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Abstract: Fusing the panchromatic (PAN) image and low spatial-resolution multispectral (LR
MS) images is an effective technology for generating high spatial-resolution MS (HR MS) images.
Some image-fusion methods inspired by neighbor embedding (NE) are proposed and produce
competitive results. These methods generally adopt Euclidean distance to determinate the neighbors.
However, closer Euclidean distance is not equal to greater similarity in spatial structure. In this paper,
we propose a spatial weighted neighbor embedding (SWNE) approach for PAN and MS image fusion,
by exploring the similar manifold structures existing in the observed LR MS images to those of HR
MS images. In SWNE, the spatial neighbors of the LR patch are found first. Second, the weights of
these neighbors are estimated by the alternative direction multiplier method (ADMM), in which the
neighbors and their weights are determined simultaneously. Finally, the HR patches are reconstructed
by the sum of HR patches corresponding to the LR patches multiplying with their weights. Due to the
introduction of spatial structures in objective function, outlier patches can be eliminated effectively
by ADMM. Compared with other methods based on NE, more reasonable neighbor patches and their
weights are estimated simultaneously. Some experiments are conducted on datasets collected by
QuickBird and Geoeye-1 satellites to validate the effectiveness of SWNE, and the results demonstrate
a better performance of SWNE in spatial and spectral information preservation.

Keywords: multispectral and panchromatic image fusion; spatial weighted neighbor embedding;
local self-similarity; manifold

1. Introduction

With the progressive development of remote-sensing technology, many satellites are launched
to provide both urban and rural observation for target recognition [1] and classification [2]. Due to
physical limitations of sensors, it is difficult to achieve high resolution in both the spatial and spectral
domain. However, the high spatial-resolution panchromatic (PAN) image and the low spatial resolution
multispectral (LR MS) images can be acquired simultaneously, and the fusion of PAN and LR MS
images, also named as panshaprpening [3], is an effective technology to generate high spatial-resolution
MS (HR MS) images in the remote-sensing field [4].

Nowadays many methods have been proposed for LR MS and PAN images fusion [5].
These fusion methods can be generally classified into three categories: (1) component substitution (CS)
based methods [6–9], (2) multiresolution analysis (MRA)-based methods [10–13], (3) degradation
model (DM)-based methods [14–22]. For the first category, some transforms are considered,
such as the intensity-hue–saturation (IHS) transform [6], principal component analysis (PCA) [6],
and Gram–Schmidt (GS) transform [7]. These methods project interpolated LR MS images into a new
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space first, and then some components are substituted partly or entirely by the histogram-matched
PAN image. Finally, the fused HR MS images are obtained by inverse transform. Methods based
on CS are very popular because they have a low time complexity and simple principles. However,
the spectral distortions produced by these methods cannot be neglected because the spectral responses
of MS images cannot perfectly cover the bandwidth of PAN image. Therefore, some improved schemes
are consequently proposed in terms of spectral fidelity [8,9]. In MRA-based methods, the assumption
is that the missing spatial information in LR MS images can be inferred from the high-frequency
components of the PAN image, which follows the paradigm of the Amélioration de la Résolution
Spatiale par Injection de Structures (ARSIS) concept [10]. The spatial details are extracted by many
effective tools, such as discrete wavelet transform (DWT) [11], support value transform (SVT) [12],
contourlets transform (CT) [13], and then injected into LR MS images. Besides, spatial orientation
feature matching is also proposed to extract similarity feature values, which can achieve higher
correspondence ratios [14]. The MRA-based methods have a better performance in spectral information
preservation but the spatial distortions appear in the fused HR MS images, because the injected
components from PAN images are not exactly identical with those of LR MS images [15].

Some methods [16–22] based on DM are proposed by modeling the observation relationships
among LR MS, PAN and HR MS images. In these methods, LR MS and PAN images are believed to
obtain by down-sampling and filtering the HR MS image in spatial and spectral domains, respectively.
Then, some efficient priors, such as similarity and sparsity, are considered to combine with the
degradation models. For example, the local similarity captured by local autoregressive model is used
to improve the spatial structure of the HR MS image in [16]. In [17], the Huber–Markov model [23] is
considered to depict the second order gradient prior in HR MS images for the fusion of LR MS and
PAN images. Besides, the non-negativity of pixel values is also employed [18]. Recently, sparse prior
has also been introduced into the degradation models. For instance, a new pan-sharpening method
based on compressed sensing [24] is presented in [19], which employs sparse prior to regularize the
degradation model and obtain competitive fusion results. Then, Li et al. [20] proposed an image-fusion
method based on sparse representation (SR) [25–29], which avoids the unavailability of HR MS images.
Subsequently, SR is combined with the details injection model in [3] to further improve the quality
of the fused results. In addition, the low-rank and sparse priors are simultaneously imposed on the
degradation model in [21,22], which also achieve satisfying fusion results.

Recently, inspired by the sparse coding-based image super-resolution [29–31], HR MS images
and observed MS images were considered to share the same sparse coding coefficients under two
coupled dictionaries. For example, Zhu et al. presented a new pan-sharpening method named
SparseFI [32]. A pair of HR/LR dictionaries are constructed from the PAN image and its degraded
version, respectively. In order to further consider the structure correlation among bands in the MS
image, J- SparseFI [33] is proposed to capture the joint sparse prior. In [34], a two-step sparse coding
method with patch normalization (PN-TSSC) is also proposed by following the same scheme as
that of SparseFI [32]. In [35], sparse tensor neighbor embedding based method is proposed recently,
which employs N-way block pursuit [36] algorithm to calculate the weight coefficients. Although
these methods are proved to have some improvements on performance, there are still some issues to
be addressed: (1) the coding coefficients of LR patches are shared, which are used as the coefficients
of HR patches to obtain the fusion images. However, it is not always valid because of the diversity
of randomly generated image patches. Figure 1a shows a LR image patch PLR and five neighboring
patches

{
P1

LR, . . . , P5
LR
}

found by the sparse coding in [32]. The second line shows five HR patches{
P1

C, . . . , P5
C
}

that are corresponding to
{

P1
LR, . . . , P5

LR
}

. Here, the subscript C means that the HR
patches in the second line correspond to the LR patches in the first line of Figure 1. Additionally,
Figure 1b shows the corresponding HR image patch PHR of PLR, and its five neighboring patches{

P1
HR, . . . , P5

HR
}

directly found in HR patches by the sparse coding. Comparing Figure 1a with
Figure 1b, we can see that the structures of

{
P1

HR, . . . , P5
HR
}

are very different to those of
{

P1
C, . . . , P5

C
}

,
which results in the mismatch of manifolds between HR/LR patches. (2) The recovery of HR MS
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images is a typically an ill-posed problem for the intrinsic one-to-many correspondence in the LR-to-HR
mapping. Figure 2 shows five HR patches

