
remote sensing  

Article

Surface Parameters Retrieval from Fully Bistatic
Radar Scattering Data

Ying Yang 1,2, Kun-Shan Chen 1,3,* and Guofei Shang 3

1 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences, Beijing 100101, China; yangying@radi.ac.cn

2 University of Chinese Academy of Sciences, Beijing 100190, China
3 School of Land Resources and Urban and Rural Planning, Hebei GEO University,

Shijiazhuang 050031, China; shangguofei@hgu.edu.cn
* Correspondence: chenks@radi.ac.cn

Received: 1 February 2019; Accepted: 7 March 2019; Published: 12 March 2019
����������
�������

Abstract: Fully bistatic radar scattering from rough surfaces is of vital importance in terrain remote
sensing, but results in bulky data volume. The scattering is dependent on physical parameters of
the media and is controlled by the radar observation geometry. Together, the two sets of parameters
determine the scattering patterns in a bistatic plane confined by incident and polar angles in both
incident and scattering directions. For radar remote sensing, it is desirable to infer surface parameters
of interest, with satisfactory accuracy, from large volumes of measured data sets. This is essentially a
task of data mining. In this paper, we present model-generated bistatic radar scattering data, followed
by a sensitivity analysis, to identify a suitable configuration in terms of parameter inversion from fully
bistatic measurements by a Kalman filter-trained dynamic learning neural network (DLNN). Results
indicate that with bistatic observation, superior retrieval performance (as compared to backscattering
observation) can be readily achieved.
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1. Introduction

Radar scattering from a rough surface is a complex process and is widely applied in the
remote sensing of terrain and sea [1–4]. Recently, interest has grown in bistatic observation. Global
Navigation Satellite System-Reflectometry (GNSS-R) is one such application for remote sensing of the
earth [5,6]. Bistatic configurations can provide desirable performance in various geophysical parameter
observations and retrieval from microwave scattering measurements. Multi-angle observations can
produce large amounts of data. Therefore, it is difficult to tackle the complex inversion problems from
fully bistatic observations of rough surface. Extensive studies show that by analyzing the sensitivity of
scattering in response to surface parameters, it has been a common practice to retrieve the geophysical
parameters of interest, both geometric and dielectric, from the radar measurements that can be inverted.
The commonly used approach is to use traditional statistical techniques (e.g., multiple linear regression
analyses) [7–10]. Statistical approaches will perform well if the distribution function of the parameters
to be inverted is known. However, in practice, such distribution functions are generally not known [11].
Furthermore, the traditional statistical techniques have difficulty dealing with some specific nonlinear
problems. Another inversion method, a neural network, has been widely applied [12–18] because it
has an intrinsic ability to generalize, and makes a weaker assumption about the statistics of the input
data. The most valuable feature here is that the neural network is capable of forming highly nonlinear
decision boundaries in the feature space [15].
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If one perceives radar remote sensing—a stochastic electromagnetic wave scattering
problem—more closely and deeply, the following the 4Vs characteristics may be recognized: volume,
variety, velocity, and veracity. As pointed out by Hey et al. [19], the data science in the big data era
combines and synergizes the observation, model prediction, and numerical simulation such that data
transforms into information, and knowledge can be assured. Within radar imaging, as we see from the
4Vs above, more advanced data analytics apparently should be developed to explore richer information
offered by fully bistatic radars with fully polarized remote sensing data, which is the main objective
of this paper. Hence, it can be realized that a better solution of inverting rough surface parameters
is that, by knowing the scattering patterns, one may be able to detect the presence of undesired
random roughness of a reflective surface (e.g., an antenna reflector), and thus accordingly, and perhaps
effectively, devise a means to correct or compensate phase errors. Therefore, studying electromagnetic
wave bistatic scattering from random surfaces is both theoretically and practically motivated.

In this paper, we present parameter inversions, by means of neural network, from fully bistatic
radar scattering data. Performance is evaluated by comparing extensive simulated data within the
reachable scope. In next section, the AIEM model is adopted as a working model to generate the fully
bistatic radar scattering. Before proceeding, the AIEM model is validated by full-wave numerical
simulations and experimental measurements to give confidence to its application, followed by a
sensitivity analysis of bistatic scattering to root-mean-squared (RMS) height, correlation length, and
moisture content. Section 3 describes the procedure of surface parameter retrieval from bistatic
scattering data, while the inversion results are presented and discussed in Section 4. Finally, the
concluding remarks are given in Section 5.

