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Abstract: Convolutional neural network (CNN) is well-known for its powerful capability on image
classification. In hyperspectral images (HSIs), fixed-size spatial window is generally used as
the input of CNN for pixel-wise classification. However, single fixed-size spatial architecture
hinders the excellent performance of CNN due to the neglect of various land-cover distributions
in HSIs. Moreover, insufficient samples in HSIs may cause the overfitting problem. To address
these problems, a novel divide-and-conquer dual-architecture CNN (DDCNN) method is proposed
for HSI classification. In DDCNN, a novel regional division strategy based on local and non-local
decisions is devised to distinguish homogeneous and heterogeneous regions. Then, for homogeneous
regions, a multi-scale CNN architecture with larger spatial window inputs is constructed to learn joint
spectral-spatial features. For heterogeneous regions, a fine-grained CNN architecture with smaller
spatial window inputs is constructed to learn hierarchical spectral features. Moreover, to alleviate the
problem of insufficient training samples, unlabeled samples with high confidences are pre-labeled
under adaptively spatial constraint. Experimental results on HSIs demonstrate that the proposed
method provides encouraging classification performance, especially region uniformity and edge
preservation with limited training samples.

Keywords: Hyperspectral image classification; divide-and-conquer; dual-architecture convolutional
neural network; homogeneous and heterogeneous regions; superpixel segmentation

1. Introduction

With the rapid development of hyperspectral sensors, hyperspectral remote sensing images
have become more available. Hyperspectral images (HSIs) often contain hundreds of narrow and
contiguous spectral bands in the same scene, with wavelengths spanning the visible to infrared
spectrum [1]. The detailed spectral information provided by hyperspectral sensors improves the
capacity to differentiate the interesting land-cover classes. It makes HSI classification one of the
most promising techniques in many practical applications, including agriculture [2], military [3],
astronomy [4], mineralogy [5], surveillance [6], and environmental sciences [7,8].

HSI classification involves two key aspects: feature extraction and classification. Feature extraction
is crucial in addressing the “Hughes phenomenon” [9] caused by high-dimensional spectral bands
of HSIs. In the early stage of HSI feature extraction, various spectral-based methods were proposed,
such as principal component analysis (PCA) [10,11], independent component analysis (ICA) [12,13],
manifold learning [14], sparse graph learning [15], and local Fisher's discriminant analysis (LFDA) [16].
These methods are implemented by transforming original high-dimensional data into an appropriate
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low-dimensional space. However, it is difficult to precisely distinguish different land-cover classes
only by spectral information. To address this issue, some researchers make use of spatial information
to extract features, such as Gabor filters [17], wavelets [18,19], extended morphological profiles [20],
morphological attribute profiles [21], and extended multi-attribute profiles (EMAPs) [22]. Besides,
multitask learning has powerful feature extraction ability due to its ability to incorporate shared
information across multiple tasks. In one study [23], the kernel low-rank multitask method is
proposed to capture multiple features from the 2-D variational mode decomposition domain for
multi-/hyperspectral image classification.

A series of representative machine learning-based classification methods are used as classifiers,
including k- nearest neighbors [24], logistic regression (LR) [25], extreme learning machine [26], sparse
representation-based classification [27–29], support vector machine (SVM) [30,31], etc. Among these
methods, SVM maximizes the margin among different classes in a kernel-induced feature space.
It achieves outstanding performance for HSI classification, especially with small-sized training set.

The mentioned-above methods complete feature extraction and classification individually.
Besides, these methods adopt manually-extracted features, which involve massive effort in feature
engineering. In 2006, Geoffery Hinton proposed deep learning [32], and deep learning obtained
a great success in computer vision [33–37]. Compared with traditional methods, deep learning-based
methods extract hierarchical features and train the classifier simultaneously. Moreover, these deep
learning-based methods adopt two or more hidden layers to extract more abstract and invariant
features of data automatically.

A series of deep learning-based models have been introduced into the classification of HSIs. In one
study [38], the stacked autoencoder (SAE) was proposed to extract deep features from hierarchical
architecture. Subsequently, sparse SAE [39], denoising SAE [40], and Laplacian SAE [41] were
successively proposed. In another study [42], Chen et al. presented a deep belief network (DBN) by
learning the restricted Boltzmann machine network layer-by-layer. However, these methods cannot
make full use of spatial information, since flattening training samples destroys the spatial structure in
HSIs. Besides, there are so many parameters produced by full connection (FC) in these networks that
a large number of available training samples are required.

