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Abstract: More and more applications of location-based services lead to the development of indoor
positioning technology. Wi-Fi-based indoor localization has been attractive due to its extensive
distribution and low cost properties. IEEE 802.11-2016 now includes a Wi-Fi Fine Time Measurement
(FTM) protocol which provides a more robust approach for Wi-Fi ranging between the mobile
terminal and Wi-Fi access point (AP). To improve the positioning accuracy, in this paper, we propose
a robust dead reckoning algorithm combining the results of Wi-Fi FTM and multiple sensors
(DRWMs). A real-time Wi-Fi ranging model is built which can effectively reduce the Wi-Fi ranging
errors, and then a multisensor multi-pattern-based dead reckoning is presented. In addition,
the Unscented Kalman filter (UKF) is applied to fuse the results of Wi-Fi ranging model and multiple
sensors. The experiment results show that the proposed DRWMs algorithm can achieve accurate
localization performance in line-of-sight/non-line-of-sight (LOS)/(NLOS) mixed indoor environment.
Compared with the traditional Wi-Fi positioning method and the traditional dead reckoning method,
the proposed algorithm is more stable and has better real-time performance for indoor positioning.

Keywords: Indoor positioning; Dead reckoning; Wi-Fi Fine Time Measurement; Multiple sensors;
Unscented Kalman filter

1. Introduction

In Global Navigation Satellite System (GNSS)-denied indoor environments, various indoor
localization systems based on different techniques, such as ultra- wideband (UWB) [1], bluetooth [2],
Wi-Fi [3], light source [4], and multi-sensors [5] have been developed for location-based services (LBS).

Wi-Fi-based indoor localization has been more attractive compared with other signals due to its
extensive application and low cost properties. Multiple characteristics estimated from Wi-Fi signals
can be used for indoor localization such as received signal strength indication (RSSI) [6], channel
impulse response (CIR) [7], time of arrival (TOA) [8], angle of arrival (AOA) [9], and channel state
information (CSI) [10]. Other Wi-Fi-based localization techniques such as multi-source fusion [11] and
fingerprinting [12] can also be used in complex indoor scenarios. In 2016, IEEE 802.11 standardized the
Fine Time Measurement (FTM) protocol which can provide meter-lever localization accuracy according
to the Wi-Fi alliance [13]. Ibrahim M and his partners analyzed the key factors and parameters
which affect the Wi-Fi ranging performance based on the open platform and revisited standard error
correction techniques for a Wi-Fi FTM-based localization system [14].

However, when giving a complex indoor scenario where the direct transmission path between
the transceivers is blocked, the distance errors measured by Wi-Fi FTM cannot be easily eliminated
due to the lack of a line-of-sight (LOS) path [15]. To make it worse, the measurement errors are in
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different statistics in different indoor scenarios, such as office, corridor, and underground parking [16].
In addition to signal-based indoor positioning technology, inertial localization technology such as
pedestrian dead reckoning (PDR) is also widely used in indoor scenarios where the signal source is
insufficient due to its passivity, autonomy, and short-term precision [17]. Recently, multi-source fusion
positioning and combined navigation have attracted extensive attention because of their high precision
and stability which can also be used in indoor localization [18–20]. Several fusion methods such as the
Kalman filter (KF) [21], Extended Kalman filter (EKF) [22], and Particle filter (PF) [23] can effectively
integrate different data sources to get more accurate positioning results.

This paper proposes a robust dead reckoning algorithm based on Wi-Fi FTM and multiple sensors
(DRWMs). The contribution of this work is summarized as follows:

(1) To improve the traditional multi-sensor-based dead reckoning method, a multi-pattern-based
step detection and location updating algorithm is proposed in order to adapt to complex indoor
walking modes.

(2) A real-time ranging model based on Wi-Fi FTM is presented which can effectively reduce the Wi-Fi
ranging error caused by clock deviation, non-line-of-sight (NLOS), and multipath propagation.

(3) Based on the fusion of Wi-Fi ranging model and multi-pattern-based dead reckoning method,
DRWMs is proposed. The combination of the real-time Wi-Fi FTM ranging model and
the multi-sensor estimation method effectively improves the accuracy and stability of final
dead reckoning.

The rest of this paper is organized as follows. Section 2 introduces the theoretical framework
about the principle of Wi-Fi FTM-based indoor localization method and designs a multi-pattern-based
dead reckoning algorithm using multiple sensors. Section 3 builds a real-time Wi-Fi ranging model
which can effectively reduce the error of clock deviation, NLOS, and multipath propagation. Section 4
presents the DRWMs algorithm using Unscented Kalman filter (UKF) to fuse the results of the Wi-Fi
ranging model and multiple sensors. Section 5 describes the experimental results of the proposed
algorithm. Section 6 will conclude this paper and point out the future work.

2. Theoretical Framework

Traditional Wi-Fi-based positioning methods usually use RSSI to calculate the distance between
the mobile terminal and Wi-Fi AP or use the fingerprint method to get the location of a pedestrian.
Compared with the Wi-Fi FTM, the RSSI fingerprinting-based Wi-Fi positioning method is much more
dependent on the environment because of the multipath propagation. RSSI is also highly interference
dependent, hardware dependent, and sensitive to environmental factors such as temperature [24–26].
In addition, the RSSI-based Wi-Fi positioning method has relatively poor real-time performance; it
may take one or more seconds to get a new location by scanning nearby AP in all bands. Wi-Fi FTM
uses real time measurement based on clocks, by which we can get a much higher update rate of
3Hz or more and a fine measurement result with pico-seconds-based fine-grained time recognition.
The traditional dead reckoning method provides the relative position of the pedestrian by calculating
the real-time heading difference and step length. It can only be used in case of walking forward; errors
are cumulated when other walking patterns occur, because the heading difference remains the same
as the forward walking pattern. In this section, a more robust Wi-Fi-based positioning method and
multi-pattern-based dead reckoning method are proposed.