2. Fully Bistatic Radar Scattering Data Generated by the AIEM Model

2.1. Validation of a Bistatic Scattering Model

Figure 1 sketches the geometry of bistatic radar scattering from a rough surface. The incident and
scattered wave vectors, are defined as

kx = k sin θi cos φi, ky = k sin θi sin φi, kz = −k cos θi
ksx = k sin θs cos φs, ksy = k sin θs sin φs, ksz = k cos θs

(1)

where k is the incident wave number in free space; θi and φi are the incident angle and azimuth angle
of the transmitter, respectively; and θs, φs are the scattering angle and azimuth angle of the receiver
respectively. Notice that the backscattering direction is at θs = θi, φs = φi+180◦.
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simulate the scattering coefficient in a fully bistatic mode. In an AIEM model, the scattering coefficient
can be written as the sum of the single scattering σ0

qp(s) and the multiple scattering σ0
qp(m) [2,3,20–23]:

σ0
qp = σ0

qp(s) + σ0
qp(m) (2)

The single and multiple scattering are given by
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where the subscripts p and q denote the transmitted and received wave polarizations, respectively; σ

is the root-mean-squared (RMS) height of the rough surface; and S(n) is the Fourier transform of the
nth power of the surface correlation function ρ:

S(n)(Kx, Ky) =
x

ρn(ξx, ξy)e−j(Kxξx+Kyξy)dξxdξy (5)

The roughness spectrum, S, generally falls between Gaussian and exponential, with 1.5-power in
between [2,3]. This covers most of the possible roughness spectrum for the soil surface. The factor In

qp
accounting for the upward and downward scattering process under the dielectric properties of the
rough surface is explicitly given in [21].

It is imperative to realize that in Equation (3), σ2S(K, φ) is the surface roughness spectrum,
describing the roughness distribution over the spatial wavenumber K and direction φ. Such energy
distribution determines the radar scattering strength through the resonance between the surface spatial
wavelength and radar wavelength by which radar probes the surface. In fact, the exploring microwave
does not couple with all wavelength waves, but with a specific wavenumber range of waves that
have comparable roughness scales to radar wavelength, physically implying only a certain range of
roughness scales that are effectively responsible for radar scattering.

Aside from the roughness spectrum, in modeling the rough surface scattering, the generic
geometric parameters describing the surface are the correlation length, which measures the horizontal
roughness scale `, and the RMS height σ, which is the vertical roughness scale. The ratio of RMS
height to correlation length is geometrically related to the surface RMS slope. The correlation length `

is normally defined as ρ(`) = e−1. In general, ` is directionally dependent for spatially anisotropic
surfaces such as sea surface. For simplicity, but without loss of generality, we only discuss isotropic
surface in this paper. To estimate the correlation length, it turns out that we need to know the functional
form of ρ. For natural surfaces, the correlation length typically depends on the measured length. The
variance of estimate correlation function ρ̂ is [4]

var[ρ̂(ζ)] =
1
Ls

∫ ∞

0
[ρ2(ξ) + ρ(ξ − ζ)ρ(ξ + ζ)− 4ρ(ζ)ρ(ξ)ρ(ξ + ζ) + 2ρ2(ξ)ρ2(ζ)]dξ (6)

where Ls is the profile length used to estimate ρ. Similarly, the variance of the estimated RMS height is

var(σ̂) =
σ2

Ls

∫ ∞

0
ρ2(ξ)dξ (7)

It is evident that both variances are strongly dependent on the shape of the correlation function,
or equivalently, the roughness spectrum. The variances of both RMS height and correlation length
decrease with measurement trace length. The uncertainties in RMS height and correlation length
constitute (and therefore contribute uncertainty in) parameter inversion, to be treated in next section.
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To ensure confidence in the AIEM model for generating the bistatic radar data, we compared
the model predictions with full-wave numerical simulations and experimental measurements, both
from independent data sets. First, we used the numerical simulation of backscattering at co- and
cross-polarizations by NMM3D [24–27] for an exponentially correlated surface with εr = 9.0 −
j2.5, 15.0 − j3.5, 30.0 − j4.5 at an incident angle of 40◦, covering σ/` at the following ratios: 1/4,
1/7, 1/10, 1/15. The ratio relating to slope was from 0.021 to 0.21. The numerical Maxwell model
of three-dimensional (NMM3D) simulations was developed by Tsang et al. [24–27] to accelerate
the method of moment (MoM) solutions, which efficiently combine the sparse matrix canonical
grid method (SMCG), the physical-based two-grid (PBTG) method, the multi-level UV method,
and the hybrid UV/PBTG/SMCG method. Further, the measured POLARSCAT data [28] for three
exponentially correlated surfaces were used to validate the AIEM model. POLARSCAT is a polarimetric
scatterometer operating at L, C, and X bands (with center frequencies of 1.25 GHz, 4.75 GHz, and 9.5
GHz, respectively) at incident angles of 10~70◦ for HH, VV, and HV/VH polarizations, with each
surface having wet and dry conditions corresponding to different dielectric constants. The correlation
length ranged from 8.4 cm to 9.9 cm, while RMS height ranged from 0.4 cm to 1.12 cm.

