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Abstract: At present, nonparametric subspace classifiers, such as collaborative representation-based
classification (CRC) and sparse representation-based classification (SRC), are widely used in many
pattern-classification and -recognition tasks. Meanwhile, the spatial pyramid matching (SPM) scheme,
which considers spatial information in representing the image, is efficient for image classification.
However, for SPM, the weights to evaluate the representation of different subregions are fixed.
In this paper, we first introduce the spatial pyramid matching scheme to remote-sensing (RS)-image
scene-classification tasks to improve performance. Then, we propose a weighted spatial pyramid
matching collaborative-representation-based classification method, combining the CRC method with
the weighted spatial pyramid matching scheme. The proposed method is capable of learning the
weights of different subregions in representing an image. Finally, extensive experiments on several
benchmark remote-sensing-image datasets were conducted and clearly demonstrate the superior
performance of our proposed algorithm when compared with state-of-the-art approaches.

Keywords: collaborative representation; spatial pyramid matching; remote-sensing images

1. Introduction

Remote-sensing technology is a kind of high and new technology for air to ground observation,
whose primary use is military. However, with the development of economy and the improvement of
living standard, it has been gradually used in civil field. By observing the ground at high altitude,
the ground object information is obtained and analyzed systematically. Remote-sensing (RS) images
are widely used for land cover classification, target identification and thematic mapping from
local to global scales owing to its technical advantages such as multi-resolution, wide coverage,
repeatable observation and multi/hyperspectral-spectral records. In view that the remote-sensing
image tagging samples quantity is less, the traditional image classification method is also suitable for
remote-sensing image classification task, such as image feature representation algorithm and small
sample classification algorithm.

As a core problem in image-related applications, image-feature representation [1,2] exhibits a
trend of transference from handcrafted to learning-based methods. Specifically, most of the early
literature is based on handcrafted features. The most classical method is the bag-of-visual-words
(BoVW) [3] model. It is built with a histogram of vector-quantized local features and lacks the spatial
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distribution of local features in the image space. Then, sparse coding [4] was reported to outperform
BoVW in this area. Sparse coding permits a linear combination of a small number of codewords,
while in BoVW, one local feature corresponds to only one codeword. Sparse coding also lacks the
spatial orders of local features. Handcrafted features are limited in their ability to extract robust and
transferable feature representation for image scene classification, and ignore many effective cues hiding
in the image. In 2006, Hinton [5] pointed out that deep neural networks could learn more profound
and essential features of objects of interest, which led to tremendous performance enhancement.
After that, many attempts have been made to utilize deep-learning methods to feature learning in
remote-sensing images. As one of the most popular deep-learning models in image processing,
convolutional neural networks (CNNs) currently dominate the computer-vision literature, achieving
state-of-the-art performance in almost every topic to which they are applied.

Lazebnik [6] introduced the spatial pyramid matching (SPM) model to add spatial information of
local features to the BoOVW model. The proposed method combines together subregion representation.
The weights to evaluate the representation of the different subregions are fixed. The SPM model
achieved excellent performance for image classification. Therefore, many studies have attempted to
embed the spatial orders of local features into BOVW (e.g., Reference [7]). To embed spatial orders
into sparse codes, Reference [8] considered a pair of spatially close features as a new local feature
followed by sparse coding. BOVW and sparse codes are the sparse representations of the distribution of
the local descriptors in the feature space. Dense representation of the distribution has been studied.
Reference [9] proposed the Global Gaussian (GG) approach that estimates distribution as a Gaussian
distribution and builds the feature by arranging the elements of the mean and covariance of the
Gaussian. Similarly, Reference [10], which is a general GG form, proposed to embed local spatial
information into a feature by calculating the local autocorrelations of any local features. In spatial
pooling, Spatial Pyramid Representation (SPR) [6] is popular for encoding the spatial distribution of
local features. SPM with BoVW have been remarkably successful in terms of both scene and object
recognition. As for sparse codes, state-of-the-art variants of the spatial pyramid model with linear
SVMs work surprisingly well. The variations of sparse codes [11] also utilize SPM.