Compared with SAE and DBN, convolutional neural network (CNN) [33] exploits local
connections to effectively extract the spatial feature representation and shared weights to significantly
decrease the number of parameters. Inspired by these properties, a series of CNN methods [43–54]
have emerged for HSI classification. Hu et al. proposed a 1-dimensional (1D) CNN-based method
to learn hierarchical spectral features of HSIs [50]. Makantasis et al. combined randomized PCA and
CNN to encode spatial information of HSIs [51]. However, these two methods only exploit spectral
information or spatial information, respectively. Later, some joint spectral-spatial CNN-based methods
were proposed [48,51,52]. A dual-channel CNN (DCNN) was constructed to extract spectral and
spatial features by 1D-CNN and 2D-CNN separately, then extracted spectral and spatial features
were concatenated together [51]. Chen et al. presented another type of joint spatial-spectral feature
extraction, where a 3-dimensional (3D) CNN (3DCNN) model was adopted to extract spectral and
spatial information simultaneously [52]. However, the performance of these CNN methods depends
on the quantity of training samples greatly. Generally, the collection of training samples is difficult in
HSIs. Recently, Li et al. proposed a pixel-pair CNN (PPF-CNN) method by reorganizing and relabeling
existing training samples [53]. Besides, in several studies [55–57], tensor-based models significantly
reduced the number of weight parameters required to train the model via tensor decomposition.
When the number of training data is limited, tensor-based classification models can perform well.
Makantasis et al. proposed tensor-based linear and nonlinear models for HSI classification [55].
The data from all the sensors was fused into a tensor, and damage-sensitive features were extracted for
classification in tensor-based models [56]. Recently, some other deep learning models are introduced
for HIS [58,59]. A new fully CNN was proposed to extract the deep features of HSIs. Then, the
optimized extreme learning machine is used for classification [58].
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All the mentioned CNN-based methods [43–54] adopt a single fixed network structure for HSI
classification. The single network structure ignores the complex land-cover distributions of HSIs.
In heterogeneous regions, a large-sized spatial window input covers some samples coming from
different classes. These neighbor samples with different classes may lead to misclassification of samples
located around the boundaries. In this case, spectral information is mainly required for heterogeneous
regions. On the contrary, in homogeneous regions, neighbor samples have similar spectral signatures.
A small spatial window input may lack enough contextual information for classification. In this
case, spatial and spectral information are required to analyze homogeneous regions simultaneously.
Therefore, single fixed network structure may hinder the excellent performance of CNNs for HSI
pixel-wise classification.

To address this problem, a novel divide-and-conquer dual-architecture CNN (DDCNN) method
is designed for HSI classification. In DDCNN, a new regional division strategy based on local
and non-local decisions is devised to divide HSIs into homogeneous and heterogeneous regions,
respectively. The non-local decision is performed to search the superpixel-pair similarity in the whole
image, while the local decision is made by spatially adjacent samples in the superpixels. For the
homogeneous regions, larger-sized spatial windows are selected to extract adequately contextual
information. A multi-scale CNN architecture with larger spatial windows is constructed to learn
joint spectral-spatial features. For the heterogeneous regions, smaller spatial windows are selected
to guarantee the samples belonging to the same class. A fine-gained CNN architecture with smaller
spatial windows is constructed to learn hierarchical spectral features. Then, to alleviate the problem
of insufficient training samples, unlabeled samples are selected by measuring the spectral similarity
under adaptively spatial constraint. The samples with high confidences on the spectral similarity are
pre-labeled to expand the training set.

The main contributions of this paper can be summarized as follows. (1) A novel dual-architecture
CNN is designed instead of traditional single architecture considering various land-cover distributions
of HSIs. In DDCNN, a multi-scale CNN architecture is constructed to improve the uniformity
of homogeneous regions, and a fine-grained CNN architecture is constructed to avoid edge
over-smoothness. (2) Regional division method-based local and non-local decisions are designed
to divide the homogeneous and heterogeneous regions effectively, where superpixel-to-superpixel
similarity is utilized in the non-local searching. (3) DDCNN devises a new sample augmentation
method based on spectral similarity under adaptively spatial constraints, which alleviates the
over-fitting problem of CNNs caused by the imbalance between insufficient training samples and
numerous parameters.

The rest of this paper is organized as follows. Section 2 reviews the CNN briefly. Section 3
describes the procedure of the proposed DDCNN method in detail. Then, the experimental validation
and corresponding analysis on several hyperspectral datasets are discussed in Section 4. Finally,
some concluding remarks and suggestions are provided for further work in Section 5.