Note that the soil moisture volumetric content is related to the dielectric constant εr [29,30]. The
comparisons of backscattering coefficients between the AIEM and NMM3D for HH, VV, and HV
polarizations are shown in Figure 2a. The correlation coefficient (r) between AIEM and NMM3D was
greater than 0.96, and the RMS error (RMSE) was only about 1.6 dB for the total of three polarizations,
suggesting a good match between the model predictions and full-wave numerical simulations. The
backscattering coefficients predicted by AIEM and the measured POLARSCAT are given in in Figure 2b.
Overall, the correlation was very close to the 1:1 line. The correlation coefficients for both co- and
cross-polarizations were about 0.9 and RMSEs were about 2.6 dB, confirming a good match between
the model prediction and the measured data over a wide range of surface and radar parameters.
Among the three polarizations, the cross-polarization produced the larger root mean square error
(RMSE) compared to the co-polarizations HH and VV. This is perhaps attributable to the higher source
uncertainty in measuring cross-polarized returns, which are typically low for the backscattering of
rough surfaces.
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In bistatic scattering, the AIEM prediction is validated by numerical simulations of small slope
approximation (SSA) and the method of moment (MoM) for dielectric rough surfaces. As shown
in Figure 3, the AIEM model predictions match quite well with the MoM simulations both in level
and angular trend. Notice that strong spikes appearing in specular directions are due to the coherent
scattering, which was excluded in both AIEM and SSA (small slope approximation). More comparisons
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with numerical simulations and experimental measurements presenting a higher-accuracy AIEM model
in predicting bistatic scattering are given in [31].
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2.2. Data Generation and Sensitivity of Bistatic Scattering to Surface Parameters

According to the methods described in the previous section, AIEM models were validated to
have a high accuracy in generating bistatic radar data. Before devising an effective approach to invert
rough surface parameters, it was essential to conduct a sensitivity analysis of scattering responses
to surface parameters under certain radar parameters. According to Equations (2)–(4), the three key
rough surface parameters are RMS height, correlation length, and dielectric constant, which is related
to moisture content. In what follows, we illustrate the bistatic scattering hemispherical plots for the
dependences of these three surface parameters. As one of the key radar parameters, the incident angle
is also discussed to demonstrate its effects on the scattering pattern.

Figure 4 is the hemispherical plot of polarized bistatic scattering coefficients HH, HV, VH, and
VV, with an exponential correlated surface θi = 40◦, kσ = 1.0, mv = 20%, showing the effect of surface
roughness with normalized correlation lengths of 5 and 15. Similarly, Figure 5 shows the effect of
surface roughness with a normalized RMS height of 0.5 and 1.5. The other surface parameters were
fixed at kl = 5.0, mv = 20%. The incident angle was 40◦. In these plots, the left-hand half sphere and
right-hand half sphere correspond respectively to the backward and forward scattering regions, while
the horizontal axis and vertical axis represent the incident plane and cross-incident plane, respectively.
From Figures 4 and 5, it can be observed that the surface roughness affects the distribution of the
scattering power on the whole scattering plane. From the scattering plots in Figure 5, it is seen that
there is a richer feature (in the sense of directional dependence) in the forward region than in backward
region, where we see that the scattering was more omnidirectional. Equally noticeable is that in
forward region generally there was a higher scattering strength, representing stronger directional
dependence. Both the scattering pattern and strength in the backward region were more influenced
due to the horizontal roughness k` (when comparing the top and bottom row in Figure 5). Relatively
speaking, the cross-polarizations, both HV and VH, were impacted by the horizontal roughness k` to
a much lesser extent. As shown in Figure 5, as the RMS height increased, the scattering coefficients
for both co-and cross-polarizations decreased near the specular region, while increasing in other
directions. Note that the strong scattering of HV and VH polarizations clustered on the cross plane at
a small scattering angle. The increase in HH polarization was more pronounced than VV polarization
with increasing RMS height. In general, the dynamic range of the scattering coefficient decreased for
both co- and cross-polarizations with increasing surface roughness. This phenomenon is physically
understandable due to the fact that coherent scattering becomes stronger with a smaller surface
roughness, and incoherent scattering is enhanced with increasing surface roughness.
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Similarly, the hemispherical plots of co- and cross-polarized bistatic scattering coefficients with
θi = 40◦, kσ = 0.5, k` = 5, but varying the soil moisture content from mv = 10% to mv = 30%,
are illustrated in Figure 6. As is shown, with increasing moisture content the scattering strength in
the forward region was greater than that in backward region for both co- and cross-polarizations.
Examining Figure 6 more closely reveals that for each polarization the angular pattern remained
similar as a function of moisture content. An even closer look suggests that the magnitudes for
all four polarizations increased with mv, and the scattering strength was enhanced on the whole
scattering plane.

Finally, we examined the angular dependence displayed in Figure 7, which illustrates the
hemispherical plots of polarized bistatic scattering coefficients HH, HV, VH, and VV, with surface
parameters kσ = 0.5, k` = 5, mv = 20% (at θi = 20◦ top row and θi = 60◦ bottom row in Figure 7). For
the same set of surface parameters, the incident angle exercised a strong influence on both scattering
patterns and strength for all polarizations. The strong scattering in the forward region was due to the
specular scattering that moved to right hemisphere with an increase of the incident angle. At a smaller
incident angle, the strength of HH polarization accented the forward direction with a small azimuth
angular region. Yet, the region with strong scattering started to expand and disperse as the incident
angle increased. In the backward region, the intensity of HH polarization reduced as the incident angle
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increased, but a subtle increment appeared at a large azimuth angle. A similar observation applies to
the VV polarization. Meanwhile, the strength of cross-polarizations, HV and VH, quickly weakened
on the whole upper hemisphere with an increasing incident angle.
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From the scattering plots of Figures 5–7, the dependence of surface parameters and radar
parameters, in which only selected ones were chosen for illustration, are persistently and strongly
coupled. This makes surface parameter retrieval from bistatic scattering, both in terms of pattern and
strength, extremely complicated, although the features are much richer. To this end, feature selection
by proper data models and mapping from feature space to parameter space are essential and schemes
are developed in the following section.