2.1. Positioning Method Based on Wi-Fi FTM

Wi-Fi FTM protocol enables distance ranging between the mobile terminal and Wi-Fi access point
(AP). The whole procedure is described as follows. First, the mobile terminal sends an FTM request
to the Wi-Fi AP. Then, the Wi-Fi AP receives the request and returns an ACK signal to the mobile
terminal. After that, several FTM feedbacks are sent from the Wi-Fi AP to the mobile terminal, and,
then, the mean round-trip time (RTT) can be calculated. This process can also be performed between
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several mobile terminals and Wi-Fi APs at the same time. Figure 1 shows the whole procedure in
which the parameter names ‘FTMs per Burst’ can be changed to improve the FTM accuracy by multiple
measurements. The mean RTT information within one period is calculated by Equation (1):

RTT =
1
n
·

n

∑
k=1

([t4(k)− t1(k)]− [t3(k)− t2(k)]) (1)

where t1(k) is the timestamp when the FTM framework first sent by Wi-Fi AP, t2(k) is the timestamp
when the FTM signal arrives to the mobile terminal, t3(k)is the timestamp when the mobile terminal
returns the ACK signal to Wi-Fi AP, t4(k) is the timestamp when the ACK signal is finally received
by the Wi-Fi AP, and the parameter n is the number of FTMs per burst among one ranging period.
Generally, the protocol excludes the processing time on the mobile terminal by subtracting (t3(k) –
t2(k)) from the total round-trip time (t4(k) – t1(k)), which represents the time from the instant the FTM
message is being sent (t1(k)) to the instant the ACK is being received (t4(k)). This calculation is repeated
for each FTM-ACK exchange, and the final RTT is the average over the number of FTMs per burst.
In this paper, the parameter FTMs per burst n is set as 30 to minimize the measurement noise, so it will
take more time to complete this procedure compared to a smaller FTMs per burst [14]. The sampling
rate of the RTT depends on the hardware performance of the processor and bandwidth of Wi-Fi,
and the frequency of the processor should satisfy pico-seconds fine-grained requirements according
to [13].
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The distance between mobile terminal and Wi-Fi AP can be calculated by Equation (2):

DRTT =
C
2n
·

n

∑
k=1

([t4(k)− t1(k)]− [t3(k)− t2(k)]) (2)

where C is the speed of light and DRTT is the final distance calculated by one FTM period.
The least squares (LS) algorithm [27] can be used for real-time localization after receiving distance

information from three or more APs:

xp = (ATA)
−1ATb

xp =
[

x y
]T

, A = 2 ·


x1 − x2 y1 − y2

x1 − x3 y1 − y3
...

...
x1 − xj y1 − yj

, b =


DRTT(2)− DRTT(1)− (x2

2 − x1
2)− (y2

2 − y1
2)

DRTT(3)− DRTT(1)− (x3
2 − x1

2)− (y3
2 − y1

2)
...

DRTT(j)− DRTT(1)− (xj
2 − x1

2)− (yj
2 − y1

2)

 (3)

where xp is the localization result, j is the number of APs, xj and yj are the position of Wi-Fi AP, and
DRTT(j) is real-time RTT data received from each Wi-Fi AP. It should be noted that the number of APs
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needed to solve the above equation is at least one more than the dimension of the xp. In theory, we can
get more accurate positioning results by increasing the number of APs [28].

2.2. Multi-Pattern-Based Dead Reckoning via Multiple Sensors

Mobile phones are generally equipped with multiple MEMS (Micro-Electro-Mechanical System)
sensors such as an accelerometer, a magnetometer, and a gyroscope. When pedestrians carrying
mobile terminals, these sensors can reflect the movement. Therefore, the sensor data can be used
for indoor localization. The walking patterns of pedestrians can significantly affect the accuracy of
positioning results which should be detected. The multi-pattern-based PDR algorithm proposed in this
paper mainly contains the following two steps: (1) Multi-pattern-based step detection and step-length
estimation; (2) location updates.

2.2.1. Multi-Pattern-Based Step Detection and Step-Length Estimation

The basic principle of step number measurement is that the vertical value of acceleration data
is periodically changing when walking. The number of steps can be used to update the position
combining step-length and heading difference. The original data from the accelerometer contains noise
which should be smoothed. A moving average filter can be used to reduce the noise, and the obvious
step character can be extracted after filtering [21].

Different patterns may exist between walking procedures such as walking forward, walking
backward, and lateral walking, which may cause coordinate updating error without detection. In case
of walking forward, steps can be detected by a peak and valley detection algorithm [29]. However,
this step detection algorithm should be modified in the case of other walking patterns. In this part,
a multi-pattern-based step detection algorithm is proposed to realize real-time step detection and
step-length calculation based on different walking patterns.

In the step detection process with higher real-time requirements, time-domain features of
acceleration can be used to identify the walking pattern. The handheld posture of mobile phone
is shown in Figure 2, which is cited in [30].
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Acceleration shows periodic waveform characteristics when a pedestrian walks. In the case of
walking forward and walking backward, the Y-axis is seen as the walking axis, and the slope of data
from the Y-axis is extracted to identify the walking pattern by combining peak and valley detection of
the Z-axis. The slope of the acceleration data from Y-axis defined in Equation (4).(

K1 = Ay(m1)− Ay(m1 − 1)
K2 = Ay(m1 + 1)− Ay(m1)

(4)

where m1 is the timestamp when the peak or valley of Z-axis value is detected during one step period
and Ay is the acceleration data from Y-axis.

Figure 3 shows the comparison of walking forward and backward; the tester walked forward for
8 m and then walked backward to original point. The sample rate of accelerometer is 50 Hz, and the
raw data is filtered by moving average filter with a width of 10. Figure 4 is the same. The red dots
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show the peaks or valleys of the Z-axis data as corresponding to the red stars, which represent the
Y-axis data at the moment m1. When the conditions K1 > 0 and K2 > 0 are met, in the case of walking
forward, m1 is the timestamp when the peak of Z-axis value is detected. In case of walking backward,
m1 is the timestamp when the valley of the Z-axis value is detected.