2. The Review of Convolutional Neural Networks

CNN, one of the deep leaning models, gains outstanding performance in computer vision tasks,
such as classification, detection, and recognition. The architecture of CNN is based on the inspirations
from neuroscience [60]. In the biological visual system, the cells in the cortex are sensitive to small
regions, known as receptive fields. The strong capability of cells within receptive fields is used to
exploit the local spatial correlation in images.

In contrast to other deep learning models, CNN possesses three core ideas: local connections,
shared weights, and pooling. Local connections can extract local spatial features effectively
corresponding to the receptive fields. Shared weight—that is, the connections between neurons—are
replicated across the entire layer, which can significantly reduce the parameters of deep networks.
Pooling is also known as downsampling, which extracts more robust features in the translation
and deformation.
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A traditional CNN is constructed by stacking several convolutional layers, pooling layers, and full
connection layers to form deep architecture, where the output of each layer is provided as the input of
the next layer. In the convolutional layer, the value of a neuron vxy

ij at position (x, y) of the jth feature
map in the ith layer is denoted as follows:

vxy
ij = g

(
bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

wpq
ijmv(x+p)(y+q)

(i−1)m

)
(1)

g(x) = ReLu(x) = max(x, 0) (2)

where m indexes the feature map in the i− 1th layer connected to the current feature map, wpq
ijm is the

weights of position (p, q) connected to the mth feature map, Pi and Qi are the height and width of the
spatial window, and bij is the bias of the jth feature map in the jth layer.

3. Divide-and-Conquer Dual-Architecture CNN(DDCNN)

The flowchart of the proposed DDCNN method is shown in Figure 1. As shown in Figure 1,
DDCNN consists of three stages: regional division with local and non-local decisions, dual-architecture
CNN-based classification, and data augmentation based on spectral similarity under adaptively spatial
constraint. A HSI dataset contains M training samples Xtrain = {x1, · · · , xm, · · · , xM} in an Rd×1

feature space, where d is the number of spectral bands, and 1 ≤ m ≤ M. The class label of training
samples is represented by Y= {y1, · · · , ym, · · · , yM}; ym ∈ {1, · · · , k, · · · , K}, where K is the number
of classes, and 1 ≤ k ≤ K. At the regional division stage, the HSIs are divided into homogeneous
and heterogeneous regions by using local and non-local decisions. Then, for the homogeneous
regions, a multi-scale CNN architecture with larger-sized spatial window inputs is constructed to learn
joint spectral-spatial features. For the heterogeneous regions, a fine-grained CNN architecture with
smaller-sized inputs is constructed to learn hierarchical spectral features. Moreover, unlabeled samples
with high confidences are selected to expand the training set by measuring the spectral similarity
under the adaptive spatial constraint.
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Figure 1. The flowchart of proposed divide-and-conquer dual-architecture convolutional neural
network (DDCNN).

3.1. Superpixel Segmentation Based on Entropy Rate

In the superpixel segmentation, the images are divided into many superpixels. Each of them
consists of spatially adjacent pixels with similar texture, color, brightness, or other characteristics [61].
Compared with pixel-based methods, superpixel-based methods utilize the spatial structure of the
images and show good regional uniformity.

In this paper, the entropy rate method [62] is adopted to generate a 2-D superpixel map in HSIs.
Compared with other superpixel segmentation methods, the entropy rate method is a graph-based
clustering algorithm. It favors compact and homogenous nonoverlapping clusters, and has a fast
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computation speed approximated as O(|V| log|V|), where V is the number of superpixels. More details
of the entropy rate algorithm can be found in [62]. As shown in Figure 2, the first principal component
of HSIs extracted by PCA is utilized as the base image for the superpixel segmentation. Then the
base image is divided into V superpixels with adaptive sizes and shapes, denoted as {π1, π2, · · · , πV}.
Each πv (1 ≤ v ≤ V) represents the vth superpixels. The segmentation result will be utilized in the
regional division and data augmentation methods.
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3.2. Regional Division with Local and Non-local Decisions

Most of CNN-based HSI classifications [43–48,50–52] are designed to exploit the spatial correlation
in the neighborhood around the central pixel. That is, hyperspectral neighboring pixels in a spatial
window are jointly represented by the CNN model for feature extraction. These CNN models
commonly adopt a fixed-size spatial window as the input for feature extraction (e.g., 5 × 5,
27 × 27, etc.). This type of input hinders the excellent performance of CNNs for HSI classification.
A large-sized spatial window input may include between-class samples in the heterogeneous
regions, and a small-sized input may lead to extracting insufficient contextual information in the
homogeneous regions.