3. Surface Parameters Retrieval

3.1. A Neural Network Approach

In the previous section, the AIEM model was validated and the sensitivity of the bistatic scattering
responding to surface parameters and radar parameters was analyzed. To better invert the surface
parameters of interest, a proper data model is essential to enable a mapping of the measurement
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domain to the feature domain that is of interest. We detail how we came up with a good scheme to
improve retrieval accuracy and efficiency. The radar scattering from a rough surface can be modeled as

b = Wx + u (8)

where x is the surface parameters vector; matrix W relates the surface parameters vector x to radar
scattering coefficients b; and u represents the measurement error vector induced by system and
calibration errors, and speckle noise, among other factors. In a statistical sense, x constitutes a random
variable due to spatially and temporally varying properties, such that

x = xt + xn (9)

where xt is the true variable, and xn is the noise term.
In practice, the “truth” is never obtainable; it is always vague. Statistically, xt and xn may be

assumed to be, as they usually are, uncorrelated, such that x is an unbiased estimate of xt, i.e.,

E(x) = E(xt), ∀xn ∼ N(0, σ2
xn) (10)

where E denotes the statistical mean, and σ2
xn is a variance of xn.

Note that the radar response is formed by, in general, the scattering matrix. For the purpose of this
paper and, without loss of generality, we assume it is formed by multi-polarized scattering coefficients:

b = [σo
hh, σo

hv, σo
vhσo

vv]
t (11)

where each component may contain multi-angular observables. The rough surface parameters of
interest are the RMS height, correlation length, and moisture content, denoted by the x vector:

x = [σ, `, mv]
t (12)

or more conveniently, normalized to the wavenumber:

x = [kσ, k`, mv]
t (13)

It has been argued that [32] non-quadratic regularization is practically effective in minimizing the
clutter while emphasizing the target features via

x̂ = argmin
{
‖b−Wx‖2

2 + γ2‖x‖p
p

}
(14)

where ‖‖p denotes `p − norm (p ≤ 1), γ2 is a scalar parameter, and
{
‖b−Wx‖2

2 + γ2‖x‖p
p

}
is

recognized as the cost or objective function.
Direct solving of Equation (8) is perhaps possible, but demands intensive computational resources.

From the preceding section, we also see that the scattering behavior, both pattern and strength, is
complicatedly determined, in a stochastic sense, by three surface parameters. Hence, in search for
the cost function minima in Equation (8), we may seek a neural network approach. Perhaps one
disadvantage of the neural network is that it constitutes a black box for most users. Extensive studies
show that it is a powerful tool for handling complex problems involving bulky volume data in high
dimensional feature space. By inverting parameter vectors from measurements, a neural network
offers an effective and efficient approach, and will be detailed in the following section.

Modified from multi-layer perceptron (MLP), a dynamic learning neural network (DLNN) was
proposed [33] and is adopted in this paper. Figure 8 schematically depicts the configuration of a
dynamic learning neural network (DLNN). It features every node at an input layer, and all hidden
layers fully connected to the output layer. The activation function is removed from each output node,
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and the output of the modified network can be characterized as the weighted sum of the polynomial
basis vectors. Such modifications form a condensed model of the MLP in which the output is a
weighted sum of the compositions of polynomials. Hence, with measurement error matrix u, as in
Equation (8), W is the network weight matrix.

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 18 

 

in high dimensional feature space. By inverting parameter vectors from measurements, a neural 
network offers an effective and efficient approach, and will be detailed in the following section. 

Modified from multi-layer perceptron (MLP), a dynamic learning neural network (DLNN) was 
proposed [33] and is adopted in this paper. Figure 8 schematically depicts the configuration of a 
dynamic learning neural network (DLNN). It features every node at an input layer, and all hidden 
layers fully connected to the output layer. The activation function is removed from each output node, 
and the output of the modified network can be characterized as the weighted sum of the polynomial 
basis vectors. Such modifications form a condensed model of the MLP in which the output is a 
weighted sum of the compositions of polynomials. Hence, with measurement error matrix , as in 
Equation (8), is the network weight matrix. 

 
Figure 8. Network structure of a dynamic learning neural network (DLNN). It features every node at 
an input layer, and all hidden layers fully connected to the output layer; the activation function is 
removed from each output node, and the output of the modified network can be characterized as the 
weighted sum of the polynomial basis vectors. 

3.2. Training Scheme 

The network training or learning scheme, based on the Kalman filter technique [34] that lends 
itself to a highly dynamic and adaptive merit during the learning stage, is described below. To begin, 
the basic concept of Kalman filtering is briefly described, with notation given in Figure 9. 

 
Figure 9. Schematic description of Kalman filtering. 