Another core problem is to construct a visual classifier. Visual-classifier design is a fundamental
issue in computer vision. Recently, representation-residual-based classifiers have attracted more
attention due to the emerging paradigm of compressed sensing (CS). Representation-residual-based
classifiers first obtained the representation of the test sample, and then measured the residual error from
the training samples of each class. Zhang et al. [12] proposed the collaborative representation-based
classification (CRC) algorithm by using collaborative representation (¢, norm regularizer). Many
researchers from the field of remote sensing are attracted by the superior performance of CRC.
Li et al. [13] proposed a joint collaborative-representation (CR) classification method that uses
several complementary features to represent an image, including spectral value and spectral gradient
features, Gabor texture features, and DMP features. In Reference [14], Liu et al. introduced a hybrid
collaborative representation with a kernels-based classification method (Hybrid-KCRC) that combined
collaborative representation with class-specific representation, and improved classification rate in RS
image classification.

In this paper, we introduce a weighted spatial pyramid matching collaborative representation
based classification (WSPM-CRC) method. The proposed method is capable of improving the
performance of classifying remote-sensing images by embedding spatial pyramid matching to CRC.
Moreover, we also combined the CRC method with the weighted spatial pyramid matching approach
to learn the weights of different subregions in representing an image to further enhance classification
performance. The scheme of our proposed method is listed in Figure 1. Our work’s main focuses
are threefold.
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e  Weintroduce a spatial pyramid matching collaborative representation based classification method
that embeds spatial pyramid matching to CRC.

e To improve conventional spatial pyramid matching, where weights to evaluate the
representation of different subregions are fixed, we learn the weights of different subregions.

e The proposed spatial pyramid matching collaborative representation based classification
method was evaluated on four benchmark remote-sensing-image datasets, and achieved
state-of-the-art performance.
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Figure 1. Scheme of our proposed weighted spatial pyramid matching scheme. (Left) conventional
spatial pyramid matching (SPM) model whose weights to evaluate the representation of different
subregions are fixed; (Right) weighted spatial pyramid matching.

The rest of the paper is organized as follows. Section 2 overviews several classical
visual-recognition algorithms and proposes our spatial pyramid matching collaborative representation
based classification. Then, experiment results and analysis are shown in Section 3. Discussion about
the experiment results and the proposed method are outlined in Section 4. Finally, conclusions are
drawn in Section 5.

2. Proposed Method

In this section, we review related work about CRC. Then, we introduce work about SPM. Finally,
we focus on introducing the WSPM.

2.1. CRC Overview

Zhang et al. [12] proposed CRC, for which all training samples are concatenated together as
the base vectors to form a subspace, and the test sample is described in the subspace. To be specific,
given training samples X = [X!, X2, ... XC] € RP*N, x¢ ¢ RD*Ne represents the training samples from
the ¢y, class, C represents the number of classes, N. represents the number of training samples in the ¢,

C
class (N = Y. N;), and D represents the sample dimensions. Suppose that y € RP*! is a test sample,

c=1
the objective function of CRC is as follows:

£(s) = Ily — Xs|)3 +nlls||>

T @
=k(yy) —2k(y,X)s+s (k(X,X)+nl)s

Here, k(y,y) =< v,y >= yTy, k(y,X) =< 3, X >= yTX, k(X,X) =< X,X >= X'X, 5 is the
regularization parameter to control the tradeoff between fitting goodness and collaborative term
(i.e., multiple entries in X participating in representing the test samples). The role of the regularization
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term is twofold. First, compared with no penalty term, ¢, norm stabilizesthe least-squares solution
because matrix X may not be full-rank. Second, it introduces a certain amount of “sparsity” to
collaborative representation $, and indicates that it is the collaborative representation but not the ¢;
norm sparsity that makes sparsity powerful for classification. Collaborative-representation-based
classification effectively utilizes all training samples for visual recognition, and the objective function of
CRC has analytic solutions.

2.2. Spatial Pyramid Matching Model

Svetlana Lazebnik et al. [6] proposed the spatial pyramid matching algorithm to compensate
for the lack of spatial information in representing an image. The SPM scheme is shown in Figure 2.
The image can be represented by three levels. At each level, the image is split into 1, 4, 16 segments.
For each subimage, the feature is independently extracted. All features are concatenated to form
a feature vector to describe the image. In this paper, we split the image into two levels. For each
level, the image is split into 1 and 5 segments (left-upper, left-lower, right-upper, right-lower, center)
as shown in Figure 1. Assume x = [(x!)T, (x?)T,---, (x®)T]T € RP*1 as the feature extracted from an
image. The inner product of two image features x and y can be expressed as follows:

<xy>=k(xy)
L )