{
P1

HR, · · ·, P5
HR
}

and their corresponding degraded LR
patch PLR. The degradation results of five patches are the same, so all the five HR patches could be
partitioned into the coding in the representation of PLR. However, it can be observed that the geometric
structures of the five HR patches are very different, and only P1

HR has a similar geometric structure to
PLR. Consequently, this distorted spatial structure will appear in the synthesized MS images if the five
patches are all involved into the coding step.
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weighted embedding algorithm is utilized to find more accurate neighbors and assign appropriate 
weights to exclude some outliers. Here, the outlier is the patch whose Euclidean distance with the 
target patch is close but spatial structures in the patch are great variability compared with the target 
patch. Finally, the weights in low-dimensional embedding are shared to estimate the HR MS image 
patches by synthesizing the corresponding HR neighbors. Compared with the available sparse 
representation-based image-fusion methods, the proposed approach has the following 
contributions: (1) The mismatch in manifold among LR and HR patches is further analyzed and 
spatial neighbor low-dimensional embedding is proposed to find more accurate neighbors of the 
target patch; (2) The proposed method finds neighbors of the target patch in source images by 
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Figure 2. The one-to-many relationship between the low spatial-resolution (LR) patch and high
spatial-resolution (HR) patches. The same LR patch can be produced by the HR patches with different
geometric structures through the same spatial degradation model.

In this paper, we address these issues and advance a new spatial weighted neighbor embedding
(SWNE) approach for LR MS and PAN image fusion. Considering the self-similarity structures in
a local region of images, we cast an assumption in the proposed method that LR and HR image patches
in a local region share the similar manifold structure in the LR MS images. That is, each LR MS
image patch can be represented efficiently as a linear combination of its nearest spatial neighbors.
Then a spatial low-dimensional embedding is introduced to estimate HR image patches by combining
a few candidate HR patches selected from a neighborhood region. Moreover, a weighted embedding
algorithm is utilized to find more accurate neighbors and assign appropriate weights to exclude some
outliers. Here, the outlier is the patch whose Euclidean distance with the target patch is close but
spatial structures in the patch are great variability compared with the target patch. Finally, the weights
in low-dimensional embedding are shared to estimate the HR MS image patches by synthesizing the
corresponding HR neighbors. Compared with the available sparse representation-based image-fusion
methods, the proposed approach has the following contributions: (1) The mismatch in manifold among
LR and HR patches is further analyzed and spatial neighbor low-dimensional embedding is proposed
to find more accurate neighbors of the target patch; (2) The proposed method finds neighbors of
the target patch in source images by self-similarity to avoid the construction of an extra dictionary;
(3) In order to further exclude the outlier whose structure is not consistent with that of target patch,
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a weighted low-dimensional embedding algorithm is derived. Some experiments are conducted on
QuickBird and Geoeye-1 satellite image datasets to validate the effectiveness of our proposed method,
and the results show that SWNE can produce better fusion results.

The rest of the paper is structured as follows. In section II, the proposed method is described in
detail and the rationality of the local similarity is analyzed. Here, local similarity means the spatial
information of the target patch is similar to that of patches in adjacent spatial position. Then, MS and
PAN image fusion based on SWNE is proposed. In section III, we investigate the performance of
SWNE quantitatively and qualitatively, and compare the proposed method with some classical and
related image-fusion methods on QuickBird and Geoeye-1 satellite image datasets. Conclusions are
finally given in section IV.

2. Spatial Weighted Neighbor Embedding (SWNE) for Image Fusion

In the following sections we will first discuss SWNE and then SWNE based image fusion method.

2.1. Spatial Weighted Neighbor Embedding (SWNE)

Inspired by manifold learning [37], in this section we develop a Spatial Weight Neighbor
Embedding (SWNE) approach by exploring low-dimensional, local spatial neighborhood-preservation
characteristics of MS image patches. In the following section we will first discuss SWNE and then
SWNE based image-fusion method.

In the proposed method, the observed PAN image IPAN is divided into small overlapped
√

v×
√

v
patches ik

PAN ∈ Rv (k = 1, . . . K), v is the number of pixels in a patch. Each band of LR MS images
Ip

L(p = R, G, B, NIR) is also divided into small overlapped
√

v/r2 ×
√

v/r2 patches ip,k
L ∈ Rv/r2

(p =

R, G, B, NIR; k = 1, . . . , K). r is the ratio of spatial resolution between LR MS and HR MS images.
K denotes the number of partitioned patches. The number of partitioned patches from the PAN image
is equal to the number of patches of one band in the MS image. The number of bands in the MS
image is p. For the bands in MS image, R, G, B and NIR stand for Red, Green, Blue and Near-Infrared.
Similarly, each band of the fused HR MS images Ip

H(p = R, G, B, NIR) is divided into small overlapped

patches ip,k
H (p = R, G, B, NIR; k = 1, . . . K). Both of the observed LR MS images patches

{
ip,k
L

}K

k=1
and

PAN image patches
{

ik
PAN

}K

k=1
can be considered as the degradation results of the HR MS image patch{

ip,k
H

}K

k=1
, which can be written as,

ip,k
L = H1

(
ip,k
H

)
(1)

ik
PAN = H2

(
ip,k
H

)
(2)

where H1(·) and H2(·) denote the spatial and spectral degradation functions, respectively. For the

image fusion task, the goal is to recover
{

ip,k
H

}K

k=1
from the observed

{
ip,k
L

}K

k=1
and

{
ik
PAN

}K

k=1
.

In recent decades, manifold learning has been developed to discover low-dimensional nonlinear
manifolds in high-dimensional data spaces, which have been applied to information retrieval and
computer vision [38–40] successfully, such as neighbor embedding (NE) [38] proposed by Chang et
al. [38], and local linear embedding (LLE) proposed by Roweis et al. [41,42]. As for image fusion,
there are LR MS and PAN images to be merged. Although the spectral response of MS bands is
different from that of the PAN image, the LR MS image patch and LR PAN image patch located at the
same position will represent the same scene range for their consistent spatial resolution. Consequently,
the structure of the LR MS image patch (named as a target patch) is similar to that of a set of LR PAN
image patches whose spatial location is identical with or close to that of the target patch. This prior
is called local structure similarity in the paper. Based on this local structure similarity prior, a new
spatial weighted neighbor embedding is proposed to find more accurate embedding to recovery HR
MS images.
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In our method, we down-sample PAN image IPAN to produce LR PAN image ILPAN and consider
the LR patch ij

LPAN whose corresponding HR version is ij
PAN . The target LR MS image patches located

at the same position are denoted as ip,j
L (p = R, G, B, NIR). SWNE finds the nearest neighbors of

ip,j
L (p = R, G, B, NIR) from a local spatial neighborhood of ij

LPAN , to formulate a set of LR image

patches
{

ij,NB
LPAN

}
. In SWNE, it is assumed that each image patches ip,j

L and its spatial neighbors{
ij,NB
LPAN

}
, are expected to lie on or close to a locally linear manifold. Moreover, their corresponding HR

patches ip,j
HMS and

{
iNB
PAN

}
are assumed to share the similar manifold structure, as shown in Figure 3.