In case of left lateral walking and right lateral walking, the X-axis is seen as the walking axis.
The data slope of the X-axis is extracted to identify the walking pattern by combining the peak and
valley detections of the Z-axis. The slope of acceleration data from X-axis defined in Equation (5).(

K3 = Ax(m2)− Ax(m2 − 1)
K4 = Ax(m2 + 1)− Ax(m2)

(5)

where m2 is the timestamp when the peak of Z-axis value is detected during one step period and
Ax is the acceleration data from X-axis. Figure 4 shows the comparison of left lateral walking and
right lateral walking. The tester walked left laterally for 6 m and then walked right laterally to the
original point. The red dots show the peaks or valleys of the Z-axis data, as corresponding to the red
stars, which represent the X-axis data at the moment m2. When the conditions K3 < 0 and K4 < 0 are
met, in case of left lateral walking, m2 is the timestamp when the peak of the Z-axis value is detected.
When the conditions K3 > 0 and K4 > 0 are conformed, in case of right lateral walking, m2 is the
timestamp when the peak of the Z-axis value is detected. Only a texting pattern is considered in this
work; as shown in Figure 2, subtle tilt does not affect the recognition results because the Equations (4)
and (5) calculate the changing trend of the acceleration data.
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Figure 3. Comparison of walking forward and backward.
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After the multi-pattern-based step detection is completed, the Weinberg model is used to calculate
the real-time step length [31], described as follows:

step_length = K 4
√

Amax − Amin (6)

where Amax and Amin are the maximum and minimum values of the Z-axis acceleration during one
step period and K is the ratio of the real and the estimated distance:

K =
dreal

destimated
(7)

2.2.2. Location Update

A traditional dead reckoning algorithm is used to calculate the real-time position coordinates of
a pedestrian in the case of walking forward. In the cases of walking backward, left lateral walking,
and right lateral walking—since the pedestrian’s heading angle remains unchanged—the positioning
trajectory will continue updating forward while the true trajectory should be updated in the opposite
or perpendicular direction to avoid causing the accumulation of positioning errors. By using the
multi-pattern step detection algorithm, different walking patterns are detected, and the corresponding
step length is calculated. Using a location updating algorithm based on multiple walking patterns can
effectively reduce the cumulative error of dead reckoning.

For the backward walking pattern, as shown in Figure 5, the pedestrian starts from the original
location, continuously walks to point A and point B, and then walks backwards from point B to point
A. The final position coordinates of the pedestrian measured by the traditional dead reckoning (DR)
algorithm is the D point, which is opposite to the actual walking trajectory of the pedestrian. In case of
either a left lateral walking pattern or right lateral walking pattern, the pedestrian walks from point
A to point B and then walks laterally to point C1 and C2. When using the traditional DR algorithm,
the walking trajectory still shows from point B to point D, perpendicular to the actual trajectory of
the pedestrian.
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For the above four walking patterns, the multi-pattern-based location updating equation is
described as follows: (

X(k) = X(k− 1) + SkLk sin θk + UkLk cos θk
Y(k) = Y(k− 1) + SkLk cos θk −UkLk sin θk

(8)

where Lk is the step-length and θk is the difference of heading angle compared with initial heading
which is provided by the calibrated magnetometer [32]. The real-time heading is calculated by an
EKF filter which combines the outputs of the gyroscope and magnetometer [30]. A threshold ∆h
is used to eliminate the heading jitter when walking and keep the heading unchanged when the
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heading increment is smaller than ∆h. Sk is the flag of detected walking patterns, including walking
forwards and backwards. Sk is set to 1 when a walking forwards pattern is detected, while Sk is
set to −1 when a walking backwards pattern detected. In case of other walking patterns, Sk is set
to 0. Uk is the flag of lateral walking patterns. Uk is set to −1 when a left lateral walking pattern
detected, and Uk is set to 1 when a right lateral walking pattern detected. In case of other walking
patterns, Uk is set to 0. The real-time location of pedestrians can be accurately updated using the above
equation. Compared with the traditional location updating method provided in [30], when backwards
or lateral walking patterns happen, the proposed location updating algorithm can effectively classify
the different walking patterns and go on to decrease the positioning error caused by misjudgment.

2.3. Challenges of Indoor Positioning for Pedestrians

The Wi-Fi FTM protocol included in IEEE 802.11-2016 enables Wi-Fi ranging between the mobile
terminal and Wi-Fi AP and provides a new direction for Wi-Fi-based indoor positioning. PDR is
based on multiple sensors and calculates the step length and heading difference to update the
relative coordinates of pedestrian. These two methods are the focus of recent research. However,
in summarizing the work of predecessors, this paper found that the Wi-Fi FTM-based approach and
PDR algorithm continue to face the following challenges:

1. Clock Deviation of Wi-Fi FTM

IEEE 802.11-2016 gives a definition about Wi-Fi ranging which supports exchange of FTM
information and timestamps captured between the mobile terminal and Wi-Fi AP [13]. TOA and DOA
methods [33,34] are included in parameters of each single FTM exchange. The clock-based timestamps
capture cannot be absolutely precise; thus, one of the most important factors that causes the Wi-Fi
ranging error is the clock deviation error, which is caused by an initial deviation and a random error,
which are inconsistent with different mobile terminals and Wi-Fi APs. Generally, the initial deviation
can be calibrated by calculating the difference between the true value and the measurement in field
tests [14]. The random clock error causes a fluctuation of the received RTT data on the mobile terminal,
which can be eliminated by filters such as the Kalman Filter (KF) [35], Mean filter [36], Gaussian
filter [37].