M
— Y k(" ")
m=1

where M = 6. The SPM model considers that each subimage equally contributes to represent the
image. The superior performance of visual recognition is often achieved with the spatial pyramid
method, which is to obtain spatial information of images by the statistical distribution of image-feature
points at different resolutions. The image is divided into gradually fine grid sequences at all levels of
the pyramid. However, the weights to evaluate the representation of different features are fixed.
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Figure 2. An example of a three-level pyramid model. Image is represented in three levels.
For each level, the image is split into 1, 4, and 16 segments, respectively. For level 0, the representation of
the image is statistical information and does not include spatial information. As the number of segments
increases, more spatial information is obtained. For each subimage, the feature is independently
extracted. All features are concatenated to form a feature vector to describe the image.
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2.3. Weighted Spatial Pyramid Matching Collaborative Representation

In this paper, we propose the weighted spatial pyramid matching collaborative representation
based classification method to learn the weights of different features in representing an image.
The weight of each subregion can be learned to achieve superior performance. We assume that
x = [VB, ()T, /By (x®)T, -+, /B, (x*)T]T € RP*1 is the weighted feature extracted from an image.
Then, the mode of weighted spatial pyramid matching is as follows:

M m . m

_mglﬁmk(x 'Y ) (3)
M

sty pr=1
m=1

Here, we take both strategies ( Z ,62 =1and Z Bm = 1) into consideration, and both strategies

m=1 m=1

are popular. E B2, = 1is adopted because the objective function with Z B%, = 1 constraint is easier
m= m=1
to solve.

The objective function of our proposed weighted spatial pyramid matching collaborative
representation is as follows:

fsB)=k(yy) —Zk(y/ X)s+s" (k(X,X) +7l)s

sit. k(y,y) Z,Bm ,y

Xm
Z Buk(y", @
— Z ,Bmk (Xm’Xm)
m=1
M
X Bn=1
m=1
2.4. Optimization of Objective Function
To optimize Equation (4), it can be transformed as follows:
M
=Y B.k(y"y 22/3m (y", X™)s+s" Eﬁm (X", X™) 4+l | s
" 5)
M
st Y A =1
m=1
When B,, is fixed, the partial derivative of f (s, §) to s is
)
f( 2 fzzﬁm (y™, X™) +2<Zﬁm Xm,Xm)+171>s (6)

Let %&A) <S B — = 0, we can obtain the value of s,
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=<%ﬁmk(xm,X’">+ﬂI> Zﬁm (y™, X™) @)
m=1

With a fixed s, to optimize objective Equation (5), a Lagrange multiplier was adopted.

M
g(AB)=f(s,B)+A <1 — ;%) ®)

To optimize Equation (8), it can be transformed as follows:
M
B)= )Y Buk(y"™y 2Zﬁm (y", X™) s
" ©)
M M
’ (Z Bk (X", X™) +;71> s+A <1 -y 5@)
m=1 m=1

The partial derivative of g (A, ) to B,, is

9g (M B) _

S5 = k") 2k (" X ") s+ 5Tk (X7, X") s — 20 B (10)

The partial derivative of g (A, ) to A is

9g(Ap) _
o Z B (11)

Let 2 2‘3 be 0; the value of ,, with unknown parameter A is as follows:

m

m o,,m\ _ m m T m m
.Bm:k<y ") — 2k (y ,)2()\)5+S k(X™,X™)s (12)

Let 2 )‘ ﬁ be 0; the value of B,, can be obtained.
k(y™ y™) — 2k (y", X™) s +sT g (X", X™) s

M 2 (13)
\/ ;l (k (y™, ym) — 2k (y™, X™) s +sT  (X™, X™)s)

2.5. Weighted Spatial Pyramid Matching Collaborative Representation Based Classification

After obtaining collaborative code s, the weighted spatial pyramid matching collaborative
representation based classification is to find the minimum value of the residual error for each class:

id(y) = argmin, { |}y - x°5° 2} (14)

where, X, represents features in the ¢y, class. id(y) is the label of the testing sample, and y belongs to
the class that has minimal residual error. The learned weights hinges on a well-known idea:
the reweighting scheme and the latter were used to learn Bayesian networks [15]. The procedure of
weighted spatial pyramid matching collaborative representation based classification is shown in
Algorithm 1.
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Algorithm 1: Algorithm for spatial pyramid matching collaborative representation based classification.

Require: Training samples X € RP*N 3, and test sample y
1: Initial B and s
Update s by Equation (7)
Update B by Equation (12)
Go back to update s and p until the condition of convergence is satisfied
forc=1,c<C;c++do

Code y with the weighted spatial pyramid matching collaborative representation algorithm.
Compute the residuals e (y) = |Jy — X s°||3

end for

id(y) = arg min; {e“}

return id(y)

—
=

3. Experiment Results

In this section, we show our experiment results on four remote-sensing-image datasets.
To illustrate the significance of our method, we compared it with several state-of-the-art methods.
In the following section, we first introduce the experiment settings. Then, we illustrate the experiment
results on each aerial-image dataset.