Consequently, finding the atoms for representing a target patch ip,j
L can be formulated as the selection

of neighbors from a LR patches set
{

ij,NB
LPAN

}
. In SWNE, a local window is utilized to restrict the

spatial locations of LR PAN patches
{

ij,NB
LPAN

}
. Due to the local structure similarity existing in images,

it is assumed that the patches in the window partly or entirely lie in the same manifold as the target
patch ip,j

L , and that their linear superposition can approximate ip,j
MS. That is, SWNE first finds the

spatial neighbors of the LR patch. Secondly the weights of these neighbors can be estimated by the
approximate error, in which the LR patch is reconstructed by these neighbors. Then, the weights of
these neighbors are shared with their corresponding HR patches

{
iNB
PAN

}
. Finally, the HR patch ip,j

H can

be synthesized by the sum of HR patches
{

iNB
PAN

}
multiplying with their corresponding weights.
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2.2. Multispectral (MS) and Panchromatic (PAN) Images Fusion Based on SWNE

Inspired by manifold learning [42], in this section we develop a SWNE approach by exploring
low-dimensional, local spatial neighborhood-preservation characteristics of MS image patches. In the
following section we will first discuss SWNE and then the SWNE-based image-fusion method.

The flowchart of the proposed method based on SWNE is reported in Figure 4. Firstly the
observed PAN image is down-sampled by a fixed ratio r to produce a LR PAN image. Secondly, the LR
PAN image and the observed MS image are divided into small overlapped patches. Then, the neighbor
patches found in LR PAN image patches are used to represent the LR MS image patch, in which the
weight coefficients corresponding to the neighbors are estimated. Finally, the corresponding HR PAN
image patches of these neighbors are multiplied with the weight coefficients whose results are added
together to construct the desired HR MS image patch.
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The proposed method consists of five steps: (1) Produce LR panchromatic (PAN) image from HR PAN
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Given a LR image patch ij
LPAN and its corresponding HR image patch ij

PAN , denoted by yellow

square, as shown in Figure 4, the neighbors of a LR MS image patch ip,j
L are selected from the local

window in the LR PAN image, i.e.,
{

ij,NB
LPAN

}
, to formulate a low-dimensional embedding. Selecting

neighbors and evaluating weights are important in determining this low-dimensional embedding. It is
obvious that there are different patches

{
ij,NB
LPAN

}
in the local window, and some patches has similar

structure to that of ij
PAN while others should be excluded in the reconstruction of ij

PAN . In the proposed
method, neighbors and weights are simultaneously determined. Assume that there are N patches in
the window, the estimation of weights can be formulated as:

‖
[
ip,j
L − i1

LPAN , . . . , ip,j
L − ii

LPAN , . . . , ip,j
L − iN

LPAN

]
wk‖

2
≤ ε s.t. eTwk = 1 (3)

where ε is the approximation error, ‖ · ‖2 denotes the square distance; wk is a column vector of weights
and e is a column vector of ones with length N. In order to exclude the outliers, the vectors are
normalized to reformulate (3) as,

‖
[

ip,j
L − i1

LPAN

‖ip,j
L − i1

LPAN‖2

, . . . ,
ip,j
L − ii

LPAN

‖ip,j
L − ii

LPAN‖2

, . . . ,
ip,j
L − iN

LPAN

‖ip,j
L − iN

LPAN‖2

]
wk‖

2

≤ ε s.t. eTwk = 1 (4)

In this way, the contribution of patches which are far away from the target patch in Euclidean
space is reduced, along with these patches not being identical to or similar with the target patch in
spatial structure. Too many neighborhood patches will lead to the spatial distortions and blurring
effects. Besides, it is not feasible to use all of the patches or a fixed number of patches in the local
window [43] to represent a target patch [44], because the embedded manifold will have different
curvature at different positions. Thus, the spatial structure of ip,j

L can be represented more reasonably
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by casting a weighted L1 norm regularizer on the weight vector. The neighbors of each target patch
can be selected from the local window adaptively. Finally, the weight optimization can be written as:

min
wk
‖v ◦wk‖1

s.t.‖
[

ip,j
L −i1

LPAN

‖ip,j
L −i1

LPAN‖2

, . . . , ip,j
L −ii

LPAN

‖ip,j
L −ii

LPAN‖2

, . . . , ip,j
L −iN

LPAN

‖ip,j
L −iN

LPAN‖2

]
wk‖

2
≤ ε

eTwk = 1

(5)

where ‖ · ‖1 is the L1 norm. v denotes a weighted vector and the element takes the form of
‖ip,k

L −ij
LPAN‖2

N
∑

j=1

∥∥∥ip,k
L −ij

LPAN

∥∥∥
2

. ◦ is the Hadamard product. In order to find the solution sufficiently, Equation (5)

is optimized by the method of Lagrange multipliers. So (5) is reformulated as: min
wk
‖
[

ip,j
L −i1

LPAN

‖ip,j
L −i1

LPAN‖2

, . . . , ip,j
L −ii

LPAN

‖ip,j
L −ii

LPAN‖2

, . . . , ip,j
L −iN

LPAN

‖ip,j
L −iN

LPAN‖2

]
wk‖

2
+ λ‖v ◦wk‖1

s.t. eTwk = 1
(6)

where λ controls the number of neighbors. The above minimization problem is solved by the alternative
direction multiplier method (ADMM) [45] in [44]. After the neighbors and their weights are determined
simultaneously, the corresponding HR patch of HR MS image can be recovered from

ip,k
H =

[
i1
PAN , . . . , ij

PAN , . . . , iN
PAN

]
wk (7)

Note that the HR patch is denoted by the difference between the pixel values and the mean value
of each HR patch. So the mean value of the corresponding LR patch should be added for reconstructing
the target HR patch.

3. Experiments Results and Analysis

In this section, several experiments are taken to investigate the performance of the proposed
method, including: (1) an investigation on the recovery result of SWNE; (2) analysis of the influence of
parameter λ on the performance of the proposed method; (3) analysis of the influences of patch size
and window size on the performance of the proposed method; (4) an investigation on the fusion result
of our proposed method and its counterparts.