2. NLOS and Multipath Propagation

In a complex indoor environment, the Wi-Fi ranging results may contain NLOS distance which
may not be easily detected. The existence of NLOS errors will significantly degrade the localization
performance, and, hence, the mitigation of NLOS errors becomes an urgent task [38,39]. In indoor
scenarios, the direct path between transceivers are easily blocked due to the complexity of the indoor
layout. The propagation of the waves’ path may lengthen due to reflection, refraction, and scattering,
all of which can cause large positioning errors for indoor navigation with ranged-based methods [40,41].

3. Cumulative Error of Inertial Sensors

In the PDR method, the current location is based on the continuous reckoning of the previous
locations and pedestrian steps. The step-length error and step-count deviation caused by cumulative
error of inertial sensors will influence positioning accuracy [42]. In addition, heading drift is also an
important factor [43]. In [44], it is noted that the cumulative error is always existing and growing with
time, while the requirement of indoor localization is within 5 m. Therefore, it is necessary to eliminate
the cumulative error.

3. Ranging Model of Wi-Fi FTM

IEEE 802.11-2016 enhanced Wi-Fi ranging by providing Wi-Fi FTM—any mobile terminals which
support this new protocol can use this function. However, the raw data from FTM contains a clock
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deviation error and could be influenced by NLOS and multipath propagation. In this section, a real-time
ranging model which can effectively reduce the error caused by clock deviation, NLOS, and multipath
is proposed.

3.1. Model of Clock Deviation Error

It can be noticed from Figure 1 that the final RTT data is calculated by the different timestamps
carried by the Wi-Fi FTM framework. In other words, the detection precision of the timestamps
determines the accuracy of the calculated RTT. However, these timestamps are not the true time instant
when the signals arrive or leave the Wi-Fi AP and mobile terminal due to the procedure of signal
processing and hardware delay. The true RTT data finally calculated by the Wi-Fi AP contains an
initial time difference called ∆tdelay, which is inconsistent between different hardware structures and
processing methods of the signal—similar as TOA and DOA technology. ∆tdelay in one period of RTT
can be described as follows:

RTTtrue =
([(

t4 − t4_delay)− (t1 + t1_delay)
]
−
[(

t3 + t3_delay)− (t2 − t2_delay)
])

= RTTmeasurement − (t4_delay + t1_delay)− (t3_delay + t2_delay)

= RTTmeasurement − ∆tdelay

(9)

where RTTtrue is the true ranging result after subtracting ∆tdelay from real-time measurement result
RTTmeasurement—t is defined in Equation (1).

The random error of the clock exists during the each FTM processing due to the status of the system
and signal propagation in different environments. When the distance is finally calculated, it fluctuates
within a range due to random error. In general, ∆trandom can be assumed as Gaussian-distributed
variables with zero mean and variance after calibration, which is described in Equation (10):

∆trandom(m) =
1√
2πσ

· exp(− m2

2σ2 ) (10)

where m is the timestamp.
With the understanding of the initial clock deviation and random error of the clock, RTT in one

period can be described as follows:

RTT= (t4 − t1)−
(

t3 − t2) + ∆tdelay∆trandom (11)

where ∆tdelay exists before ranging which can’t be easily detected directly by hardware. As such,
before using the Wi-Fi ranging system, some calibration measurements have to be done to eliminate
the initial clock deviation ∆tdelay. ∆trandom exists during the ranging process which can result in signal
fluctuation. Both errors cannot be fully eliminated by calibration and filter, so a further processing
algorithm is needed.

3.2. Model of NLOS and Multipath Propagation

It is important to consider an indoor environment with several available APs which support the
Wi-Fi FTM. In the case that the mobile terminal is moving, parts of APs may be blocked in a short time
that cause the NLOS and multipath propagation which may not be detected by themselves. In order
to solve the problem, a ranging model containing the effects of NLOS and multipath propagation is
proposed. Locations of Responders/APs is indicated as Pi, and location of the mobile terminal
is indicated as P. Taking the effect of NLOS and multipath into consideration can result in the
following model:

Li = L0 + ‖P− Pi‖+ ei + drandom

drandom = C·∆trandom
2

(12)
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where Li is the measured distance, i is used to differentiate different APs, L0 is the extra ranging
distance caused by multipath, P = [x0 y0]T indicates the location of mobile terminal, Pi is the location of
Wi-Fi AP, ‖P −Pi ‖ is the matrix norm that indicates the Euclidean distance between mobile terminal
and Wi-Fi AP, ei is the NLOS error which indicates the difference between the final propagation
distance of the signal and the true straight line distance when LOS path is lacked [45], drandom is the
random error of measurements which confront to a zero-mean Gaussian distribution with a variance
of 0.25 [14], and ∆trandom is defined in Equation (10). We assume that ei is much larger than drandom,
with a boundary of bi, which always indicates the distance between mobile terminal to the farthest AP.
Since drandom is always between −0.5m and 0.5m according to [14], we move ei to the left side, square
both sides, and neglect the d2

random:

(Li − ei)
2 ≈ (L0 + ‖P− Pi‖)2 + 2drandom(L0 + ‖P− Pi‖) (13)

Then drandom can be obtained as:

drandom ≈
(Li − ei)

2 − (L0 + ‖P− Pi‖)2

2(L0 + ‖P− Pi‖)
(14)

Then define a function on ei:

f (ei) =
|(Li − ei)

2 − (L0 + ‖P− Pi‖)2|
L0 + ‖P− Pi‖

(15)

The LS [45] algorithm can be used to solve Equation (15) with the condition 0 < ei < bi. Assuming
that the number of available Wi-Fi APs is N:

min
P,L0

max
ei

N

∑
i=1

f 2(ei)

4σ2 = min
P,L0

N

∑
i=1

[maxei f (ei)]
2

4σ2 (16)

With the condition 0< ei < bi, maxei f (ei) can be divided into two cases:
First case: Li<= bi, then maxei f (ei) = max{ f (0), f (Li), f (bi)}.
Second case: Li> bi, then maxei f (ei) = max{ f (0), f (bi)}.
Then Equation (16) can be translated as:

min
P,L0,{ρi}

N
∑

i=1
ρi

s.t. f 2(0)
4σ2 ≤ ρi,

f 2(Li)
4σ2 ≤ ρi,

f 2(bi)
4σ2 ≤ ρi(Li ≤ bi)