3.1. Experiment Settings

To evaluate the effectiveness of the proposed SPM-CRC and WSPM-CRC, we applied it to the
RSSCNY7 [16], UC Merced Land Use [17], WHU-RS19 [18], and AID datasets [19]. For all datasets,
we used two pretrained CNN models, i.e., ResNet [20] and VGG [21], to extract the feature. For the
ResNet model, the "pool5” layer was utilized as the output layer to extract a 2048-dimensional vector
for each image (as shown in Figure 3). For the VGG model, the fc6’ layer was utilized as the output
layer to extract a 4096-dimensional vector for each image (As shown in Figure 4). Spatial pyramid
matching is utilized, where the image is split into two layers, each of which has 1 and 5 segments,
respectively (As shown in Figure 1). An image is represented as the concatenation of each segment
with length 12,288-dimensional vector and 24,576-dimensional vector, respectively. The final feature of
each image is ¢>-normalized for better performance [19]. To eliminate randomness, we randomly
(repeatable) split the dataset into the train set and test set for 10 times, respectively. Average accuracy
was recorded.

Layer name Output size 18-layer 34-layer 50-layer 101-layer 152-layer
7 X 7,64,stride 2
Convl 112 x 112
3 X 3,max pool,stride 2
3x3 64]><2 [3><3 64]><3 1x1 64 1x1 64 1x1 64
Conv2_x 56 X 56 3Xx3 64 3x3 64 3x3 64 |x3 3x3 64|x3 3x3 64|x3
1x1 256 1x1 256 1x1 256
3x3 IZS]XZ [3)(3 128])(4 1x1 128 1x1 128 1x1 128
Conv3_x 28 x 28 3x3 128 3x3 128 3x3 128|x4 3x3 128(%x4 3x3 128|x4
1x1 512 1x1 512 1x1 512
3x3 256]x2 [3><3 256]><6 1x1 256 1x1 256 1x1 256
Convd_x 14 x 14 3x3 256 3x3 256 3x3 256(x6 3x3 256 (|x23 3x3 256
1x1 1024 1x1 1024 1x1 1024
x 36
3x3 512]><2 [3><3 SIZ]X3 1x1 512 1x1 512 1x1 512
Conv5_x 7x7 3x3 512 3x3 512 3x3 512 |x3 3x3 512 |x3 3x3 512 |x3
1x1 2048 1x1 2048 1x1 2048
1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° 3.6 x 10° 3.8 x10° 7.6 x 10° 11.3 x 10°

Figure 3. ResNet structure. In this paper, we used 152-layer architecture. For each image, we adopted
the "pool5’ layer as the output layer that forms a 2048 dimensional vector.
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ConvNet  Configuration
A A-LRN B C D E
11 weight layers 11 weight layers 13 weight layers 16 weight layers 16 weight layers 19 weight layers
Input (224 x 224 RGB image)
Conv3-64 Conv3-64 Conv3-64 Conv3-64 Conv3-64 Conv3-64
LNR Conv3-64 Conv3-64 Conv3-64 Conv3-64

maxpool
Conv3-128 Conv3-128 Conv3-128 Conv3-128 Conv3-128 Conv3-128
Conv3-128 Conv3-128 Conv3-128 Conv3-128

maxpool
Conv3-256 Conv3-256 Conv3-256 Conv3-256 Conv3-256 Conv3-256
Conv3-256 Conv3-256 Conv3-256 Conv3-256 Conv3-256 Conv3-256
Conv1-256 Conv3-256 Conv3-256
Conv3-256

maxpool
Conv3-512 Conv3-512 Conv3-512 Conv3-512 Conv3-512 Conv3-512
Conv3-512 Conv3-512 Conv3-512 Conv3-512 Conv3-512 Conv3-512
Conv1-512 Conv3-512 Conv3-512
Conv3-512

maxpool

FC-4096

FC-4096

FC-1000

Soft-max

Figure 4. VGG structure. In this paper, we used 19 weight layers (VGG-19). For each image, we used
the first FC-4096 as the output layer. Therefore, the dimension was 4096.

The proposed SPM-CRC and WSPM-CRC algorithms are compared with other classification
algorithms, including nearest-neighbor (NN) classification, LIBLINEAR [22], SOFTMAX, CRC [12],
hybrid-KCRC [14], and SLRC-L2 [23].

