X̂(m)− X(m)
∥∥2

2 + λ1‖W‖2
2 + β1‖C1(W, X)− DT−1(DT(C1(W, X)))‖2

2 (15)
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where X̂(m) = C2(Û, C1(W, X(m))), W is the learnable parameter of the first CNN, Û is the learnable
parameter of the second CNN, X is the original image representation, and MS is the number of samples
in the training set S. In Equation (15), Û and X are input parameters. Accordingly, the loss function of
the second CNN can be expressed as:

g2(U) =
1

MS
∑

X(m)∈S

∥∥C2(U, V̂)− X(m)
∥∥2

2 + λ2‖U‖2
2 + β2‖C1(Ŵ, X)− V̂‖2

2 (16)

where V̂ is the small-scale feature from the first CNN. The best small-scale image representation is
obtained by the error minimization between the original and reconstructed image representations in the
two CNNs. Then, the small-scale image representation is also further transformed to small-scale DCT
tensor using the 3D-DCT. This is done to remove the spatial and spectral correlation. The small-scale
DCT tensor is decomposed by the NTD method. In the DCT domain, the NTD is applied to remove
residual spatial correlation and spectral correlation. Finally, an entropy encoding completes the final
encoding task. The learned convolution filter from two CNN can be used as the side information of
the compressor.

In the NTD channel, we use a multilevel decomposition (MD) method to implement the fast
NTD method. Here, we take the band number of 32 as an example to demonstrate the MD principle.
Figure 5 shows the MD principle when the band number is 32. The process level number is 3. In the
first level, there are eight sub-tensors. Each sub-tensor is processed by TD to produce core tensor
and three-factor matrixes. In the second level, every four core tensors produced in the first level are
considered as a new tensor. There are the regrouped tensors. Each tensor is processed by TD. In the
third level, the two core tensors produced in the first level are considered as a new tensor, which is
processed by TD. Finally, one core tensor and several factor matrixes are produced.
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We use F =
{

fη,ρ
}

to express a spectral group in multilevel TD structure. Here, η is the
decomposition level, and ρ is the tensor order of in F. In F, the jth tensor in the level i is denoted
as fi,j. Let S( fi,j) be the size of the current tensor fi,j. Let Th( fi,j) be the size of core tensor
decomposed in the current level. S( fi,j) is equal to J1,i,j × J2,i,j × J3,i,j in the ith level, and Th( fi,j)

is the J1,i+1,j × J2,i+1,j × J3,i+1,j in next level. At each level, the resulted core tensor operates has the
same the size of J1,i+1,j × J2,i+1,j × J3,i+1,j, j = 1, 2, . . . , J. The size J1,i+1,j × J2,i+1,j × J3,i+1,j of core tensor
in each level could be determined by the compression bit-rate. In all levels of TD, the different level
has different the size of the core tensor. Let G( fi,j) express the resulted core tensor fi,j. The adjacent
tensor relationship is as follows:

f2,1 = G( f1,1) + G( f1,2) + G( f1,3) + G( f1,4) (17)

f2,2 = G( f1,5) + G( f1,6) + G( f1,7) + G( f1,8) (18)

f3,1 = G( f2,1) + G( f2,2) (19)

We allocate bit-rates to fi,j in F based on a l1 norm approach. In the first level, the jth tensor
allocated bit-rates can be expressed as:

f ∗1,j =
‖ f1,j‖1

8
∑

j=1

∥∥ f1,j
∥∥

1

× Ttoall (20)

where Ttoall is total bit-rates. The other levels use the same way.

3. Results

To evaluate the compression performance of the proposed algorithm with the spectral transform
using CNNs, we used MATLAB to perform the experiments on a personal computer (PC). The working
parameters of the experimental PC are 3.6 GHz of CPU and 4 GB of memory. We tested our CNN-based
NTD method on 50 multispectral images that consist of a variety of buildings, cities, and mountains.
All 50 multispectral images were compressed by conforming to the following processing. First, each
band of the original was 1024 × 1024 pixels. Second, the CNN-based spectral transform method was
applied to the original spectral image to obtain the small-scale spectral tensor. Third, small-scale
spectral tensor performed a DCT transform to remove spatial correlations. In the DCT domain,
NTD was performed to remove the residual spectral and spatial correlations. Figure 6 shows the
reconstructed multispectral image, where the bit-rates were set from 0.25 bpp to 2.0 bpp. Figure 7
shows the zoomed area of the fourth band, where the area was 100× 100 pixels. With the increase of the
bit-rates, the reconstruction quality gradually increased. From the subjective aspect, the reconstructed
bands at the bit-rate of 2.0 bpp were very close to the original bands. As shown in the reconstructed
images, the reconstructed images had better quality at the bit-rate of 0.25 bpp because our algorithm
had better rate-distortion performance.