The measurement equation takes the form for the one-step n: 

n n n= +b Wx u  (15) 

where the subscript n denotes the measurement at a discrete nth time step. The process equation 
relates the transitionary states of the surface-parameters vector x: 

1n n n n n+ = F +x x B v  (16) 

bn    W−1   !xn

W

  
Φn

bn+1

b̂n

 
Kn

    !xn+1

   x̂n

Kn = !PnW
t(W!PnW

t + Rn)

    !xn+1 = Φnx̂n

    x̂n = !xn + Kn(bn −W!xn)

 +

 −

Figure 8. Network structure of a dynamic learning neural network (DLNN). It features every node
at an input layer, and all hidden layers fully connected to the output layer; the activation function is
removed from each output node, and the output of the modified network can be characterized as the
weighted sum of the polynomial basis vectors.

3.2. Training Scheme

The network training or learning scheme, based on the Kalman filter technique [34] that lends
itself to a highly dynamic and adaptive merit during the learning stage, is described below. To begin,
the basic concept of Kalman filtering is briefly described, with notation given in Figure 9.
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Figure 9. Schematic description of Kalman filtering.

The measurement equation takes the form for the one-step n:

bn = Wxn + un (15)

where the subscript n denotes the measurement at a discrete nth time step. The process equation
relates the transitionary states of the surface-parameters vector x:

xn+1 = Φnxn + Bnvn (16)

where Φn is a transition matrix, vn is the process error vector, and Bn is the error matrix which, in our
case, is a diagonal matrix.
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The measurement error and process error can be assumed to be statistically independent, i.e.,

E[umvt
n] = 0, ∀m, n. (17)

x̂n = x̃n + Kn(bn −Wx̃n) (18)

x̃n+1 = Φnx̂n (19)

where x̃n is the one-step predicted estimate, x̂n is the filter estimate of the desired xn, and Kn is the
computed Kalman gain. For numerical stability, its computation takes the following steps:

Kn = P̃nWt(WP̃nWt + Rn) (20)

P̂n = P̃n − Kn(P̃nWt)
t

(21)

P̃n+1 = ΦnP̂nΦt
n + BnQnBt

n (22)

where P̃n, P̂n are the one-step predicted and filter estimate error covariance matrices, respectively. The
initial state can be set as P̃1 = E[x1xt

1].
For the error vectors, it is physically reasonable to assume that for both measurement and process

error vectors

E[umut
n] =

{
Rn, m = n
0, m 6= n

(23)

E[vmvt
n] =

{
Qn, m = n
0, m 6= n

(24)

where Rn, Qn are error covariance matrices, respectively. The process error and the measurement error
in radar observation may be reasonably assumed to be statistically independent and can be modeled
as zero mean, white noise process

From our modified MLP structure, each updated estimate of the neural network weight is
computed from the previous estimate and the new input data. The weights connected to each output
node can be updated independently such that the vector problem can therefore be decomposed into L
scalar problems as

bκ = wκx (κ = 1, 2, · · · , L) (25)

Applying the Kalman filtering technique schematically described in Figure 9, Equation (25) can
be modeled as

bi
κ = wi

κx + vi
κ (26)

wi+1
κ = wi

κAi + ui
κBi (27)

where the superscript i denotes the ith training pattern with the total of N; Ai is a M by M state
transition matrix; Bi is a M by M diagonal matrix; ui

κ represents a 1 by M process error vector, with M
the dimension of concatenated activations in modified MLP; and vi

κ is a scalar measurement error.
The update of network weights is according to the following recursions:

ŵi
κ = w̃i

κ + gi
κ

[
di

κ − w̃i
κx
]

(i = 1, 2, · · · , N) (28)

w̃i+1
κ = ŵi

κAi (29)

where di
κ is the desired output, w̃i

κ is the one-step predicted estimate, and ŵi
κ is the filter estimate

of wi
κ , with gi

κ the computed Kalman gain, which is viewed as an adaptive learning rate and is
computed according to Equations (20)–(24). The MLP together with learning by the Kalman filter is
expected to resolve the highly nonlinear, complex decision boundary problems, as demonstrated in
the following section.
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4. Results and Discussions

4.1. Data Input–Output and Training Samples

In this study, two network configurations were devised, with three input parameters for
backscattering and four input parameters for bistatic scattering (see Table 1). The outputs of the
network were normalized surface roughness (RMS height kσ, correlation length k`), and soil moisture
mv. Three roughness spectra—Gaussian, exponential, and 1.5-power—were all included in the
simulation. The inputs are given below.

Table 1. Input–output of a dynamic learning neural network (DLNN).

Backscattering
(Three-Input)

Bistatic Scattering
(Three-Input & Four-Input)

Input Output Input Output

HH, VV and HV
polarized backscattering

coefficients of
b = [σo

hh, σo
hv, σo

vv]
t

Normalized surface
roughness and soil

moisture
x = [kσ, k`, mv]

t

HH, HV, VH and VV
polarized bistatic

coefficients
b = [σo

hh, σo
hv, σo

vv]
t

b = [σo
hh, σo

hv, σo
vhσo

vv]
t

Normalized surface
roughness and soil

moisture
x = [kσ, k`, mv]

t

Backscattering: In this case, HH-, VV-, and HV (=VH)-polarized backscattering coefficients were
simultaneously fed into the dynamic learning neural network. The incident angles were set at 10~60◦.