(17)

Introducing variables y = ‖P‖2, r = L0
2, ki = 2L0‖P−Pi‖ creates the following equation:

min
P,L0,y,r,{ρi ,ki}

N
∑

i=1
ρi

s.t. (Li
2−y−r+2Pi

TP−‖Pi‖2−ki)
2

y+r−2Pi
TP+‖Pi‖2+ki

≤ 4σ2ρi,

(ki
2−2Liki+Li

2−y−r+2Pi
TP−‖Pi‖2−ki)

2

y+r−2Pi
TP+‖Pi‖2+ki

≤ 4σ2ρi,

(2Pi
TP−‖Pi‖2−ki−y−r)

2

y+r−2Pi
TP+‖Pi‖2+ki

≤ 4σ2ρi,

y = ‖P‖2, r = L0
2, ki = 2L0‖P− Pi‖(Li ≤ bi)

(18)
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Based on the assumption that ei >> |drandom|, Equation (18) can be transformed into a more
tightened problem:

A[PT , y, L0, r]T ≤ f

A =

 −2PT
1 1 2L1 −1

...
...

...
...

−2PT
N 1 2LN −1

, f =


L1

2 − ‖P1‖2

...
LN

2 − ‖PN‖2

 (19)

Problem (19) is non-convex. With the constraints y = ‖P‖2, r = L0
2, the commonly used standard

second-order cone relaxation technique can be applied to relax them as ‖P‖2 ≤ y and L0
2 ≤ r. For

the constraint ki = 2L0‖P− Pi‖(Li ≤ bi), transforming the equation to a convex one can result in the
following constraint:

0 ≤ ki = 2L0‖P− Pi‖ ≤ r + y− 2PT
i P + ‖Pi‖2

ki
2 = 4L0

2‖P− Pi‖2 ≤ 4r(y− 2PT
i P + ‖Pi‖2)

(20)

Utilizing the relaxations for constraints and the approximations in Equation (19), a convex
second-order cone program is as follows:

min
P,L0,y,r,{ρi ,ki}

N
∑

i=1
ρi

s.t. (Li
2−y−r+2Pi

TP−‖Pi‖2−ki)
2

y+r−2Pi
TP+‖Pi‖2+ki

≤ 4σ2ρi,

(ki
2−2Liki+Li

2−y−r+2Pi
TP−‖Pi‖2−ki)

2

y+r−2Pi
TP+‖Pi‖2+ki

≤ 4σ2ρi,

(2Pi
TP−‖Pi‖2−ki−y−r)

2

y+r−2Pi
TP+‖Pi‖2+ki

≤ 4σ2ρi,

‖P‖2 ≤ y, L0
2 ≤ r, (19), (20)

(21)

The optimal estimated value of ‖P− Pi‖ can be gotten from the above formulas and constraints,
which approximate to the true value of RTT data from each Wi-Fi AP.

4. Integrated Localization Based on Wi-Fi FTM and PDR

This work provides multiple sensors and a Wi-Fi ranging model to estimate pedestrian position.
The two methods have their own advantages and disadvantages. The positioning method based on
Wi-Fi FTM can provide the exact coordinates directly, but it is affected by NLOS and multipath
propagation. Multi-sensor estimation is more accurate within a short distance, but there exist
cumulative errors which cannot be used for a long time. This paper combines the two methods
to overcome the shortage of each. The estimation based on Wi-Fi FTM could eliminate the cumulative
error caused by multi-sensor estimation and could provide an initial location to UKF model.
Multi-sensor estimation has good time-recursive performance and can decrease error of NLOS and
multipath propagation caused by Wi-Fi FTM. Since UKF does not ignore high-order terms, it has
higher filtering accuracy than EKF under the same conditions, and the computational complexity is
smaller than PF; thus, the UKF is selected for data fusion in this paper which combines the proposed
two methods to achieve higher positioning accuracy. The whole framework of proposed DRWMs
algorithm is shown in Figure 6.
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4.1. System Model Based on Unscented Kalman filter

In the process of fusion, the difference of position estimated by multiple sensors is calculated as
predicted value, and the distance calculated by the Wi-Fi FTM-based ranging model is used as the
observed value. The system state equation is as follows:

X(t) =

[
x(t)
y(t)

]
= ψ

[
x(t− 1)
y(t− 1)

]
+ BS(t) + v (22)

where [x(t − 1) y(t − 1)]T are the 2D coordinates of the pedestrian at time t − 1, S(t) is the
real-time step-length, v is the Gaussian noise with a noise matrix Q,ψ is a unit matrix, and B =

[St sin θt + Ut cos θtSt cos θt −Ut sin θt]
T, indicates the difference of heading angle compared with

initial heading. Sk and Uk are defined in Equation (6) and are used for multi-pattern step detection.
The initial location (x(0), y(0)) is provided by the LS algorithm, which is defined in Equation (3).

The distance between the mobile terminal and each Wi-Fi AP is calculated by Wi-Fi FTM and
is called the round-trip time (RTT); it can be used as an observed value after pre-processing by the
ranging model proposed in Section 3. The accuracy of position estimation can be improved using
multiple Wi-Fi APs. The observation equation is as follows:

Z(t) =



√
(x(t)− x1)

2 + (y(t)− y1)
2√

(x(t)− x2)
2 + (y(t)− y2)

2

...√
(x(t)− xj)

2 + (y(t)− yj)
2

+ U (23)

where U is the random error of Wi-Fi FTM with a noise matrix R, U = [d1
random, d2

random, · · · , dj
random]

T,
and drandom is defined in Equation (12). x(t) and y(t) are estimated by the system state equation. The
Euclidean distance between the predicted position and each Wi-Fi AP is calculated as observation value, j
is the number of Wi-Fi AP, and xj and yj indicate the position of each AP.