We objectively evaluated the proposed method by means of peak-signal-noise-ratio (PSNR), mean
structural similarity (MSSIM), and visual information fidelity (VIF). In [36], the TD in the wavelet
domain has the best compression performance, achieving a higher PSNR than PCA+jpeg2000 and 3D
SPECK. We also used the conventional NTD to process all DCT coefficient blocks, where NTD resources
were equally allocated to the large-scale DCT coefficient blocks. In addition, we used DWT+BPE as a
reference method to process all wavelet coefficient blocks. The bit-rate was set to 0.5-3 bpp. Figure 8
show the test PSNR, MSSIM, and VIF using different methods.

The proposed algorithm on the experimental multispectral images was compared with PCA,
SPIHT+2D-DWT with KLT [45], SPECK+2D-DWT [46] with KLT, and POT [47]. The average PSNR was
considered as the PSNR of the corresponding method. The PSNR comparisons are demonstrated in
Table 4. Due to the full usage of CNN and NTD in the DCT domain, the proposed compression achieved
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a good compression performance. The proposed method could improve PSNR by 0.46–1.63 dB against
SPIHT+2D-DWT with KLT at 2–0.25 bpp.

Table 4. Comparison of the compression performance with different compression method.

Methods 0.25 bpp (dB) 0.5 bpp (dB) 1 bpp (dB) 2 bpp (dB)

POT 38.17 43.10 46.23 51.67
PCA 38.88 43.60 46.62 51.91

SPIHT + 2D-DWT with KLT 39.78 44.35 47.34 52.47
SPECK + 2D-DWT with KLT 40.79 44.88 47.79 52.63

CNN 41.41 45.65 48.12 52.93
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Figure 6. Reconstructed multispectral image at different bit-rates: (a) 0.25 bpp; (b) 0.5 bpp; (c) 1.0 bpp;
(d) 2.0 bpp; and (e) original bands.
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Finally, we tested the compression time of the two methods. Figure 9 shows results of the
comparison of the processing time of our algorithm and conventional NTD approaches. As shown
in Figure 9, the proposed method was faster than conventional NTD method at different bit-rates.
Figure 10 shows the comparison of compression performance and compression time at different
bit-rates. As shown in Figure 10, the proposed method had a small sacrificing PSNR compared with
conventional NTD method at different bit-rates. Table 5 shows the average improvement of the
compression time and decrease of the compression performance. The computation efficiency of our
compression approach improved 49.66% compared to traditional approaches while only sacrificing
0.3369 dB. The small sacrificing PSNR does not affect the quality of the images. These results indicate
that our algorithm has low-complexity and high performance. This method has the possibility of
spatial application.
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Table 5. Comparison of the computation efficiency and compression performance.

Contents NTD + DWT Our Methods Improvement

Average compression times 10.1990 s 4.3829 s 49.66%
Average PSNR 41.8497 dB 41.5128 −0.3369

4. Discussion

We discuss the proposed method from the following aspects, which is shown Table 6. As shown
in Figures 8–10, the compression performance of the proposed method was slightly lower than the
traditional NTD. However, the proposed method improved the computation efficiency by 49.66%.
In the traditional NTD method, the whole spectral tensor is directly decomposed by the NTD
algorithm in the DCT domain. In the proposed method, the whole spectral tensor is processed
from two compression steps. The first compression step is that the CNNs transforms a large-scale
spectral tensor into a small-scale spectral tensor. The second compression step is that the NTD is
applied to the small-scale spectral tensor. These two steps achieve a high compression performance.
The sacrificing PSNR is firstly from the first step because the NTD and inverse NTD do not include the
self-learning network. This is done because we consider the high calculation complexity of the NTD and
inverse NTD. The sacrificing PSNR is also from the multi-level NTD. We also tested the compression
performance of the CNNs with NTD and inverse NTD. We found that the compression performance
was basically the same as the traditional NTD method. However, the calculation complexity was very
high. Our current method performed a tradeoff between compression performance and complexity.

Table 6. Evaluation of the proposed compression method.

Contents Evaluation Analysis

Compression performance Slightly lower than conventional
NTD

CNN achieves a compression tensor
NTD does not involve the CNN

Fast multilevel NTD is used to surface

Complexity Higher computation efficiency Small-scale NTD decomposition
Fast multilevel NTD

Hardmard Transform in
CNN Lower PSNR than DCT-CNN

In the convolution neural learning
network, transform method is different

from one used in compression link.

As shown in Figures 9 and 10, the proposed method could improve the computation efficiency
by 49.66% compared with the traditional NTD method. The calculation efficiency improvement was
from two stages. The first stage is that we use the CNN to obtain a compact spectral tensor, which is
actually a compression process. For the traditional NTD method, if it also obtains the same compact
spectral tensor, a lot of calculation resources need to be used. The second stage is that we use a fast
NTD method based on multilevel decomposition technologies. This stage is able to improve the
decomposition speed of the three-order tensor. In the future, we will use hardware platforms, such as
FPGA, DSP, and GPU, to implement the compression algorithm, where we will analyze the hardware
resource utilization.