Bistatic Scattering: In this setup, inputs chosen from HH-, HV-, VH-, and VV-polarized bistatic
scattering coefficients at different incident angles, scattering angles, and scattering azimuthal angle
were fed into the network. Both the incident angles and scattering angle were selected at 10~60◦.
The scattering azimuthal angle was set for the forward region at 0~90◦ and for the backward region
at 90~180◦. For bistatic scattering, we devised three inputs (as in backscattering) for comparison of
inversion performance under the same number of inputs.

It follows that the network configuration, after trial and error, was given with a predetermined
threshold of 0.1% (Table 2). A total of 10,450 data sets were selected randomly as training data from
the 15,014 data sets for backscattering, with 4564 data sets used as testing data. As a rule of thumb,
70% of the total data sets were used for training (i.e., 127,240 data sets are chosen randomly as training
data from the 181,770 data sets for bistatic scattering), and 54,530 data sets were used as testing data,
from which the backward region and forward region cases each accounted for half of the data. The
data sets are randomly selected from the database simulated by the AIEM model with the ranges of
the surface and radar parameters listed in Table 3. The step size of the discretized scattering azimuthal
angle was set to 10◦, and the discretized incident and scattering angles were both set to 1◦.

Table 2. DLNN configurations for three-input and four-input cases.

Configuration Three-Input Four-Input

Nodes of input layer 3 4
Nodes of output layer 3 3

Hidden layer 2 2
Nodes of each hidden layer 100 100

Threshold 0.1% 0.1%

The network training was accomplished by mapping input–output pairs that were randomly
selected from the database simulated by the AIEM model with the range of surface and radar
parameters listed in Table 3. As rule of thumb, 70% of the data was selected, randomly, as the
training set, with the rest as the testing set.
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Table 3. Radar parameters for generating training samples.

Parameters Backscattering Bistatic Scattering

kσ 0.1~0.8 0.1~0.8
k` 1~7 1~7
mv 0~0.5 0~0.5
θi 10◦~60◦ 10◦~60◦

θs =θi 10◦~60◦

φs 180◦ 0◦~90◦(forward)
90◦~180◦(backward)

kσ/k` 0.1~0.4 0.1~0.4

S Gaussian, Exponential, 1.5-Power

4.2. Retrieval Results

After completing the training, the DLNN entered the process stage. By randomly selecting 30%
testing sample, the surface parameter retrieval was performed via the DLNN. This was indeed a highly
nonlinear mapping of feature sets (by training) onto the surface domain (by process). The retrieval
performance between the network-inverted result and the model-observed data, using backscattering
data only (i.e., three-input), can be seen in Figure 10. For three surface parameters of interest, the
normalized root-mean-squared errors (nRMSE) were 0.074, 0.075 and 0.070 for RMS height, correlation
length, and soil moisture, respectively, and correlation coefficients were larger than 0.95, which was
quite satisfactory; among the three parameters, the inversion of k` was poorer. The reason for this is
that, as discussed previously, the estimation of correlation length always poses higher errors due to
a higher uncertainty of the functional form of the correlation function. Several samples of inversion
results between the measured data (POLARSCAT) and the network inversion are presented in Table 4.
As we can see, the retrieval performance of these three parameters can achieve a satisfactory accuracy.
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Figure 10. Retrieval of surface roughness and soil moisture from backscattering data by three
inputs–three outputs DLNN configuration. Both root-mean-squared errors (RMSE) and normalized
root-mean-squared errors (nRMSE) for each case are shown.

When it comes to inversion from bistatic scattering data, we can examine the performance of
using forward, backward, and full (backward plus forward), respectively. This might be practically
useful since, in setting up the bistatic observation, the transmitter and receiver may be in specular or
off-specular geometries. The correlation between the network-inverted result and model-observed
data is shown in Figure 11. The inversion results were relatively close to the 1:1 line, indicating a
quite-favorable correlation between the inversion and the truth data. It is worth noting that retrieval
from bistatic scattering data performed better than from backscattering, especially for soil moisture
inversion. Interestingly, the inversion results performed better at the forward region than at the
backward region. This can also be seen quantitatively in Table 5, from which we can read the nRMSE
being 0.060, 0.088, and 0.044 in the backward region and 0.045, 0.071, and 0.018 in the forward region
for RMS height, correlation length, and soil moisture, respectively. The overall nRMSE and correlation
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coefficient (r) for backscattering and bistatic scatter are also given in Table 5. Typically, among the three
surface parameters being inverted, the soil moisture tended to experience the least error, regardless of
retrieval from backscattering data or bistatic scattering data. Better inversion performance seems to
have been gained by use of scattering data from the forward region. Based on this point and compared
to the backscattering, it is not surprising that if we combine the scattering data from the forward and
backward regions, the best retrieval accuracy in terms of nRMSE and the correlation coefficient can be
obtained. This is also evident from Table 5, where the smaller nRMSE and higher correlation coefficient
can be read as “Full” when compared to those for backscattering. It is apparently a conviction that
the dynamic learning neural network as presented is able to tackle a bulky volume of data, either in
training stage or operational stage, and thus achieve superior retrieval accuracy.

Table 4. Surface parameters between measured data (POLARSCAT) and DLNN inversion.