3.1. Datasets and Experimental Conditions

The experiments were simulated on the QucikBird [46] and Geoeye-1 [47] satellite image datasets.
The QuickBird image datasets used in this paper are from the Sundarbans, India, collected on
21 November 2002, which provides PAN images at 0.7 m resolution and MS images at 2.8 m
resolution. The Geoeye-1 image datasets are from the Hobart, Australia, acquired on 24 February
2009. The spatial resolution of PAN images and MS images of Geoeye-1 are 0.5 m and 2 m respectively.
For a comprehensive comparison, the experiments are conducted on reduced-scale and full-scale.
The reduced-scale datasets are produced by down-sampling and filtering on the original LR MS images
and PAN images. Therefore, the reference images are available. Then the resolution of PAN and
MS images from QuickBird becomes 2.8 m and 11.2 m. Likewise, 2 m PAN and 8 m MS images are
yielded from Geoeye-1. Finally, the simulated LR MS and PAN images are fused to produce HR MS
image, which is compared directly with the original LR MS image according to the Wald protocol [48].
For the full-scale datasets, the fusion is implemented on the original source images and there are no
reference images. Thus, the spatial resolution of the fused image is consistent with that of the original
PAN image.
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In subsequent experiments, the proposed method is compared with some classical methods,
including generalized intensity–hue–saturation (GIHS) [49], PCA [6], proportional additive wavelet
LHS (AWLP) [50], SVT [12] and SparseFI [32]. Additionally, an image-fusion method based on NE
without local similarity is also reported to verify the rationality of spatial prior. The size of the LR
MS images is 64× 64× 4. Correspondingly, the size of PAN image is 256× 256. In order to enforce
smoothness constraints between adjacent patches, proper parameters have to be preset, such as LR MS
patch size and degree of overlap. We use 3× 3 patches with an overlap of 2 pixels in the proposed
method and NE. The size of the window in the LR PAN image is set as 7× 7. Each target patch can
select their neighbors from 25 patches in the local window. λ is set as 60 and 50 for QucikBird and
Geoeye-1 satellite image datasets, respectively. In NE, the number of neighbors is 5 and the first- and
second-order gradient feature is used to choose neighbors. Besides, the LR and HR patch sets are
constructed by the LR and HR PAN images. SparseFI adopts the parameters recommended in [32] and
the patch size and overlap size are 7× 7 and 7× 3, respectively.

3.2. Evaluation Indexes

In order to evaluate the quality of fused images on different datasets, some indicators are
calculated such as correlation coefficient (CC) [51], frequency comparison (FC) [52], Q4 [51], Erreur
relative globale adimensionnelle de synthèse (ERGAS) [53], spectral angle mapper (SAM) [54].
These indicators are selected to assess the quality of the fused image from two perspectives: spatial
information and spectral information. CC reflects the correlation between two single bands from
the fused image and the reference image. Q4 is used to measure the spectral distortion of fused
images compared with the reference image. ERGAS computes the spectral distortion in the image
from the whole. SAM calculates the angle between the corresponding pixels of the fused and the
reference images to measure the spectral distortions. FC evaluates the spatial details of the fused
images. Among the five indexes, CC, FC and Q4 indicate better fusion results as they increase in the
interval [0, 1], whose ideal values are 1. For ERGAS and SAM, a better result is indicated by a smaller
value. The fusion results of full-scale datasets are assessed by Dλ, DS and QNR [55]. For QNR, the best
value is 1. But the best value is 0 for Dλ and DS. Then, the above evaluation indexes are utilized to
numerically and quantitatively assess the fused images of all methods.

3.3. Investigation of SWNE

In this test, we compare the HR neighbors found by NE and SWNE. The NE selects the LR and
HR neighbors from the sets constructed by the LR and HR PAN images, respectively. A 12× 12 target
HR patch PHR is illustrated as an example. Figure 5 displays the neighbors {N1, . . . , N5} that are found
from the HR patch set in NE method, and the neighbors {S1, . . . , S5} found by the SWNE method.
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Figure 5. Neighbors found by neighbor embedding (NE) and SWNE. The target HR patches N and S
are reconstructed by the corresponding neighbors found by NE and SWNE and then the reconstruction
performance is evaluated by correlation coefficient (CC) compared with the reference patch PHR.

From Figure 5, it can be found that the neighbors {N2, . . . , N5} are very different with the target
patch, because a global searching can find the nearest neighbors in Euclidean distance but the structural
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similarity cannot be guaranteed. We can see that the neighbors are more similar in structure and the
Euclidean distance varies in an acceptable range simultaneously in {S2, . . . , S5}. Therefore, these more
reliable neighbors can provide a smaller bias to the image reconstruction, which will sharpen the
spatial details. Besides, the target HR patches N and S are reconstructed by the neighbors from NE
and SWNE, respectively. It is obvious that the patch S is more similar to the patch PHR and provides
a larger CC.

3.4. Investigation of λ

The parameter λ controls the number of neighbors, which balances the spectral and spatial fidelity.
In this experiment, we take the QuickBird image datasets and Geoeye-1 image datasets as examples
to analyze how the parameter λ affects the fusion results in different datasets. We use 3× 3 patches
with an overlap of 2 pixels to implement the proposed method, and the local window is also portioned
into patches in the same way. So there are 25 patches in a window with size 7× 7. The variations of
all metrics on the QuickBird and Geoeye-1 image datasets is illustrated in Figure 6a,b, respectively.
The values of ERGAS and SAM are normalized to [0, 1] for direction comparison. Figure 6a shows that
CC, Q4 and FC increase and the other two metrics decrease with λ increasing in [0, 60]. In Figure 6a,
SAM decreases with increasing λ. For ERGAS, it decreases dramatically first and then slowly increases.
Unfortunately, the best values of ERGAS and SAM cannot be achieved on the same λ. Naturally,
we have to choose a compromise value for λ taking the tradeoff between SAM and ERGAS into
consideration. Therefore, λ is set as 60 by taking the overall performance of the proposed method for
QuickBird image datasets. Similarly, the same trend of metrics can be found in Figure 6b. So λ is set as
60 and 50 for the datasets from QuickBird and Geoeye-1 satellites, empirically. Besides, the average
number of neighbors is computed for different λ, which is shown in Figure 6c. The decrease in the
number of neighbors can be observed with λ increasing. Only a few patches are used to denote the
target. For a large number of neighbors, SWNE performs badly in terms of all metrics due to the use of
some dissimilar patches. In fact, it implies most elements of the weight vector wk taking values close
to zero while only few take significantly non-zero values. However, if only very limited patches are
utilized, the spectral information will be reduced. Thus, SWNE can select adaptively the most similar
neighbors to represent the target patch, which enhances the spatial details.
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3.5. Investigation of Patch Size and Window Size

In the proposed method, patch size and window size have some influences on fusion results.
We analyze the influences of patch size and window size on QuickBird and Geoeye-1 image datasets
in this section. The numerical values of all indexes are displayed in Figure 7, where patch size varied
from 3 to 9 with step 1. From, Figure 7a,b, we can see that the values of CC, Q4 and FC gradually
decrease and SAM and ERGAS increase, which means the quality of fused images becomes worse.
So, the patch size is set as 3× 3. In Figure 8, the influences of different window sizes are shown,
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in which window size varies from 5 to 13 with step 2. It can be observed that the best values of CC, Q4,
SAM and ERGAS indexes are given in Figure 8a when the window size is 7× 7. For FC, competitive
results are produced for windows with size 7× 7 and 9× 9. Therefore, the window size is set as 7× 7
for QuickBird image datasets by considering the overall performance. In Figure 8b, the best ERGAS
is obtained with 9× 9 window, but the values of other indexes are achieved when the window size
is 7× 7. For windows with larger size, the number of neighbor candidates is larger. Therefore, it is
difficult to find accurate neighbor patches with a larger size window. However, the target patch cannot
be represented effectively for fewer neighbors in the window with small size. Thus, the window size is
set as 7× 7.
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3.6. Experiments on Reduced-Scale Datasets