Figure 3 illustrates an example for these two situations. In Figure 3, i and j are two samples in
the HSIs. These two samples locate in the homogeneous and heterogeneous regions, respectively.
Both them belong to the “GREEN” class. For the sample i, a larger spatial window (i.e., black box)
contains some samples belonging to “BLUE”, “PURPLE”, and “YELLOW” classes instead of “GREEN”
class. In this case, the sample i may be easily misclassified as the “BLUE”, “PURPLE”, or “YELLOW”
class. If a smaller spatial window (i.e., red box) is selected, all the samples in the window belong to
the “GREEN” class. For the sample j, all the samples in both larger and smaller spatial windows (i.e.,
black and red boxes) belong to the “GREEN” class. In the case, a larger spatial widow contains more
adequately contextual information for feature extraction.

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 28 

 

In the superpixel segmentation, the images are divided into many superpixels. Each of them 

consists of spatially adjacent pixels with similar texture, color, brightness, or other characteristics 

[61]. Compared with pixel-based methods, superpixel-based methods utilize the spatial structure of 

the images and show good regional uniformity. 

In this paper, the entropy rate method [62] is adopted to generate a 2-D superpixel map in HSIs. 

Compared with other superpixel segmentation methods, the entropy rate method is a graph-based 

clustering algorithm. It favors compact and homogenous nonoverlapping clusters, and has a fast 

computation speed approximated as ( )logO V V , where V  is the number of superpixels. More 

details of the entropy rate algorithm can be found in [62]. As shown in Figure 2, the first principal 

component of HSIs extracted by PCA is utilized as the base image for the superpixel segmentation. 

Then the base image is divided into V superpixels with adaptive sizes and shapes, denoted as 

1 2{ , , , }V   . Each (1 )v v V    represents the v th superpixels. The segmentation result will be 

utilized in the regional division and data augmentation methods. 

3.2. Regional Division with Local and Non-local Decisions 

Most of CNN-based HSI classifications [43–48,50–52] are designed to exploit the spatial 

correlation in the neighborhood around the central pixel. That is, hyperspectral neighboring pixels 

in a spatial window are jointly represented by the CNN model for feature extraction. These CNN 

models commonly adopt a fixed-size spatial window as the input for feature extraction (e.g., 5 × 5, 27 

× 27, etc.). This type of input hinders the excellent performance of CNNs for HSI classification. A 

large-sized spatial window input may include between-class samples in the heterogeneous regions, 

and a small-sized input may lead to extracting insufficient contextual information in the 

homogeneous regions.  

i

j

i

j

i

j

i

j

 

Figure 3. Illustration of samples in the homogeneous and heterogeneous regions. 

Figure 3 illustrates an example for these two situations. In Figure 3, i and j are two samples in 

the HSIs. These two samples locate in the homogeneous and heterogeneous regions, respectively. 

Both them belong to the “GREEN” class. For the sample i, a larger spatial window (i.e., black box) 

contains some samples belonging to “BLUE”, “PURPLE”, and “YELLOW” classes instead of 

“GREEN” class. In this case, the sample i may be easily misclassified as the “BLUE”, “PURPLE”, or 

“YELLOW” class. If a smaller spatial window (i.e., red box) is selected, all the samples in the 

window belong to the “GREEN” class. For the sample j, all the samples in both larger and smaller 

spatial windows (i.e., black and red boxes) belong to the “GREEN” class. In the case, a larger spatial 

widow contains more adequately contextual information for feature extraction. 

To deal with these two situations, novel regional division method-based local and non-local 

decisions are designed to divide the HSIs into homogeneous and heterogeneous regions, where 

different CNN architectures are designed for homogeneous and heterogeneous regions, 

respectively. The divide and conquer strategy with homogeneous and heterogeneous regions is 

inspired by a visual attention-based model. Doulamis et al. proposed a fuzzy representation of 

video content [63]. The divide and conquer concept was first proposed in the multiresolution 

Figure 3. Illustration of samples in the homogeneous and heterogeneous regions.