Truth
(POLARSCAT Data)

Inverted
(Network-Inverted)

kσ k` mv kσ k` mv

0.949 2.768 0.142 0.907804 2.75213 0.141224
3.004 8.765 0.172 7.1636 12.1984 0.232222
0.352 2.617 0.266 0.346407 2.61012 0.265967
0.126 2.62 0.126 0.126175 2.62442 0.125997
0.352 2.617 0.14 0.371045 2.6396 0.14006
0.101 3.098 0.09 0.103238 3.15896 0.08993
1.114 8.287 0.14 1.20734 8.85712 0.137385
0.796 16.594 0.253 1.66042 5.38294 0.364186
3.004 8.765 0.172 3.03834 8.83309 0.172412
0.949 2.768 0.172 0.948958 2.76862 0.172035
6.009 17.529 0.172 2.69795 5.08291 0.16386
6.009 17.529 0.142 5.91543 17.6258 0.142792
0.352 2.617 0.266 0.351636 2.61618 0.266002
2.228 16.574 0.14 2.22803 16.5737 0.140001
0.796 16.594 0.253 0.797609 16.6051 0.252946
2.228 16.574 0.14 2.24075 16.5635 0.139998
0.398 8.297 0.253 0.396886 8.30057 0.252988
3.004 8.765 0.172 3.06484 8.54212 0.172106

Error kσ k` mv

RMSE 1.2701 4.0330 2.987%
nRMSE 0.2149 0.2705 0.2134

r 0.7706 0.7761 0.9150
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Table 5. DLNN inversion performance using backscattering and bistatic scattering.

Backscattering & Bistatic Scatter Error kσ k` mv

Backscattering
(Three-input)

nRMSE 0.074 0.075 0.070
r 0.951 0.952 0.969

Bistatic
scattering

(Three-input)

Backward
nRMSE 0.075 0.087 0.039

r 0.951 0.936 0.990

Forward
nRMSE 0.040 0.070 0.044

r 0.985 0.959 0.988

Full
(Backward + Forward)

nRMSE 0.058 0.097 0.042
r 0.970 0.949 0.991

Bistatic
scattering

(Four-input)

Backward
nRMSE 0.060 0.088 0.044

r 0.967 0.934 0.988

Forward
nRMSE 0.045 0.071 0.018

r 0.980 0.957 0.997

Full
(Backward + Forward)

nRMSE 0.053 0.080 0.034
r 0.974 0.945 0.992

There is a much higher degree of freedom to test the inversion from bistatic scattering compared
to backscattering, as well as to choose the inputs, depending on the physical feasibility of the
measurements. We can have measurements at the backward, forward, or combined forward and
backward regions to input to the DLNN. In terms of polarization, we can have four polarizations in
bistatic—two co-polarizations, two cross-polarizations, two-polarizations, or one cross-polarization.
Figure 12 shows the retrieval performance of surface roughness and soil moisture from bistatic
scattering data (three-input). The simulation test confirms the inversion performance of the neural
network in terms of training and operation. From Table 5, we can see that the retrieval accuracy is
higher using forward bistatic data than backward. The impact of polarization for bistatic cases seems
not as significant as that for backscattering cases. More importantly, for bistatic case, three inputs do
not necessarily produce higher retrieval accuracy than four inputs do. It is the number of features
that determines the training effectiveness and thus the retrieval accuracy. It becomes clear at this
point that under the same number of inputs, inversion accuracy is higher from bistatic scattering than
from backscattering. This is likely due to the fact that the bistatic scattering measurements can better
separate the coupling effect of roughness and dielectric constant. For this, the sensitivity analysis given
in Figures 4–7 is critical for feature selection to train the neural network.
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normalized correlation length of , was water-soaked bricks in which the real part of the 
dielectric constant was 62. The incident angle and scattering angle were both set as 45°, and the 
scattering azimuth angle was changed from 180° to −180°. [36] gives the measurements of a rough 
soil surface with 35 GHz using an indoor bistatic measurement facility (IBMF). At 35 GHz, the surface 
was assumed to be an exponentially correlated function with the normalized the RMS height and 
correlation length being 3.28 and 29.6, respectively. The effective soil permittivity was 3.5-j0.05. The 
measured bistatic scattering coefficient was a function of the scattering angle (0~70°) in the backward 
direction ( ) and forward direction ( ), and the incident angle was 20°. Another data set 
is taken from [37,38], where the bistatic rough dielectric surface scattering was measured at the 
European Microwave Signature Laboratory (EMSL) at (−10~−50°) of incidence and scattering angles 
with 1.5–18.5 GHz of frequency. The surface was characterized by a Gaussian correlation function 
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To assess the inversion performance and be more quantitative, we list the numeric results in 
Table 6, showing the measured , k , and , along with the inverted data. Of the eight total test 
sets, the inverted results are in good agreement with the measured data. Relatively, the difference 
between the measured and inverted data are well within 20% error. The RMSE, nRMSE, and 
correlation coefficient (r) for each individual parameter, , k , and , are also given. Of the three 
parameters, k  had the largest RMSE. This is consistent with our previous discussion on the 
measurement uncertainty of the correlation length. Nevertheless, numeric values in Table 6 confirm 
the good performance of surface parameter inversion by model-trained DLNN with inputs from 
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At this point, it is of relevance to demonstrate the retrieval of soil surface parameters from bistatic
radar measurements [35–38], including roughness and moisture content, using the model-trained
DLNN. A bistatic measurement facility (BMF) [35,36] was designed and constructed consisting of a
10 and 35 GHz polarimetric radar system for the purpose of characterizing the 3D bistatic scattering
response of rough dielectric surfaces. According to [35], a measurement with 10 GHz from a Gaussian
random rough surface, with a normalized RMS height of kσ = 0.2 and a normalized correlation
length of kl = 1.0, was water-soaked bricks in which the real part of the dielectric constant was
62. The incident angle and scattering angle were both set as 45◦, and the scattering azimuth angle
was changed from 180◦ to −180◦. [36] gives the measurements of a rough soil surface with 35 GHz
using an indoor bistatic measurement facility (IBMF). At 35 GHz, the surface was assumed to be an
exponentially correlated function with the normalized the RMS height and correlation length being
3.28 and 29.6, respectively. The effective soil permittivity was 3.5-j0.05. The measured bistatic scattering
coefficient was a function of the scattering angle (0~70◦) in the backward direction (φs = 180◦) and
forward direction (φs = 0◦), and the incident angle was 20◦. Another data set is taken from [37,38],
where the bistatic rough dielectric surface scattering was measured at the European Microwave
Signature Laboratory (EMSL) at (−10~−50◦) of incidence and scattering angles with 1.5–18.5 GHz of
frequency. The surface was characterized by a Gaussian correlation function with σ = 2.5cm, l = 6cm
of surface roughness.