4.2. Data Fusion via Unscented Kalman filter

The UKF is a well-known nonlinear state estimation method which shows superior performance
at nonlinear estimation and data fusion [46,47]. The Unscented Kalman filter proposed in this paper is
divided into eight steps:
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(1) Getting sigma point set based on the previous location
∧
X(t|t) and the corresponding weight:

 X(η)(t|t) = [

η=0
∧
X(t|t),

η=1∼β
∧
X(t|t) +

√
(β + λ)φ(t|t),

η=β+1∼2β
∧
X(t|t)−

√
(β + λ)φ(t|t)]

w(0) = λ
β+λ , η = 0

w(η) = λ
2(β+λ)

, η = 1 ∼ 2β

(24)

where β is the dimension of the state value, η is the corresponding number of sigma point set, and
λ is the proportional parameter which is used to scale of the weight. φ(t|t) is the state covariance
matrix at the current moment t.

(2) Further prediction of 2β + 1 sigma point sets, η = 0, 1, 2, · · · , β + 1:

X(η)(t + 1|t) = ψX(η)(t|t) + BS(t + 1) + v (25)

(3) Weighting sigma point set, getting predicted value and covariance matrix.

∧
X(t + 1|t) =

2β

∑
η=0

w(η)X(η)(t + 1|t) (26)

φ(t + 1|t) =
2β

∑
η=0

w(η)[
∧
X(t + 1|t)−X(η)(t + 1|t)][

∧
X(t + 1|t)−X(η)(t + 1|t)]

T
+ Q (27)

(4) Getting the sigma point set again using UT transform based on the predicted state value.

X(η)(t + 1|t) = [
∧
X(t + 1|t),

∧
X(t + 1|t) +

√
(β + λ)φ(t + 1|t),

∧
X(t + 1|t)−

√
(β + λ)φ(t + 1|t)] (28)

(5) Further prediction of observation based on 2n + 1 sigma point sets of prediction, η =

0, 1, 2, · · · , 2β + 1.

Z(η)(t + 1|t) =



√
(x(η)(t + 1|t)− x0)

2
+ (y(η)(t + 1|t)− y0)

2√
(x(η)(t + 1|t)− x2)

2
+ (y(η)(t + 1|t)− y2)

2

...√
(x(η)(t + 1|t)− xj)

2
+ (y(η)(t + 1|t)− yj)

2

 (29)

where x(η)(t + 1|t) and y(η)(t + 1|t) are calculated in X(η)(t + 1|t).
(6) Weighting sigma point sets, getting predicted observation value, and corresponding

covariance matrix.
∧
Z(t + 1|t) =

2β

∑
η=0

w(η)Z(η)(t + 1|t) (30)

φztzt =
2β

∑
η=0

w(η)[Z(η)(t + 1|t)−
∧
Z(t + 1|t)][Z(η)(t + 1|t)−

∧
Z(t + 1|t)]

T
+ R (31)

φxtzt =
2β

∑
η=0

w(η)[X(η)(t + 1|t)−
∧
Z(t + 1|t)][X(η)(t + 1|t)−

∧
Z(t + 1|t)]

T
+ R (32)

where φztzt is the covariance matrix calculated by
∧
Z(t + 1|t) and Z(η)(t + 1|t), and φxtzt is the

covariance matrix calculated by
∧
Z(t + 1|t) and X(η)(t + 1|t).
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(7) Calculating the Kalman gain.
K(t + 1) = φxtzt φztzt

−1 (33)

(8) System status and covariance updating.

∧
X(t + 1|t + 1) =

∧
X(t + 1|t) + K(t + 1)[Z(t + 1)−

∧
Z(t + 1|t)] (34)

φ(t + 1|t + 1) = φ(t + 1|t)−K(t + 1)φztzt K
T(t + 1) (35)

The state equation describes the recursive relationship between input and output. The location
updating equation for multiple sensors is used as the state equation. Compared with the 3 Hz sampling
rate of Wi-Fi FTM, multi-sensor-based dead reckoning has better timing recursion because of much
higher sampling rate of 50 Hz, which could be used as the state equation. The distance estimated
by the Wi-Fi FTM-based ranging model is obtained as the observation. There is no cumulative error
in the process of Wi-Fi FTM, so the estimation distance between the mobile terminal and each Wi-Fi
AP can be used as the observed value. What one has to be aware of is that the UKF can only solve
the random error, which could be seen as the Gaussian noise. In this paper, the Wi-Fi ranging model
can effectively reduce the initial clock error, NLOS, and multipath effect, while random error—which
is defined in Equation (10)—is added in the UKF model. Based on the covariance in the Unscented
Kalman filter, this paper can obtain the corresponding weight of the Wi-Fi ranging model and the
multi-sensor estimation and go on to get the most optimal position estimation.

To summarize, the proposed UKF fuses the estimation results of the two methods. On the one
hand, the absolute position provided through the Wi-Fi FTM-based ranging model eliminates the
cumulative error caused by multiple sensors; on the other hand, the multi-sensor recursive results
for continuous trajectory reduce the effect of NLOS and multipath propagation caused by Wi-Fi FTM.
Hence, a more accurate localization result is provided through the Unscented Kalman filter.