To deal with these two situations, novel regional division method-based local and non-local
decisions are designed to divide the HSIs into homogeneous and heterogeneous regions,
where different CNN architectures are designed for homogeneous and heterogeneous regions,
respectively. The divide and conquer strategy with homogeneous and heterogeneous regions is
inspired by a visual attention-based model. Doulamis et al. proposed a fuzzy representation
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of video content [63]. The divide and conquer concept was first proposed in the multiresolution
recursive shortest spanning tree algorithm for video summarization and content-based retrieval [63].
Then, a neural network based scheme was used to select adaptive regions of interest (ROI) [64].
Then, a ROI-based motion-compensated discrete consine transform coder was proposed to extract
foreground objects from background in videophones. Derived from the pioneering work on ROI [64],
a neurobiological model of visual attention was proposed for video compression [65]. Later, visual
attention based model was introduced into hyperspectral image processing [66,67].

(1) Regional Division with Local Decision: In the local decision, entropy rate-based superpixel
segmentation is used to generate some homogeneous superpixels. Similar to the masking of edge
detection, we choose a square frame (e.g., 3 × 3, 5 × 5) as the filter. If all the samples in the
filter are within the same superpixel, the central sample is judged to be in the homogeneous
regions. If these samples are divided into multiple superpixels, the central sample is located in
the heterogeneous regions of the superpixel segmentation map. Actually, since the superpixel
segmentation over-segments the HSIs, the central sample may be uncertain in the ground truth.
It may belong to either the homogeneous or heterogeneous region.

Figure 4 illustrates the local regional division based on superpixel segmentation. Take the Indian
Pines HSI as an example. Figure 4a shows the ground truth of the Indian Pines HSI. Figure 4b shows
the results of entropy rate-based superpixel segmentation on the Indian Pines HSI. The samples i, j,
and k represent the central samples located in the different regions. Figure 4c–e corresponds to the
filters of the samples i, j, and k. In Figure 4d, since all neighbor samples in the filter belong to the
same superpixel, the central sample i is judged to be in the homogeneous regions. In Figure 4c,e,
the neighbor samples of the central samples j and k in the filters come from different superpixels. In the
superpixel-based local decision, both sample j and k are judged to be in the heterogeneous regions.
Actually, the sample k is located at the boundary area of superpixel segmentation map in Figure 4b
rather than that of ground truth in Figure 4a. This is the “false boundary” phenomenon caused by
the superpixel segmentation map. In the superpixel segmentation map, the samples belonging to the
same class may be divided into several superpixels.
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(b) superpixel segmentation map; (c) the filter of samples in the homogeneous region; (d) the filter of
samples in the heterogeneous region; (e) the filter of samples in the “false boundary”.

Let xi be a central sample and Ni be the filter of xi. If all the neighbor samples belong to the
same superpixel πv, the central sample xi is judged to be in the homogeneous regions, and vice versa.
The regional division based on local decision is formulated as follows:

xi ∈
{

XHo if Ni ⊆ πv(xi)

X′He else
(3)
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where πv(xi) denotes the superpixel that the sample xi belongs to. XHo represents the sample set in the
homogeneous regions, and X′He represents the sample set in the heterogeneous regions of superpixel
segmentation map.

(2) Regional Division with Non-Local Decision: To alleviate the misdivision caused by the
false boundary, a novel regional division based on non-local decisions is devised. In the HSIs,
local information is used on the assumption that the samples in a local region belong to the same class.
However, non-local information is also vital for HSI classification [68,69], since the samples belonging
to the same class may be located in different regions.

In the non-local decision, pixel-similarity is extended to superpixel-similarity, which considers
the structural information of current samples. For the samples judged in the heterogeneous regions
by local decisions, the similarities of the neighbor samples and the current sample are calculated,
where the current sample is represented by the samples with the same class in the global searching.
Then, the similarities are compared with a calculated adaptive threshold. If the similarities of all the
neighbors are larger than the threshold, the current sample is judged to be in the homogeneous region,
and vice versa.

Let xi represent a sample judged in heterogeneous regions by local decision, denoted as xi ∈ X′He.