3.2. Experiment on UC Merced Land-Use Dataset

The UC Merced Land Use Dataset [17] consists of 2100 land-use images in total, collected from
aerial orthoimages with a pixel resolution of one foot. The original images were downloaded from
the United States Geological Survey National Map of 20 U.S. regions. The pixel resolution of this
public-domain imagery was 1 foot. Each image measured 256 x 256 pixels. These images were
manually selected into 21 classes: agricultural, airplane, baseball diamond, beach, buildings, chaparral,
dense residential, forest, freeway, golf course, harbor, intersection, medium-density residential,
mobile-home park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis
courts. In Figure 5, we list several samples from this dataset.
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agricultural airplane  baseballdiamond beach buildings chaparral denseresidential

. B .

mobilehomepark overpass parkinglot river runway sparseresidential storagetanks

-

tenniscourt mediumresidential intersection harbor golfcourse freeway forest

s E T R

Figure 5. Example images of the UC-Merced dataset. The dataset has 21 remote-sensing categories

in total.

3.3. Parameter Tuning on UC Merced Land-Use Dataset

For the UC Merced Land Use Dataset, we randomly chose 20 images as the training samples
and testing samples from each category, respectively. Only one parameter in the objection function of
the SPM-CRC and WSPM-CRC algorithms needed to be specified. 5 is an important parameter in the
SPM-CRC and WSPM-CRC algorithms, which is used to adjust the tradeoff between reconstruction
error and collaborative representation. Additionally, 7 is tuned to achieve the best accuracy. For the
feature extracted from both pretrained models, the optimal parameter 7 is 272, 2~ for SPM-CRC and
WSPM-CRC, respectively.

3.3.1. Confusion Matrix on UC Merced Land-Use Dataset

To further illustrate the superior performance of our proposed WPM-CRC method, we evaluated
the classification rate per class of our method on the UC-Merced dataset using a confusion matrix.
In this subsection, we randomly chose 80 images per class as training samples, and 20 images per class
as testing samples. To eliminate randomness, we also randomly (repeatable) split the dataset into a train
set and test set for 10 times, respectively. The confusion matrices are shown in Figure 6. From Figure 6,
we can draw the following conclusions: (1) the ResNet model achieved better performance than the
VGG model in most categories; (2) CRC with an SPM scheme achieved better performance than that
without an SPM scheme; (3) compared with the SPM-CRC method, the WSPM-CRC method achieved
better performance on the dense residential category.

3.3.2. Comparison with Several Classical Classifier Methods on UC Merced Land-Use Dataset

In this subsection, 20 and 20 samples per class were used for training and testing, respectively.
Table 1 illustrates the effectiveness of SPM-CRC and WSPM-CRC for classifying images. For the
ResNet model, when 7 is 2—4 WSPM-CRC algorithm achieves the highest accuracy of 94.43%. This is
1.64% higher than the CRC method, and 0.12% higher than the SPM-CRC method. For the VGG model,
the WSPM-CRC algorithm exceeds the CRC method by 1.24%, and the SPM-CRC method by 0.24%.
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Figure 6. Confusion matrices on the UC-Merced dataset. (a) VGG + CRC; (b) resnet + CRC;
(c) VGG + SPM-CRC; (d) resnet + SPM-CRC; (e) VGG + WSPM-CRC; (f) resnet + WSPM-CRC.

Table 1. Comparison with several classical classification methods on the UC Merced Land-Use
Dataset (%).

Methods\ Datasets UC-Merced

VGG19 + NN 81.88
VGG19 + LIBLINEAR 89.57
VGG19 + SOFTMAX 88.00
VGG19 + SLRC-L.2 89.79
VGGI19 + CRC 90.40
VGG19 + CS-CRC 89.10
resnet + CRC 92.79

VGGI19 + Hybrid-KCRC (linear) [14] 90.67
VGG19 + Hybrid-KCRC (POLY) [14] 91.43
VGG19 + Hybrid-KCRC (RBF) [14] 91.43
VGG19 + Hybrid-KCRC (Hellinger) [14] 90.90

VGG19 + SPM-KCRC 91.4
VGG19 + WSPM-KCRC 91.64
resnet + SPM-CRC 94.31
resnet + WSPM-CRC 94.43
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We increased the number of training samples in each category to evaluate the performance of our
proposed WSPM-CRC method. Figure 7 shows the classification rate on the UC-Merced dataset with
20, 40, 60, and 80 training samples in each category. From Figure 7, we can conclude that our proposed
WSPM-CRC method achieves superior performance to the CRC and SPM-CRC methods.