In this part, experiments were conducted on reduced-scale datasets. Two pairs of images from
Quickbird and Geoeye-1 satellites are fused and the fusion results are compared with GIHS [49],
PCA [6], AWLP [50], SVT [12] and SparseFI [32]. The experimental results of these methods on
QuickBird image dataset are shown in Figure 9d–j. The source images to be fused are given in
Figure 9a,b. The reference images are displayed in Figure 9c for visual comparison. It can be seen
that the fusion results of all methods always have some differences compared with the reference
images. For spatial details, the result of GIHS [49] behaves well, but some blur effects can be found in
the result of PCA [6]. For MRA-based methods, AWLP [50] can provide clear spatial details but the
spatial information is blurred in the result of SVT [12]. The spatial details in SparseFI [32], NE and
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SWNE are similar. For spectral information, obvious spectral distortions can be found in the results of
PCA [6], AWLP [50] and SVT [12]. GIHS [49] can preserve the spectral information in the fused image
well. NE and SWNE also can produce better results in spectral information preservation. However,
the spectral information of the result of SparseFI [32] is more consistent with that of the reference
image through visual comparison.

Table 1 reports the numerical results in Figure 9 and the best results for each quality metric are
labeled in bold. We can see that the proposed method provides almost the best values in term of
metrics CC, FC, SAM, and ERGAS. SWNE behaves best, followed by NE and SparseFI [32] in ERGAS.
The value of FC is the best for the proposed method, which means the fusion result provides the best
spatial quality. The proposed method also provides the best result in SAM. Q4 mainly reflects the
spectral distortion of fused images. Larger Q4 means less spectral distortion. The proposed method is
preferable to the other methods except SparseFI [32] for the Q4 index, which agrees with the analysis
in Figure 9. The proposed method has a better performance as a whole.
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Figure 9. Fusion results of reduced-scale QuickBird images. (a) LR MS image, (b) PAN image,
(c) reference image, (d) GIHS [49], (e) principal component analysis (PCA) [6], (f) AWLP [50], (g) support
value transform (SVT) [12], (h) SparseFI [32], (i) NE, (j) SWNE.

Table 1. Numerical results of each fused image shown in Figure 9.

Metric GIHS [49] PCA [6] AWLP [50] SVT [13] SparseFI [32] NE SWNE

CC 0.8700 0.8563 0.8642 0.8705 0.8798 0.8830 0.8909
Q4 0.8187 0.6741 0.8019 0.7932 0.8328 0.7943 0.8276
FC 0.9730 0.9701 0.9778 0.9713 0.9750 0.9759 0.9790

SAM 9.7731 9.8995 10.6052 9.7133 9.4060 9.2355 9.1420
ERGAS 4.3984 5.3566 4.4717 4.4366 4.1915 4.2329 4.0089
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The fusion results of all methods on Geoeye-1 image datasets are illustrated in Figure 10.
The differences of all fused images are small by a visual comparison of spatial details. However,
some differences can be found when all fused images are compared with the reference image especially
in spectral information. From the magnified region, we can see that the spectral information in the
results of AWLP [50], SVT [12] and SparseFI [32] are distorted obviously when compared with other
methods by subjective visual analysis.

For more objective evaluation in spatial and spectral information, the numerical values are listed
in Table 2. From the table, a competitive result can be seen. For CC, the proposed method gives the
best values. For FC, the best value is from the proposed method and the second best FC is produced by
AWLP. As for SAM, the best results are given by PCA [6], followed by AWLP [50] in Table 2. For Q4,
SparseFI [32] offers the best results in the table. However, SWNE outperforms the other methods in
ERGAS. The proposed method behaves well in CC and ERGAS.

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 18 

 

FC 0.9730 0.9701 0.9778 0.9713 0.9750 0.9759 0.9790 

SAM 9.7731 9.8995 10.6052 9.7133 9.4060 9.2355 9.1420 

ERGAS 4.3984 5.3566 4.4717 4.4366 4.1915 4.2329 4.0089 

The fusion results of all methods on Geoeye-1 image datasets are illustrated in Figure 10. The 
differences of all fused images are small by a visual comparison of spatial details. However, some 
differences can be found when all fused images are compared with the reference image especially in 
spectral information. From the magnified region, we can see that the spectral information in the 
results of AWLP [50], SVT [12] and SparseFI [32] are distorted obviously when compared with other 
methods by subjective visual analysis. 

For more objective evaluation in spatial and spectral information, the numerical values are 
listed in Table 2. From the table, a competitive result can be seen. For CC, the proposed method gives 
the best values. For FC, the best value is from the proposed method and the second best FC is 
produced by AWLP. As for SAM, the best results are given by PCA [6], followed by AWLP [50] in 
Table 2. For Q4, SparseFI [32] offers the best results in the table. However, SWNE outperforms the 
other methods in ERGAS. The proposed method behaves well in CC and ERGAS. 

(h)

(a) (b) (d)

(e) (f)

(c)

(g)

(i) (j)
Figure 10. Fusion results of reduced-scale Geoeye-1 images. (a) LR MS image, (b) PAN image, (c) 
reference image, (d) GIHS [49], (e) PCA [6], (f) AWLP [50], (g) SVT [12], (h) SparseFI [32], (i) NE, (j) 
SWNE. 

Table 2. Numerical results of each fused image shown in Figure 10. 

Metric GIHS [49] PCA [6] AWLP [50] SVT [12] SparseFI [32] NE SWNE 

CC 0.9670 0.9632 0.9687 0.9693 0.9699 0.9691 0.9715 

Q4 0.8939 0.8571 0.8965 0.8982 0.9021 0.8783 0.8834 

Figure 10. Fusion results of reduced-scale Geoeye-1 images. (a) LR MS image, (b) PAN image,
(c) reference image, (d) GIHS [49], (e) PCA [6], (f) AWLP [50], (g) SVT [12], (h) SparseFI [32], (i) NE,
(j) SWNE.

Table 2. Numerical results of each fused image shown in Figure 10.