The filter Ni corresponding to xi is divided into Li small patches Ni =
Li
∑

l=1
Nil . The similarities of

the neighbor samples and the current sample are calculated by superpixel-to-superpixel similarity
SS
(
πv(xi), πv

′(Nil
))

. π′v
(

Nil
)
, which represents the superpixel π′v containing the sample set Nil . If all

the similarities are larger than the threshold Tk of the kth category, the sample xi is judged to be in the
homogeneous regions, and vice versa. Tk is a set as the minimum superpixel-based similarity of the
samples in the kth category. If xi is the unlabeled sample, k is set as the label of the training samples
with most similarity. The regional division with non-local decisions is defined as follows:

xi ∈
{

XHo if SS
(
πv(xi), π′v

(
Nil
))
≥ Tk, 1 ≤ il ≤ Li

XHe else
Tk = min

{
SS
(
πv(xi), π′v

(
xj
))∣∣xi, xj ∈ ψk

} (4)

where xj is the sample in the kth category, and π′v
(
xj
)

represents the superpixel correspond the sample
xj; ψk is the set of training samples in the kth category.

To measure the similarity of two superpixels, the average pooling strategy is applied to exploit
the most significant information of superpixels. The similarity of two superpixels is calculated as:

SS(πv
(

xp
)
, π′v
(

xq
)
) = S

 1
|πv| ∑

xp∈πv

xp,
1
|π′v|

∑
xq∈π′v

xq

 (5)

where πv
(

xp
)

and π′v
(

xq
)

represent two different superpixels corresponding to the samples xp an xq,

respectively. The similarity measure is calculated by the heat kernel S(x, x′) = exp
(
− ‖x−x′‖2

δ2

)
.

Combining the local and global decisions (3) and (4), the sample is divided into homogeneous
and heterogeneous regions according to (6):

xi ∈
{

XHo if Ni ⊆ πv(xi) or SS
(
πv(xi), π′v

(
Nil
))
≥ Tk

XHe else
Tk = min

{
SS
(
πv(xi), π′v

(
xj
))∣∣xi, xj ∈ ψk

} (6)

where XHe is the set of samples in the heterogeneous regions.
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3.3. Multi-Scale CNN Architecture

In the HSIs, the spectral signatures of samples in the same class may be different due to varied
imaging conditions, e.g., changes in illumination, various environments, different atmospheric
conditions, and temporal conditions. Therefore, spatial contexture information is critical for HSI
classification. For the samples in the homogenous regions, a multi-scale CNN architecture with
larger-sized spatial window inputs is constructed to extract joint spatial and spectral features.
The multi-scale convolution consists of 1 × 1, 3 × 3, and 5 × 5 convolutional filters, where a 1 × 1
convolutional filter is used to extract spectral features, while 3 × 3 and 5 × 5 filters are utilized to
extract various spatial contextual features.

In the multi-scale CNN architecture, a multi-scale convolutional filter is inspired by the Inception
module [35]. The Inception module is used to exploit diverse local spatial structures of the input
image, which enables the network to get deeper and wider and achieves state-of-the-art performance
in image classification. The effectiveness of the inception module has been demonstrated in the large
scale visual recognition challenge (LSVRC) 2014 [35]. The multi-scale convolutional filter is used to
extract joint spectral-spatial features for HSI classification in this paper.

The architecture of multi-scale CNN network is shown in Figure 5. The input of multi-scale CNN
architecture is larger-sized spatial windows with several principle components of PCA. A multi-scale
filter is used in the first convolutional layer to jointly extract spatial structure and spectral correlation.
Three feature maps are employed to perform cascade connection to form a joint spectral-spatial feature
map. Subsequently, three convolutional layers are stacked one by one to extract hierarchical abstract
features of HSIs. Then the extracted feature maps are flattened to a one-dimensional vector used as
the input to two full connection layers. Finally, the extracted features are fed into the last soft-max
classification layer.
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In this model, some regularization methods, data augmentation, dropout, early stop, and batch
normalization (BN) are introduced to alleviate the over-fitting problem of CNNs. A new sample
augmentation method is devised by pre-labeling the unlabeled samples based on spectral similarity
under adaptive spatial constraint. Dropout is used in the second and third convolutional layers by
preventing complex co-adaptations. It is used as the regularization technique to relieve the over-fitting
problem. Early stop relieves the over-fitting problem by limiting the number of iterations. In addition,
batch normalization is used in all the convolutional layers to accelerate the training of networks and
reduce the internal covariate shift [70].