98
97
9% |
9%
94 }
93
92
91

90
20 40 60 80

mVGG+CRC mVGG+SPM-CRC = VGG+WSPM-CRC
resnet+CRC mresnet+SPM-CRC  mresnet+WSPM-CRC

Figure 7. Classification rate on the UC-Merced dataset with a different number of training samples in
each category.

3.3.3. Comparison with State-of-the-Art Approaches

For comparison, we referred to previous work in the literature [24,25] and randomly selected
80% of images of each class as the training set, and the remaining 20% as the test set. Several baseline
methods (e.g., liblinear and CRC) and state-of-the-art remote-sensing image-classification methods
were used as the benchmark.

Table 2 shows the overall classification-rate accuracy of various remote-sensing image-classification
methods. First, we compared the SPM-CRC and WSPM-CRC methods with liblinear and CRC.
By comparing SPM-CRC and WSPM-CRC with the two baseline methods above, we found
that the performance of SPM-CRC and WSPM-CRC was better than the two baseline methods.
It is worth noting that the proposed WSPM-CRC is an improvement on the CRC method. Second,
we compared SPM-CRC and WSPM-CRC with state-of-the-art remote-sensing image-classification
results. Obviously, SPM-CRC and WSPM-CRC achieved the best performance. It should be noted that
the feature utilized by CNN-W + VLAD with SVM, CNN-R + VLAD with SVM, and CaffeNet + VLAD
is more effective than the feature extracted directly from the CNN (e.g., CaffeNet method, with 93.42%,
versus CaffeNet + VLAD method, with 95.39%).
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Table 2. Experiment on UC-Merced dataset (%).

Methods Year Accuracy
SPMK [6] 2006 74%
LDA-SVM [26] 2013  80.33%
SIFT + SC [27] 2013 81.67%
Saliency + SC [28] 2014  82.72%
CaffeNet [29] (without fine-tuning) 2015 93.42%
CaffeNet [30] + VLAD 2015  95.39%

DCGANS [31] (without augmentation) 2017  85.36%
MAGANS [31] (without augmentation) 2017  87.69%

WDM [25] 2017 95.71%

UCFEFEN [24] 2018 87.83%

CNN-W + VLAD with SVM [32] 2018 95.61%
CNN-R + VLAD with SVM [32] 2018 95.85%
VGG19 + liblinear 95.05%
VGG19 + CRC 94.67%

VGG19 + CS-CRC 95.26%
resnet+CRC 96.9%

VGG19 + Hybrid-KCRC (linear) [14] 2018 96.17%
VGGI19 + Hybrid-KCRC (POLY) [14] 2018 96.29%
VGG19 + Hybrid-KCRC (RBF) [14] 2018 96.26%
VGG19 + Hybrid-KCRC (Hellinger) [14] 2018 96.33%

VGG19 + SPM-KCRC 96.02%
VGG19 + WSPM-KCRC 96.14%
resnet + SPM-CRC 97.95%
resnet + WSPM-CRC 97.95%

3.4. Experiment on RSSCN7 Dataset

RSSCNY7 dataset consists of a total of 2100 land-use images collected from Google Earth. These
images were manually selected into 7 classes: grassland, forest, farmland, industry, parking lot,
residential, and river and lake region, where each class contains 400 images. Figure 8 shows several
sample images from the dataset.

aGrass cIndustry dRiverLake

bField eForest gParking

Figure 8. Example images of the RSSCN7 dataset. RSSCN7 has a total of seven remote-sensing categories.
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First, for comparison, we randomly selected 100 images from each class as the training set, and
100 more images as the testing set. Optimal parameter 5 is 273, 27 for ResNet + SPM-CRC, and
ResNet + WSPM-CRC, respectively. Optimal parameter 7 is 273, 275 for VGG+SPM-CRC, and VGG +
WSPM-CRC, respectively. Recognition accuracy is shown in Table 3. The best performance is marked
with the bold. From Table 3, we can see that the SPM-CRC and WSPM-CRC methods outperformed
other conventional methods. The WSPM-KCRC algorithm achieved the highest accuracy with 92.93%.

Second, we increased the number of training samples in each category to evaluate the
performance of the SPM-CRC and WSPM-CRC methods. Figure 9 shows the classification rate
on the RSSCN7 dataset with 100, 200, and 300 training samples in each category. From Figure 9,
we found that both the SPM-CRC and WSPM-CRC method achieved superior performance to the
baseline methods.