Metric GIHS [49] PCA [6] AWLP [50] SVT [12] SparseFI [32] NE SWNE

CC 0.9670 0.9632 0.9687 0.9693 0.9699 0.9691 0.9715
Q4 0.8939 0.8571 0.8965 0.8982 0.9021 0.8783 0.8834
FC 0.9798 0.9718 0.9850 0.9839 0.9791 0.9841 0.9854

SAM 4.1535 3.4104 4.7313 4.4978 4.2024 4.2186 4.0642
ERGAS 1.6761 1.7801 1.5507 1.5272 1.5033 1.5437 1.4631
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3.7. Experiments on Full-Scale Datasets

In this part, two pairs of images at full scale from Quickbird and Geoeye-1 satellites are used
for fusion and then the fused images of the proposed method are compared with those of GIHS [49],
PCA [6], AWLP [50], SVT [12] and SparseFI [32]. The fusion results of all methods on QuickBird image
datasets are illustrated in Figure 11. From Figure 11, we can see that the spatial details of all methods are
enhanced well when compared with the LR MS image. However, obvious spectral information loss can
be found from the result of PCA [6], in which the color of some areas is transformed into blue. The color
of tree areas becomes grayish-green in the results of GIHS [49] and SVT [12]. Through subjective visual
comparison, other methods have a comparable performance in spectral information preservation.
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Figure 11. Fusion results of full-scale QuickBird images. (a) LR MS image, (b) PAN image, (c) GIHS [49],
(d) PCA [6], (e) AWLP [50], (f) SVT [12], (g) SparseFI [32], (h) NE, (i) SWNE.

Besides, for more objective assessment of fusion results, the numerical results of all methods in
Figure 11 are given in Table 3. From Table 3, we can see that the best values of FC and DS are from
SWNE. But the value of Dλ of the proposed method is poor. Although, the best QNR is given by
AWLP [49], but the second best value of QNR is achieved by the proposed method.
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Table 3. Numerical results of each fused image shown in Figure 1.

Metric GIHS [49] PCA [6] AWLP [50] SVT [12] SparseFI [32] NE SWNE

FC 0.9519 0.9508 0.9679 0.9662 0.9599 0.9565 0.9690
Dλ 0.0820 0.0875 0.0669 0.0659 0.0476 0.0784 0.0838
DS 0.0909 0.0977 0.0777 0.0843 0.0976 0.0678 0.0609

QNR 0.8346 0.8322 0.8606 0.8562 0.8594 0.8591 0.8604

The fusion results on Geoeye-1 image dataset are displayed in Figure 12. From Figure 12, it can be
observed that the spectral information of fused images from all methods is not consistent. The color of
tree areas in the result of GIHS [49] and PCA [6] is dark green and some tree areas are over-enhanced in
edges. For AWLP [50] and SVT [12], the color of tree areas is bright green and the spectral information of
some buildings is distorted slightly. However, the color of tree areas is grayish-green for SparseFI [32],
NE and SWNE. For the result of SparseFI, there are some spectral distortions for the color of road
areas. Due to the unavailable reference image in full-scale datasets, it is difficult to analyze directly the
spectral information in the fused images of all methods.
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Therefore, the numerical evaluation results of all methods are listed in Table 4 for objective
analysis. In Table 4, the fusion result of AWLP behaves best in FC. The second best FC is produced by
the proposed method and the difference between AWLP and the proposed method SWNE is small
for FC. Besides, the best value Dλ is from GIHS [49], but the proposed method SWNE has the best
performance in DS and QNR. Thus, the proposed method behaves better as a whole.

Table 4. Numerical results of each fused image shown in Figure 12.

Metric GIHS [49] PCA [6] AWLP [50] SVT [12] SparseFI [32] NE SWNE

FC 0.9436 0.9495 0.9576 0.9561 0.9557 0.9532 0.9569
Dλ 0.0944 0.1021 0.1295 0.1286 0.1086 0.1168 0.1071
DS 0.1213 0.0892 0.0785 0.0567 0.0587 0.0628 0.0525

QNR 0.7957 0.8178 0.8022 0.8220 0.8390 0.8277 0.8460

4. Conclusions

In this paper, an image-fusion method based on SWNE is proposed to obtain an HR MS image by
merging the LR MS and PAN images. The local geometry of LR MS image patch over the neighbors
is explored to develop a spatial low-dimensional embedding. HR image patches are then estimated
by combining a few candidate HR patches selected from a neighborhood region. The reconstruction
weights of HR neighbors are estimated by solving a weighted problem that is solved by ADMM to
exclude some outliers. In the proposed method, patch size and window size play an important in
fusion performance. An image patch with small size can efficiently capture the spatial and spectral
information. The window with larger size has a great number of patches, but it is difficult to find
accurate neighbors. Inversely, the window with small size has a limited representation ability because
of fewer patches. λ decides the number of neighbors. Larger λ will select fewer neighbors to reconstruct
the target patch, which is more likely to cause spectral distortion. Smaller λ allows more neighbors for
fusion, which may lead to smooth spatial information. Finally, the proposed method is compared with
other image fusion methods on QuickBird and Geoeye-1 satellite image datasets. The experimental
results show that the proposed method behaves better than other methods in spatial enhancement
and spectral preservation. Although the proposed method produces some satisfactory fusion results,
the time complexity cannot be ignored because the optimization of the proposed method is achieved by
ADMM with a lot of iterations. Besides, noises in source images have certain influence on the selection
of neighbor patches. The noises may result in the changes of structures in image patches. Thus, similar
neighbor patches in spatial structure cannot be chosen. Therefore, a more efficient selection scheme of
neighbor patches, such as in [56], will be considered in the future work to mitigate the issues about
running time and noise.

Author Contributions: Conceptualization, K.Z. and S.Y.; Methodology, K.Z.; Software, F.Z.; Validation, F.Z.;
Formal Analysis, K.Z.; Investigation, K.Z.; Resources, F.Z.; Data Curation, S.Y.; Writing-Original Draft Preparation,
K.Z.; Writing-Review & Editing, S.Y.; Visualization, K.Z.; Supervision, S.Y.; Project Administration, K.Z.; Funding
Acquisition, K.Z.

Funding: This research was funded by Natural Science Foundation for Distinguished Young Scholars of Shandong
Province grant number JQ201718.

Acknowledgments: The authors wish to acknowledge three anonymous reviewers for providing helpful
suggestions that greatly improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial
and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [CrossRef]

2. Wu, X.; Zhang, X.; Wang, N.; Cen, Y. Joint sparse and low-rank multi-task learning with extended
multi-attribute profile for hyperspectral target detection. Remote Sens. 2019, 11, 150. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2018.2858817
http://dx.doi.org/10.3390/rs11020150


Remote Sens. 2019, 11, 557 16 of 18

3. Yin, H. Sparse representation based pansharpening with details injection model. Signal Process. 2015, 113,
218–227. [CrossRef]

4. Javan, F.D.; Samadzadegan, F.; Reinartz, P. Spatial quality assessment of pan-sharpened high resolution
satellite imagery based on an automatically estimated edge based metric. Remote Sens. 2013, 5, 6539–6559.
[CrossRef]

5. Vivone, G.; Alparone, L.; Chanussot, J.; Mura, D.M.; Garzelli, A.; Licciardi, A.G.; Restaino, R.; Wald, L.
A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586.
[CrossRef]

6. Chavez, P.S.; Sides, S.C.; Anderson, J.A. Comparison of three different methods to merge multiresolution and
multispectral data: Landsat TM and SPOT Panchromatic. Photogramm. Eng. Remote Sens. 1991, 57, 265–303.

7. Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using
Pan-Sharpening, Eastman Kodak Company. U.S. Patent 6011875, 4 January 2000.

8. Tu, T.M.; Su, S.C.; Shyu, H.C.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2012, 3,
177–186. [CrossRef]

9. Strait, R.S.; Merkurjev, M.D.; Moeller, M.; Wittman, T. An adaptive IHS pan-sharpening method. IEEE Geosci.
Remote Sens. Lett. 2010, 7, 746–750.

10. Ranchin, T.; Aiazzi, B.; Alparone, L.; Baronti, S.; Wald, L. Image fusion—The ARSIS concept and some
successful implementation schemes. ISPRS J. Photogramm. Remote Sens. 2003, 58, 4–18. [CrossRef]

11. Pradhan, P.S.; King, R.L.; Younan, N.H.; Holcomb, D.W. Estimation of the number of decomposition levels
for a wavelet-based multiresolution multisensor image fusion. IEEE Trans. Geosci. Remote Sens. 2006, 44,
3674–3686. [CrossRef]

12. Zheng, S.; Shi, W.Z.; Liu, J.; Tian, J. Remote sensing image fusion using multiscale mapped LS-SVM. IEEE
Trans. Geosci. Remote Sens. 2008, 46, 1313–1322. [CrossRef]

13. Shah, V.P.; Younan, N.H.; King, R.L. An efficient pan-sharpening method via a combined adaptive PCA
approach and contourlets. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1323–1335. [CrossRef]

14. Kahaki, S.M.M.; Jan, N.M.; Ashtari, A.H.; Zahra, J.S. Deformation invariant image matching based on
dissimilarity of spatial features. Neurocomputing 2016, 175, 1009–1018. [CrossRef]

15. Garzelli, A.; Aiazzi, B.; Alparone, L.; Lolli, S.; Vivone, G. Multispectral pansharpening with radiative
transfer-based detail-injection modeling for preserving changes in vegetation cover. Remote Sens. 2018, 10,
1308. [CrossRef]

16. Wang, W.; Jiao, L.; Yang, S. Fusion of multispectral and panchromatic images via sparse representation and
local autoregressive model. Inf. Fusion 2014, 20, 73–87. [CrossRef]

17. Zhang, L.; Shen, H.; Gong, W.; Zhang, H. Adjustable model-based fusion method for multispectral and
panchromatic images. IEEE Trans. Syst. Man Cybern. B Cybern. 2012, 42, 1693–1704. [CrossRef] [PubMed]

18. Zhang, K.; Wang, M.; Yang, S.; Xing, Y.; Qu, R. Fusion of panchromatic and multispectral images via coupled
sparse non-negative matrix factorization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5740–5747.
[CrossRef]

19. Li, S.; Yang, B. A new pan-sharpening method using a compressed sensing technique. IEEE Trans. Geosci.
Remote Sens. 2011, 49, 736–746. [CrossRef]

20. Li, S.; Yin, H.; Fang, L. Remote sensing image fusion via sparse representations over learned dictionaries.
IEEE Trans. Geosci. Remote Sens. 2013, 51, 4779–4789. [CrossRef]

21. Yin, H. A joint sparse and low-rank decomposition for pansharpening of multispectral images. IEEE Trans.
Geosci. Remote Sens. 2017, 55, 4779–4789. [CrossRef]

22. Yang, S.; Zhang, K.; Wang, M. Learning low-rank decomposition for pan-sharpening with spatial-spectral
offsets. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 3647–3657. [PubMed]

23. Schultz, R.R.; Stevenson, R.L. Extraction of high-resolution frames from video sequences. IEEE Trans. Image
Process. 1996, 5, 996–1011. [CrossRef] [PubMed]

24. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
25. Xue, J.; Zhao, Y.; Liao, W.; Chan, J.-W. Nonlocal tensor sparse representation and low-rank regularization for

hyperspectral image compressive sensing reconstruction. Remote Sens. 2019, 11, 193. [CrossRef]
26. Ying, H.; Leung, Y.; Cao, F.; Fung, T.; Xue, J. Sparsity-based spatiotemporal fusion via adaptive multi-band

constraints. Remote Sens. 2018, 10, 1646. [CrossRef]

http://dx.doi.org/10.1016/j.sigpro.2014.12.017
http://dx.doi.org/10.3390/rs5126539
http://dx.doi.org/10.1109/TGRS.2014.2361734
http://dx.doi.org/10.1016/S1566-2535(01)00036-7
http://dx.doi.org/10.1016/S0924-2716(03)00013-3
http://dx.doi.org/10.1109/TGRS.2006.881758
http://dx.doi.org/10.1109/TGRS.2007.912737
http://dx.doi.org/10.1109/TGRS.2008.916211
http://dx.doi.org/10.1016/j.neucom.2015.09.106
http://dx.doi.org/10.3390/rs10081308
http://dx.doi.org/10.1016/j.inffus.2013.11.004
http://dx.doi.org/10.1109/TSMCB.2012.2198810
http://www.ncbi.nlm.nih.gov/pubmed/22736648
http://dx.doi.org/10.1109/JSTARS.2015.2475754
http://dx.doi.org/10.1109/TGRS.2010.2067219
http://dx.doi.org/10.1109/TGRS.2012.2230332
http://dx.doi.org/10.1109/TGRS.2017.2675961
http://www.ncbi.nlm.nih.gov/pubmed/28858817
http://dx.doi.org/10.1109/83.503915
http://www.ncbi.nlm.nih.gov/pubmed/18285187
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.3390/rs11020193
http://dx.doi.org/10.3390/rs10101646


Remote Sens. 2019, 11, 557 17 of 18

27. Zhang, Y.; Wang, X.; Xie, X.; Li, Y. Salient object detection via recursive sparse representation. Remote Sens.
2018, 10, 652. [CrossRef]

28. Zhou, Z.; Wang, M.; Cao, Z.; Pi, Y. SAR image recognition with monogenic scale selection-based weighted
multi-task joint sparse representation. Remote Sens. 2018, 10, 504. [CrossRef]

29. Yang, J.; Wright, J.; Huang, T.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image
Process. 2010, 19, 2861–2873. [CrossRef] [PubMed]

30. Gao, D.; Hu, Z.; Ye, R. Self-dictionary regression for hyperspectral image super-resolution. Remote Sens. 2018,
10, 1574. [CrossRef]

31. Zhang, K.; Wang, M.; Yang, S.; Jiao, L. Convolution structure sparse coding for fusion of panchromatic and
multispectral images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1117–1130. [CrossRef]