3.4. Fine-Grained CNN Architecture

For the samples in the heterogeneous regions, the spatial information is hard to use due to
the distribution of different land-cover classes. The distinction for these samples mainly depends on
hundreds of contiguous and narrow spectral bands. For these samples, a fine-grained CNN architecture
with smaller-sized spatial window inputs is constructed to extract spectral information, where 1 × 1
convolution is used in all the convolutional layers.
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The architecture of the fine-grained CNN network is shown in Figure 6. In the fine-grained
CNN network, all the spectral bands are retained. The input of fine-grained CNN architecture is
smaller-sized spatial windows with all the spectral bands. The 1 × 1 convolution is used in all the four
convolutional layers. The 1 × 1 convolutional filter is proposed in Network In Network (NIN) [71],
which allows complex and learnable interactions of cross channel information. Furthermore, it is also
used to adjust the dimensionality of the feature maps. Here, 1 × 1 convolution is used to learn spectral
correlations in the proposed network. Two full connection layers are stacked one by one after the
convolutional layers. Finally, the extracted spectral features are fed into the soft-max classification
layer. Similar to multi-scale CNN architecture, BN and dropout are used in the same position.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 28 
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3.5. Data Augmentation Based on Spectral Similarity under the Adaptively Spatial Constraint

Deep learning models depend on a large quantity of training data due to the models being heavily
parameterized. However, only limited training samples are available in HSI data. The CNN model
tends to be over-fitting for HSI classification. To conquer this issue, a novel data augmentation method
based on spectral similarity under adaptive spatial constraint is devised.

In the data augmentation method, superpixels with adaptive sizes and shapes are used for
the spatial constraint. In the spatial constraint, unlabeled samples located in the same superpixel
with training samples are considered as candidates. Then, unlabeled candidate samples with high
confidence, which have the most spectral similarity with training samples, are selected. Finally,
these selected unlabeled samples are pre-labeled as the same class with training samples, which are
used to expand the training set.

Specifically, xu denotes a current unlabeled sample, and πv(xu) represents the superpixel where
the sample xu is located. For all the training samples {xm|xm ∈ πv } in the superpixel πv, the similarities
of current unlabeled sample xu and all the training samples {xm|xm ∈ πi } are calculated. Then,
the similarities are compared with a calculated threshold Tπv , which is calculated by any two training
samples in the superpixel πv. If all the similarities are larger than the threshold, the current unlabeled
sample is selected, and vice versa. The selected unlabeled samples are pre-labeled as the same label as
the training samples {xm|xm ∈ πv }, which is formulated as (7). These pre-labeled samples are used to
expand the training set.

yu =

{
argmax

k
∑

xm∈πv
I(ym = k) if min{S(xu, xm)|xu, xm ∈ πv } ≥ Tπv

0 else
Tπv = min{S(xm, xn)|xm, xn ∈ πv, 1 ≤ m, n ≤ M , m 6= n}

(7)

where I(·) is the indictor function, and yu = 0 represents that the unlabeled sample yu, it is not selected
to expand the training set.
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3.6. The Procedure of DDCNN

The proposed DDCNN method uses the divide-and-conquer strategy to break the HSI
classification into pixel-wise classification based on homogeneous and heterogeneous regions. Then,
we solve the classification problems by two well-designed CNN networks separately and combine
these solutions with the original classification problem. The proposed DDCNN method guarantees
regional uniformity for homogeneous regions and edge preservation for heterogeneous regions of
HSIs simultaneously. The procedure of DDCNN can be summarized in Table 1.

Table 1. The procedure of the proposed DDCNN method.

1. INPUT: The training samples Xtrain and test samples Xtest from K classes, the class labels of training
samples, mini-batch size n, the number of training epochs E

2. Begin
3. Segment the whole HSI into V superpixels {π1, π2, · · · , πV}
4. The training samples Xtrain are expanded to new training samples X′train by (7)
5. Training samples X′train are divided into XtrainHo and XtrainHe, and test samples Xtest are divided into

XtestHo and XtestHe by (6)
6. initialize all the weight matrices and biases
7. Input the training samples XtrainHo
8. for every epoch
9. for n training sample of every mini-batch
10. compute the objective function lHo by the cross-entropy loss function
11. update the parameters of the multi-scale CNN by minimizing loss function
12. end for
13. end for
14. Input the training samples XtrainHe
15. for every epoch
16. for n training sample of every mini-batch
17. compute the objective function lHe by the cross-entropy loss function
18. update the parameters of the multi-scale CNN by minimizing loss function
19. end for
20. end for
21. Count the labels Ytest by YtestHo and YtestHe
22. END
23. OUTPUT: the labels of the test samples classified by the trained DDCNN

4. Experimental Results

In this section, we validate the proposed DDCNN method on three benchmark HSI datasets.
We investigate the performance of the proposed method from the following aspects: classification
performance, running time, sensitivity analysis to the number of training samples, and sensitivity
analysis of free parameters.