Table 3. Comparison with several classical classification methods on the RSSCN7 dataset (%).

Methods\Datasets RSSCN7

VGG19 + NN 76.44
VGG19 + LIBLINEAR 84.84
VGG19 + SOFTMAX 82.14
VGG19 + SLRC-L.2 81.99
VGG19 + CRC 85.77
VGG19 + CS-CRC 84.23
resnet + CRC 89.43
Hybrid-KCRC (linear) 86.39
Hybrid-KCRC (POLY) 87.34
Hybrid-KCRC (RBF) 87.29
Hybrid-KCRC (Hellinger) 86.71
VGG19 + SPM-CRC 89.71
VGG19 + WSPM-CRC 89.97
resnet + SPM-CRC 92.79
resnet + WSPM-CRC 92.93

94.5
93.5
92.5
91.5
90.5
89.5
88.5
87.5
86.5
85.5

100 200 300
mVGG+CRC mVGG+SPM-CRC » VGG+WSPM-CRC
resnet+CRC mresnet+SPM-CRC  mresnet+WSPM-CRC

Figure 9. Classification rate on the RSSCN7 dataset with a different number of training samples in
each category.



Remote Sens. 2019, 11, 518 14 of 18

3.5. Experiment on the WHU-RS19 Dataset

WHU-RS19 dataset consists of 1005 aerial images in total, collected from Google Earth imagery.
These images were manually selected into 19 classes. Figure 10 shows several sample images from
the dataset.

Airport Beach Bridge Commercial Desert
o N NP
'J‘.w‘d ¥ ¥
-

Farmland footballField Forest Industrial

Parking Pond Port

Mountain

railwayStation Residential River

Figure 10. Example images of WHU-RS19 dataset. The dataset has 19 remote-sensing categories

in total.

For comparison, we randomly selected 20 images from each class as the training set, and 20
more images as the testing set. Optimal parameter ; is 275, 277 for ResNet + SPM-CRC, and
ResNet + WSPM-CRC, respectively. Optimal parameter ; is 273, 274 for VGG + SPM-CRC, and
VGG + WSPM-CRC, respectively. Recognition accuracy is shown in Table 4. The best performance
is marked with the bold. From Table 4, we can see that the SPM-CRC and WSPM-CRC methods
outperformed other conventional methods.

Table 4. Comparison with several classical classification methods on the WHU-RS19 dataset (%).

Methods\ Datasets WHU-RS19
VGG19 + NN 87.74
VGG19 + LIBLINEAR 94.42
VGG19 + SOFTMAX 93.29
VGG19 + SLRC-L2 94.18
VGG19 + CRC 94.58
VGG19 + CS-CRC 93.95
resnet + CRC 97.11
Hybrid-KCRC (linear) 94.76
Hybrid-KCRC (POLY) 95.34
Hybrid-KCRC (RBF) 95.34
Hybrid-KCRC (Hellinger) 95.39
VGG19 + SPM-CRC 96.68
VGG19 + WSPM-CRC 96.76
resnet + SPM-CRC 97.76

resnet + WSPM-CRC 97.74
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3.6. Experiment on the AID Dataset

The AID dataset is a new large-scale aerial-image dataset composed of 30 aerial-scene types:
airport, bare land, baseball field, beach, bridge, center, church, commercial, dense residential, desert,
farmland, forest, industrial, meadow, medium residential, mountain, park, parking, playground,
pond, port, railway station, resort, river, school, sparse residential, square, stadium, storage tanks and
viaduct and collected from Google Earth imagery. In addition, the AID dataset consists of a total of
10,000 images. In Figure 11, we show several images of this dataset.

Airport BareLand BaseballField Beach Bridge Center Church Commercial Desert DenseResidential
.I % - .
Farmland Forest Industrial Meadow MediumResidentialMountain Park Parking Playground Pond

Port RailwayStation Resort River School SparseResidential Square  Stadium  StorageTanks  Viaduct

Figure 11. Example images of AID dataset. The dataset has 30 remote-sensing categories in total.

For comparison, we randomly selected 20 images from each class as the training set and 20
more images as the testing set. OPptimal parameter 5 is 273, 27* for ResNet + SPM-CRC, and
ResNet + WSPM-CRC, respectively. Optimal parameter ; is 272, 2=% for VGG + SPM-CRC, and
VGG + WSPM-CRC, respectively. Recognition accuracy is shown in Table 5. The best performance is
marked with the bold. From Table 5, we can see that the WSPM-CRC algorithm outperformed other
conventional methods. The WSPM-CRC algorithm achieved the highest accuracy.