5. Experimental Results of DRWMs

In this section, several experiments are designed to verify the multi-pattern-based PDR algorithm,
Wi-Fi FTM-based ranging model, and the proposed DRWMs algorithm. Two typical indoor
environments were selected as the experimental sites. One contained a rectangular office and a
long corridor; the other was part of a shopping mall. The Wi-Fi AP uses an Intel 8260 Wireless card
and an Ubuntu 16.04 LTS as hardware and software platforms, which were custom-made by this work.
A Google Pixel 3 was used as mobile terminal which supports Android P-based Wi-Fi FTM and can get
real-time RTT data from surrounding Wi-Fi Aps. In addition, the Google Pixel 3 contained the sensors
such as the accelerometer, gyroscope, and magnetometer. The sampling rates of the multi-sensor and
Wi-Fi FTM was 50 Hz and 3 Hz, based on Google Pixel 3. The real-time location information calculated
by UKF was acquired with frequency of 3 Hz. Timestamps within the multi-sensor method and Wi-Fi
FTM were synchronized based on the time when RTT data returned. ∆h was set to 2.5◦ to eliminate
the little heading jitter when walking. In the first experimental site, four APs were fixed on the stands
with a 1.5m height in different locations of a rectangular office which contains NLOS and multipath
propagation effects such as glass, partition shades, and a wall column. The tester could almost walk
through the location of each AP, which ensured that the RTT data could be received anywhere in the
office (12 m * 12 m). The position of each Wi-Fi AP is shown in Figure 7.
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5.1. Evaluation of Multi-Pattern-Based Dead Reckoning

The estimation of steps and step-length acquired by multiple sensors is the base of dead reckoning.
The analysis of step detection and step-length error of each walking pattern is shown in Tables 1 and 2.
Comparing the detected steps with the true steps, the error rate was no more than 8%. The error
of multi-pattern-based step-length was no more than 4.84% compared with the true distance. Thus,
the proposed multi-pattern-based step detection algorithm and the step-length model can obtain
accurate estimation results.

Table 1. Error of multi-pattern-based step detection.

Walking Pattern True Steps Detected Steps Misclassification Steps Error Rate

Forward 100 98 2 (Not detected) 2%
Backward 100 95 4 (Forward), 1(Not detected) 5%

Left Lateral 100 92 5 (Forward), 3(Not detected) 8%
Right Lateral 100 93 4 (Forward), 3(Not detected) 7%

Table 2. Error of multi-pattern-based step-length.

Walking Pattern True Distance/m Detected Distance/m Error Rate

Forward 50 48.62 2.76%
Backward 50 48.34 3.32%

Left Lateral 50 47.58 4.84%
Right Lateral 50 47.91 4.18%

The multi-pattern-based location updating algorithm can obtain real-time location information
when the pedestrian executes different walking patterns indoors. A traditional dead reckoning
algorithm can only be used in case of walking forward. In the case of walking backward, left lateral
walking, and right lateral walking, the multi-pattern-based location updating algorithm is used to
minimize the coordinate updating error due to the misjudgment of step detection. By using the
multi-pattern step detection algorithm, different walking patterns are detected and the corresponding
step length is calculated; then, location updating based on multiple walking patterns can effectively
reduce the cumulative error of dead reckoning.

The walking path is shown in Figure 8a. The pedestrian started from the position of AP1 (0,0),
walked forward to AP2 (0,10), right laterally walked to AP3 (10,10), walked backward to AP4 (10,0), and,
finally, left laterally walked to AP1. The step-length model in Equation (6) was used, and the output
frequency of location is 50 Hz was based on PDR only. In the traditional PDR method, the backward
and lateral walking patterns can only be detected as a forward walking pattern; thus, the forward
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walking pattern and mixed walking pattern are compared in this work. A set of forward walking
samples were collected with the same walking path for comparison. The positioning result is shown in
Figure 8b.
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In order to estimate the short-term accuracy of the multi-pattern-based PDR algorithm, 20 sets of
data were collected using the same walking route and corresponding pattern for testing the closed loop
accuracy of the multi-pattern-based PDR algorithm; a mean error of 1.95 m was gotten by calculating
the Euclidean distance from the end point to the starting point, as shown in Figure 9. The experimental
results show that the proposed multi-pattern-based PDR algorithm provided high accuracy among a
short time, and the single forward pattern had higher accuracy than the mixed pattern.
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5.2. Experiment Results of Wi-Fi FTM-Based Ranging Model

The process of Wi-Fi FTM is affected by clock deviation, NLOS, and multipath propagation.
The initial clock deviation can be estimated by the specific calibration method proposed in [14], and it
can then be calibrated on an Android P-based Google Pixel 3 by subtracting the initial clock deviation
from acquired RTT data. In case of NLOS and multipath propagation, a ranging model build in
Section 3 can be used to limit the measurement error of Wi-Fi FTM. The experimental site containing
a walking path is shown in Figure 8a, and the LS algorithm [27] was used to calculate the real-time
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location. In the case of using the LS algorithm without a ranging model, the acquired RTT data will be
affected by the ranging error mentioned above. In the case of using the LS algorithm with the ranging
model, the ranging error is decreased, and better localization performance is realized. The comparison
result is shown in Figure 10. The place marked by the triangle in Figure 10a is a pillar which could
causes NLOS distance.
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Figure 10. Estimation of Wi-Fi FTM-based ranging model.

In order to estimate the robustness of the proposed Wi-Fi ranging model in an LOS/NLOS mixed
environment, 20 sets of data were collected using the same walking route in Figure 8a. Due to the
occlusion of the pillar shown in Figure 7, the acquired RTT data at location of AP3 always contained
effects of NLOS, while the locations of AP1, AP2, and AP4 did not. Figure 10b gives a comparison of
the presence or absence of the Wi-Fi ranging model using the LS algorithm. The positioning error at
each location of each AP was calculated by Euclidean distance. It can be found in Figure 10b that the
proposed Wi-Fi ranging model effectively improves the accuracy of Wi-Fi ranging result, especially
when there are obstacles blocking in the transmission path of the Wi-Fi signal. Thus, the NLOS-based
error is effectively eliminated by the proposed ranging model, which contributes to the improvement
of positioning accuracy.