To assess the inversion performance and be more quantitative, we list the numeric results in
Table 6, showing the measured kσ, k`, and mv, along with the inverted data. Of the eight total test
sets, the inverted results are in good agreement with the measured data. Relatively, the difference
between the measured and inverted data are well within 20% error. The RMSE, nRMSE, and correlation
coefficient (r) for each individual parameter, kσ, k`, and mv, are also given. Of the three parameters,
k` had the largest RMSE. This is consistent with our previous discussion on the measurement
uncertainty of the correlation length. Nevertheless, numeric values in Table 6 confirm the good
performance of surface parameter inversion by model-trained DLNN with inputs from bistatic radar
scattering measurements.

Table 6. Comparison of surface parameters between measured and inverted by model-trained DLNN.

Truth
(Measured)

Inverted
(Network-Inverted) Difference (Absolute)

kσ k` mv kσ k` mv kσ k` mv

1.05 2.51 0.16 1.24 2.48 0.17 0.19 0.03 0.59%
2.09 5.02 0.12 1.99 5.27 0.12 0.09 0.25 0.28%
2.62 6.28 0.11 2.83 8.74 0.11 0.21 2.46 0.41%
4.19 10.05 0.12 4.25 9.99 0.13 0.06 0.06 1.43%
5.23 12.56 0.10 7.49 12.56 0.09 2.25 0.004 0.11%
8.37 20.09 0.09 7.64 22.46 0.09 0.73 2.37 0.48%
0.20 1.00 0.87 0.19 1.10 0.94 0.006 0.10 6.57%
3.28 29.60 0.07 3.10 32.98 0.06 0.18 3.38 0.34%

kσ k` mv

RMSE 0.85 RMSE 1.70 RMSE 2.41%
nRMSE 0.10 nRMSE 0.09 nRMSE 0.03

r 0.95 r 0.99 r 0.99

5. Conclusions

Radar-polarized bistatic scattering from rough soil surface was examined. Compared to
backscattering, bistatic scattering provided richer scattering features in response to surface parameters,
roughness, and moisture content. The angular patterns in hemispherical plots showed a strong
coupling between radar scattering and surface parameters. Hence, the 4Vs (volume, variety, velocity,
and veracity) in big data were persistently preserved in bistatic scattering behavior. However, the
payoff is that, in terms of parameter retrieval, higher accuracy was attainable from bistatic observation.
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The task of rough-surface parameter (geometric and dielectric) retrieval from bistatic radar
scattering data is a highly nonlinear problem. In this paper, it has been shown that the use of the
Kalman filtering algorithm enhances the separability for highly nonlinear boundary problems. The
Kalman filtering process is a recursive minimum mean square estimation procedure in which each
updated estimate of the neural network weight is computed from the previous estimate and the new
input data. Since there was no a priori information available to the data, the surface roughness and soil
moisture inversion from fully bistatic radar scattering data by a Kalman filter-trained dynamic learning
neural network were presented in this study. The network was able to tackle the complex inversion
problem with very fast learning. Experimental testing showed good performance of surface parameter
inversion by the model-trained DLNN with inputs from bistatic radar scattering measurements. In the
future study, through the model simulation and the proposed inversion scheme, the optimal bistatic
observation configuration (in the sense of most efficient multiple inputs–multiple outputs (MIMO) to
come up with high retrieval accuracy) will be investigated.

Before closing, it should be emphasized that, to our best understanding, real bistatic radar
measurements are scant, or only taken in very limited and yet specific radar configurations (e.g.,
specular direction). In this paper, we demonstrated how useful bistatic data is in retrieving multiple
surface parameters of interest, as compared to the backscattering data which occupies almost all of the
data available, at least currently. It is therefore our objective to promote the focus more on the bistatic
scattering measurements, which are shown to be powerful in inferring the surface parameters.
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