Table 5. Comparison with several classical classification methods on the AID dataset (%).

Methods\ Datasets AID

VGG19 + NN 65.32
VGG19 + LIBLINEAR 79.93
VGG19 + SOFTMAX 76.13

VGG19 + SLRC-L.2 79.27
VGG19 + CRC 80.73
VGG19 + CS-CRC 77.92
resnet + CRC 85.28

Hybrid-KCRC (linear) 81.07
Hybrid-KCRC (POLY) 82.07
Hybrid-KCRC (RBF) 82.05
Hybrid-KCRC (Hellinger)  81.28

VGG19 + SPM-CRC 84.57
VGG19 + WSPM-CRC 84.63
resnet + SPM-CRC 88.27
resnet + WSPM-CRC 88.28
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4. Discussion

e  For RS image classification, the weights to evaluate the representation of different subregions
are fixed. In this paper, we proposed a spatial pyramid matching collaborative representation
based classification method combined with CRC and the spatial pyramid matching approach
to represent the image, which can decrease reconstruction error and improve classification rate.
We compared our methods with several state-of-the-art methods for RS image classification,
as shown in Table 6. The best performance is marked with the bold. Our proposed methods can
effectively improve classification performance of remote-sensing images.

e  Because weights of different subregions in representing remote-sensing images are different, we
learned the weights of different subregions to further improve the performance of the WSPM-CRC
method. The classification rate on two pretrained CNN models with the WSPM-CRC method

was higher than that with SPM-CRC.
e  We took UC-Merced dataset as an example and evaluated the performance of our proposed

WSPM-CRC method per class with a confusion matrix. From the confusion matrix, we could see
that the WSPM-CRC method is better than the other methods in most categories.

Table 6. Comparison with different CNN pretrained models (%).

Models\Datasets UC-Merced (0.8) WHU-RS19 (0.6) RSSCN7(0.5) AID (0.5)
CaffeNet + SVM [19] 95.02 96.24 88.25 89.53
VGG16 + SVM [19] 95.21 96.05 87.18 89.64
GoogleNet + SVM [19] 94.31 94.71 85.84 86.39
VGGI19 + SVM [14] 94.67 95.42 85.99 90.35
VGG19 + CRC [14] 95.05 95.63 86.97 89.58
VGG19 + Hybrid-KCRC (linear) [14] 96.17 95.68 88.16 89.93
VGG19 + Hybrid-KCRC (POLY) [14] 96.29 96.42 89.21 91.75
VGG19 + Hybrid-KCRC (RBF) [14] 96.26 96.5 89.17 91.82
VGG19 + Hybrid-KCRC (Hellinger) [14] 96.33 95.82 88.47 90.35
Resnet + SVM [14] 96.90 97.74 91.5 92.97
Resnet + CRC [14] 97.00 98.03 92.06 92.85
Resnet + Hybrid-KCRC (linear) [14] 97.29 98.05 92.89 92.87
Resnet + Hybrid-KCRC (POLY) [14] 97.40 98.16 93.11 93.98
Resnet + Hybrid-KCRC (RBF) [14] 97.43 98.13 93.07 94.00
Resnet + Hybrid-KCRC (Hellinger) [14] 97.36 98.37 92.87 93.15
VGG19 + SPM-CRC 96.02 97.37 91.26 92.55
VGG19 + WSPM-CRC 96.14 97.37 91.31 92.57
Resnet + SPM-CRC 97.95 98.26 93.86 95.1
Resnet + WSPM-CRC 97.95 98.32 93.9 95.11

5. Conclusions

In this paper, we introduced a spatial pyramid matching scheme into the collaborative
representation based classification method. The SPM-CRC approach considers spatial information
in representing the image to improve performance in classifying remote-sensing images. We also
learned the weights or contributions of each subregion in the SPM model. Thus, the WSPM-CRC
method was applied to the spatial pyramid matching model to further improve image classification
performance. Extensive experiments on four benchmark remote-sensing image datasets demonstrated
the superiority of our proposed weighted spatial pyramid matching collaborative representation based
classification algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

CRC

Collaborative-Representation-Based Classification

CS-CRC  Class-Specific Collaborative-Representation-Based Classification

RS

Remote sensing

BoVW Bag-of-visual-words
CNNs Convolutional Neural Networks

NN

Nearest Neighbor

SLRC Superposed Linear Representation Classifier

SPM

Spatial Pyramid Matching

WSPM  Weighted Spatial Pyramid Matching
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