In the CNNs, the DCT and entropy encoder is used because our compression algorithm
uses the DCT as the sparse representation tool and the entropy encoder as the entropy coding.
In the self-learning network, we also use Hardmard Transform (HT) to replace the DCT. After
obtaining the small-scale spectral tensors, we still use the DCT and NTD to remove the spatial
and spectral correlations. We also multispectral images to perform the experiments when the different
learning networks are used. Figure 11 shows the comparison of two different learning networks.
The experimental results show the use of the HT-based CNNs obtained a lower PSNR (i.e., lower
compression performance) than the proposed method. Thus, the sparse represent method and entropy
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encoder in the convolution neural learning network need to keep the same to the latter stage of the
compression methods.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 21 
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convolution neural networks in conjunction with NTD for multispectral images. First, we use two
convolution neural networks to construct a new spectral transform. The new spectral transform can
transform a large-scale three-dimension spectral tensor into a small-scale three-dimensional spectral
tensor. We obtain the optimized small-scale spectral tensor by the minimization of original and
reconstructed three-order spectral tensor in CNNs. The new spectral transform is able to remove both
spatial and spectral correlations. Second, the NTD is only applied to the small-scale three-dimensional
spectral tensor in the DCT domain to improve the calculation efficiency. The NTD and DCT are used
to remove residual spatial correlation and spectral correlation. Finally, the resultant core tensor and
factor matrixes are encoded by an entropy encoder (removing statistical redundancies to explore the
probability of symbols [48]) to complete the final compression task. The experimental results show the
proposed method improved the computation efficiency by 49.66% while only sacrificing 0.3369 dB
compared to the conventional direct NTD in the wavelet domain. The proposed method has the
potential for use in high-resolution remote sensing multispectral cameras or other remote sensing
cameras [49–51].

Our research process has four research directions: (1) the use of other bases, such as DWT
and PCA, to improve the spectral or spatial representation capability; (2) optimization of the
compression algorithm regarding the tradeoff between the compression performance and complexity;
(3) constructing a more complex learning network consisting of the dictionary learning and tensor
decomposing to implement an end-to-end compression scheme; (4) combining the distributed source
coding (DSC) scheme to construct a DSC-CNN; (5) integrating compressive sensing [52] into the
proposed scheme to construct a high performance compressor; and (6) optimization of our method for
hardware design. These aforementioned issues will be investigated in future research.
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Abbreviations

The following abbreviations are used in this manuscript:

TD Tensor decomposition
NTD Nonnegative Tucker Decomposition
CNNs Convolution neural networks
DCT Discrete Cosine Transformation
LUT Look-Up Table
CCSDS-IDC Consultative Committee for Space Data Systems—Image Data Compression
DPCM Differential pulse-code modulation
DWT Discrete wavelet transform
KLT Karhunen–Loeve Transform
PCA Principal Components Analysis
SPECK Set Partitioned Embedded Block Coder
DSC Distributed source coding

Appendix A Two-Step Calculation Function

In Equation (9), we use V̂ as the inverse DCT transform representation, which is expressed as

V̂ = DT−1(DT(C1(Ŵ, X))) (A1)

V̂ is the input variable of the backward CNN. Based on Equations (A1) and (12), Step 2 can be rewritten by
adding a regularization term as:

Û = argmin
U
‖C2(U, V̂)− X‖2

+ λ2‖U‖2
2 + β2‖C1(Ŵ, X)− V̂‖2

2 (A2)

The main term of Equation (11) can be calculated by solving two sub-problems. First, the optimized output
(denoted by V∗) of the forward CNN is related to the optimized input (denoted by V̂∗) of the backward CNN; V̂∗
can be calculated as

V̂∗ = argmin
V̂
‖C2(Û, V̂)− X‖2 (A3)

Second, in the learning link, Ŵ, can be obtained through the DCT transform and inverse DCT transform link,
i.e.,

Ŵ= argmin
W
‖DT−1(DT(C1(W, X)))− V̂∗‖ (A4)

Since the DT−1(DT(·)) is the DCT transform and inverse DCT transform, Equation (A4) can be expressed by
adding a regularization term as

Ŵ= argmin
W
‖C1(W, X)− V̂∗‖+ λ1‖C1(W, X)− DT−1(DT(C1(W, X)))‖2

2 (A5)

Equation (11) can be implement using Equations (A3) and (A5). Therefore, the main term of Ŵ can be
expressed as

Ŵ = argmin
W
‖C2(Û, (C1(W, X)))− X‖2

+ λ1‖C1(W, X)− DT−1(DT(C1(W, X)))‖2
2 (A6)

The final Ŵ by adding the regularizations can be expressed as:

Ŵ = argmin
W
‖C2(Û, (C1(W, X)))− X‖2

+ λ1‖C1(W, X)− DT−1(DT(C1(W, X)))‖2
2 + λ2‖W‖2

2 (A7)
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