5.3. Experiment Results of DRWMs Algorithm

Section 5.1 presented the accuracy of the multi-pattern-based PDR algorithm in a relatively
short time. However, the PDR-based algorithm is not suitable for long-term localization due to the
cumulative error of heading, step-length, and the location updating method. The Wi-Fi FTM-based
positioning method has no cumulative error, but it is affected by NLOS and multipath propagation.
In this paper, a multi-pattern-based PDR algorithm is proposed to eliminate error of step detection and
location updating. Then a Wi-Fi FTM-based ranging model is established to minimize the ranging error
caused by clock deviation, NLOS, and multipath propagation. Based on these, DRWMs are proposed to
fuse the short-term accuracy of multi-pattern-based PDR and long-term accuracy of Wi-Fi ranging. In
order to estimate the long-term localization performance of proposed DRWMs, a rectangular room was
used as an experimental site, which is shown in Figure 7. The pedestrian started from the position of
AP1 (0,0), walked forward to AP2 (0,10), right laterally walked to AP3 (10,10), walked backward to AP4
(10,0), and finally left laterally walked to AP1. The walking path is shown in Figure 8a. This process
was continuously repeated 10 times to estimate the long-term accuracy of DRWMs compared with
multi-pattern-based PDR algorithm. All experimental processes were continuous and there was no
pause between walking procedure. The experimental result is shown in Figure 11.
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Figure 11. Comparison of multi-pattern-based pedestrian dead reckoning (PDR) and DRWMs.

In Figure 11, the proposed DRWMs algorithm, which is based on UKF, shows high accuracy and
stability compared with multi-pattern-based PDR using the proposed step detection and step-length
calculation method through long-term estimation. In the process of long-term measurements,
the step-length of the PDR method causes the error of the final localization performance. It is
foreseeable that with the duration of testing, the cumulative error caused by PDR method increases.
Using the DRWMs algorithm obviously improves the long-term accuracy. We recorded the real-time
locations when passing the reference point AP1 between the process of testing and got the comparison
of position error by calculating the Euclidean distance between the real-time location and the position
of the reference AP. Experimental results are shown in Figure 12.
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It can be found in Figure 12 that after a long period of continuous testing, the error of PDR-based
method begins increasing while the proposed DRWMs algorithm maintains high precision.

In order to estimate the expandability and stability of the proposed DRWMs, a rectangular
office (12 m * 12 m) and a vertical corridor (45 m) was chosen as the first experimental site. The
pedestrian started from the position of AP1 (0,0), walked forward to AP2 (0,10), right laterally walked
to AP3 (10,10), walked backward to AP4 (10,0), left laterally walked to AP1, walked forward out of
the office, walked forward to AP6 (−34,−2), and finally returned to AP1—as shown in Figure 13.
When the corridor could be seen as the one-dimensional environment, just two APs (AP5 and AP6)
were available. Five APs (AP1, AP2, AP3, AP4, AP6) were chosen as reference points. 10 sets of data
were collected using the same walking route by different people, and the corresponding walking
patterns and positioning errors at each reference point are shown in Figure 14:
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Figure 14 shows that the maximum errors at each reference point are all within 2 m. This process
was repeated 10 times to estimate the long-term accuracy and stability of the proposed DRWMs.
All walking processes were continuous, and there was no pause between walking procedures. The
total distance of walking was about 760 m, which took 10 minutes. The real-time location was recorded
each time when passing the AP1, and the comparison of the position error was gotten by calculating
the Euclidean distance between the real-time location and reference AP. Experimental results are
shown in Figure 15.Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 22 
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Figure 15 suggests the high precision and stability of the proposed DRWMs algorithm compared
with the single multi-pattern-based PDR and Wi-Fi FTM-based ranging model.

Then, a shopping mall was chosen as the second experimental site. The dotted line in Figure 16a
indicates wooden shelf: The location of each AP shown in Figure 16a. The pedestrian started from
the position of A(18,0), walked forward to B(0,15) and C(0,−5), left laterally walked to D(8,−5),
walked backward to E(8,0), and then turned and right laterally walked to A(18,0). This process was
continuously repeated 10 times, and the point E was selected as the reference point. The total distance
of walking was about 780 m, which took 11 minutes. The real-time location was recorded each time
when passing point E, and the comparison of position error was gotten by calculating the Euclidean
distance between the real-time location and point E. Experimental results are shown in Figure 16b and
indicate a higher precision and stability of the proposed DRWMs algorithm compared with the single
multi-pattern-based PDR and Wi-Fi FTM-based ranging models.
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Thus, the proposed DRWMs combine the advantages of the PDR method and Wi-Fi FTM-based
ranging model and obtains more accurate location information. In general, the continuous
improvements of the algorithm increase the localization performance.

6. Conclusions

To improve the accuracy and stability of indoor localization, this paper proposed the DRWMs
algorithm, which is divided into three parts: (1) Multi-pattern-based dead reckoning via multiple
sensors; (2) Wi-Fi FTM-based ranging model; (3) integrated localization using UKF. The initial location
of UKF is provided by the LS method, and, then, dead reckoning begins. The step information
contains walking patterns, and step-length is detected and calculated by the time-domain features
of acceleration. The corresponding location updating algorithm takes different walking patterns
into consideration and improves the flexibility and precision of multi-sensor estimation. The Wi-Fi
FTM-based ranging model contains the effects of clock deviation, NLOS, and multipath propagation,
which can effectively reduce the Wi-Fi ranging error and provides better localization performance.
Finally, the multi-sensor estimation and Wi-Fi ranging model estimation are fused by UKF, and the
advantages of two methods are combined to obtain higher positioning accuracy. The experimental
results show that the proposed DRWMs algorithm achieves more precise and stable localization
performance and satisfies different walking modes and indoor environment requirements. The final
positioning error is within 2 m.

In the future, it is foreseen that the precise positioning results provided by Wi-Fi FTM and multiple
sensors can gain further improvement by fusing multiple sources of information estimated from Wi-Fi
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signal such as RSSI, AOA, and CSI. With more and more Wi-Fi chipsets in mobile devices supporting
large bandwidth transmission—up to 160 MHz or more—the precision of RTT ranging Wi-Fi FTM will
largely improve, which will be benefit to the high accuracy indoor localization.
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