32. Zhu, X.X.; Bamler, R. A sparse image fusion algorithm with application to pan-sharpening. IEEE Trans.
Geosci. Remote Sens. 2013, 51, 2827–2836. [CrossRef]

33. Zhu, X.X.; Grohnfeldt, C.; Bamler, R. Exploiting joint sparsity for pansharpening: The J-SparseFI algorithm.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 2664–2681. [CrossRef]

34. Jiang, C.; Zhang, H.; Shen, H.; Zhang, L. Two-step sparse coding for the pan-sharpening of remote sensing
images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1792–1805. [CrossRef]

35. Wang, M.; Zhang, K.; Pan, X.; Yang, S. Sparse tensor neighbor embedding based pan-sharpening via N-way
block pursuit. Knowl. Based Syst. 2018, 149, 18–33. [CrossRef]

36. Caiafa, C.; Cichocki, A. Block sparse representations of tensors using Kronecker bases. IEEE Trans. Geosci.
Remote Sens. 2012, 7, 1–5.

37. Lin, T.; Zha, H. Riemannian manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 796–807.
[PubMed]

38. Chang, H.; Yeung, D.; Xiong, Y. Super-resolution through neighbor embedding. In Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington,
DC, USA, 27 June–2 July 2004; pp. 1–9.

39. Zhang, K.; Wang, M.; Yang, S. Multispectral and hyperspectral image fusion based on group spectral
embedding and low-rank factorization. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1363–1371. [CrossRef]

40. Sun, L.; Zhan, T.; Wu, Z.; Xiao, L.; Jeon, B. Hyperspectral mixed denoising via spectral difference-induced
total variation and low-rank approximation. Remote Sens. 2018, 10, 1956. [CrossRef]

41. Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290,
2323–2326. [CrossRef] [PubMed]

42. Saul, L.K.; Roweis, S.T. Think globally, fit locally: Unsupervised learning of low dimensional manifolds. J.
Mach. Learn. Res. 2003, 4, 119–155.

43. Yu, H.; Gao, L.; Liao, W.; Zhang, B. Group Sparse representation based on nonlocal spatial and local spectral
similarity for hyperspectral imagery classification. Sensors 2018, 18, 1695. [CrossRef] [PubMed]

44. Ehsan, E.; Vidal, R. Sparse manifold clustering and embedding. In Proceedings of the Advances in Neural
Information Processing Systems 24 (NIPS 2011), Granada, Spain, 12–15 December 2011; pp. 1–9.

45. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Found. Treads Mach. Learn. 2011, 3, 1–122. [CrossRef]

46. Kahaki, S.M.M.; Arshad, H.; Nordin, M.J.; Ismail, W. Geometric feature descriptor and dissimilarity-based
registration of remotely sensed imagery. PLoS ONE 2018, 13, 0200676. [CrossRef] [PubMed]

47. Fraser, C.; Ravanbakhsh, M. Georeferencing performance of Geoeye-1. Photogramm. Eng. Remote Sens. 2009,
75, 634–638.

48. Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the
quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699.

49. Tu, T.M.; Huang, P.S.; Hung, C.L.; Chang, C.P. A fast Intensity–Hue–Saturation fusion technique with spectral
adjustment for IKONOS imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 309–312. [CrossRef]

50. Otazu, X.; Audicana, G.M.; Nunez, J. Introduction of sensor spectral response into image fusion methods.
Application to wavelet-based methods. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2376–2385. [CrossRef]

51. Alparone, L.; Baronti, S.; Garzelli, A.; Nencini, F. A global quality measurement of pan-sharpened
multispectral imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 313–317. [CrossRef]

http://dx.doi.org/10.3390/rs10040652
http://dx.doi.org/10.3390/rs10040504
http://dx.doi.org/10.1109/TIP.2010.2050625
http://www.ncbi.nlm.nih.gov/pubmed/20483687
http://dx.doi.org/10.3390/rs10101574
http://dx.doi.org/10.1109/TGRS.2018.2864750
http://dx.doi.org/10.1109/TGRS.2012.2213604
http://dx.doi.org/10.1109/TGRS.2015.2504261
http://dx.doi.org/10.1109/JSTARS.2013.2283236
http://dx.doi.org/10.1016/j.knosys.2018.01.022
http://www.ncbi.nlm.nih.gov/pubmed/18369250
http://dx.doi.org/10.1109/TGRS.2016.2623626
http://dx.doi.org/10.3390/rs10121956
http://dx.doi.org/10.1126/science.290.5500.2323
http://www.ncbi.nlm.nih.gov/pubmed/11125150
http://dx.doi.org/10.3390/s18061695
http://www.ncbi.nlm.nih.gov/pubmed/29795020
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1371/journal.pone.0200676
http://www.ncbi.nlm.nih.gov/pubmed/30024921
http://dx.doi.org/10.1109/LGRS.2004.834804
http://dx.doi.org/10.1109/TGRS.2005.856106
http://dx.doi.org/10.1109/LGRS.2004.836784


Remote Sens. 2019, 11, 557 18 of 18

52. Rodriguez-Esparragon, D.; Marcello-Ruiz, J.; Medina-Machín, A.; Eugenio-Gonzalez, F.; Gonzalo-Martín, C.;
Garcia-Pedrero, A. Evaluation of the performance of spatial assessments of pansharpened images.
In Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC,
Canada, 13–18 July 2014; pp. 1619–1622.

53. Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [CrossRef]
54. Yuhas, R.H.; Goetz, A.F.H.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using

the spectral angle mapper (SAM) algorithm. In Proceedings of the 4th JPL Airborne Earth Science Workshop,
Pasadena, CA, USA, 1–5 June 1992; pp. 147–149.

55. Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M. Multispectral and panchromatic data
fusion assessment without reference. Photogramm. Eng. Remote Sens. 2008, 74, 193–200. [CrossRef]

56. Xiao, C.; Liu, M.; Nie, Y.; Dong, Z. Fast exact nearest patch matching for patch-based image editing and
processing. IEEE Trans. Vis. Comput. Graph. 2011, 17, 1122–1134. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/97.995823
http://dx.doi.org/10.14358/PERS.74.2.193
http://dx.doi.org/10.1109/TVCG.2010.226
http://www.ncbi.nlm.nih.gov/pubmed/21659679
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Spatial Weighted Neighbor Embedding (SWNE) for Image Fusion 
	Spatial Weighted Neighbor Embedding (SWNE) 
	Multispectral (MS) and Panchromatic (PAN) Images Fusion Based on SWNE 

	Experiments Results and Analysis 
	Datasets and Experimental Conditions 
	Evaluation Indexes 
	Investigation of SWNE 
	Investigation of  
	Investigation of Patch Size and Window Size 
	Experiments on Reduced-Scale Datasets 
	Experiments on Full-Scale Datasets 

	Conclusions 
	References