4.1. Data Description

In this study, we adopt three HSI datasets for the experiment: the Indian Pines, Pavia University,
and Salinas.

(1) The Indian Pines dataset is a mixed vegetation site over the Indian Pines test area in
Northwestern India. It was acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor, with the size of 145 × 145 pixels. There are 220 spectral bands in the wavelenth range of
0.4–2.5 µm in the visible and infrared spectrum. However, 200 spectral bands are preserved after 20
lower signal-to-noise ratio bands being diacarded. The dataset contains 16 different land-cover classes.
The false-color composite image (bands 50, 27, 17) is shown in Figure 7a.

(2) The Pavia University dataset was gathered by the Reflective Optics System Imaging
Spectrometer (ROSIS-3) sensor in an urban site over the city of Pavia, Italy. There are 610 × 340
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pixels and 103 spectral bands after 20 water absorption bands beingremoved. The ROSIS tensor
generates the spectral bands in the wavelength ranging from 0.43µm to 0.86µm. There are 9 different
land-cover classes, and the false-color image (bands 53, 31, 8) is shown in Figure 7b.

(3) The Salinas dataset was collected by the AVIRIS sensor over Salinas Valley, California.
The dataset comprises 512 × 217 pixels. It has the spatial resolution of 3.7m per pixel. The sensor
system generates 224 bands in wavelength range of 0.4–2.5µm. In the experiments, 204 bands are
preserved after 20 water absorption bands being omitted. The image contains 16 classes. The false-color
composite image (bands 50, 170, 190) is shown in Figure 7c.
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4.2. Experimental Setting

The performance of the proposed DDCNN method is compared with some state-of-the-art
HSI classification approaches, which includes five representative deep learning-based methods,
SAE [39], DBN [42], CNN [49], PPF-CNN [53], 3D-CNN [52], and a classical SVM method with
radial basis function (RBF-SVM) [30]. The classification performance of all the methods is measured by
three common measurements: overall accuracy (OA), average accuracy (AA), and kappa coefficient
(Kappa) [72]. The experiments are impemented over 20 independent runs with a random division of
training and test sets. The average classification accuracy and the corresponding standard deviation
over 20 independent runs are calucated. When the training samples change by using the random
selection, the sample augmentation, regional division, and DDCNN model are affected. In this way,
the robustness of the proposed method is validated. All the experiments are carried out using Python
language and TensorFlow [73] library on a NVIDIA 1080Ti graphics card. TensorFlow is an open
source software library for numerical computation using data flow graphs.

For RBF-SVM, one-against-all strategy is used to deal with multi-classification. The penalty and
gamma parameters in RBF-SVM are determined by five-fold cross validation. For SAE and DBN,
the radius of the spatial neighborhood window is set as 7. As suggested by the literature [49], the input
of the spatail window is set as 5 × 5. For PPF-CNN, the size of block window of neighboring pixels is
set to the default value in [53]. For 3DCNN, the spatial window size of 3-D input is resized to 27 × 27
× 100 [52]. For DDCNN, the size of spatial window for dual architecture network will be investigated
in the next subsection.

Besides, there are also several important parameters in the deep learning models, such as learning
rate, epochs, and the number of layers. For the learning rate, we set all the models as 0.01. For the
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epochs, SAE, DBN, CNN, and DDCNN are trained with 1000 epochs. We train PPF-CNN with 300
epochs while we train 3DCNN with 500 epochs. SAE and DBN consist of 4 hidden layers. CNN,
3DCNN, and DDCNN include 3 convolutional layers and 2 full connection layers, while PPF-CNN
consists of 8 convolutional layers and 2 full connection layers.

4.3. Classification Results of Hyperspectral Datasets

(1) Classification Results of the Indian Pines Dataset: The Indian Pines dataset is randomly divided
into 5% training set and 95% test set. The numbers of training and test samples for each class are
listed in Table 2. Table 3 records the class-specific accuracy, overall accuracy (OA), average accuracy
(AA), and Kappa of all seven methods. The best classification results in the seven algorithms are
emphasized in gray regions. Compared with RBF-SVM, deep learning-based methods SAE, DBN,
CNN, PPF-CNN, 3DCNN, and DDCNN obtain better classification results due to hierarchical nonlinear
feature extraction. Compared with SAE and DBN, CNN, PPF-CNN, 3DCNN, and DDCNN are superior
by making full use of the spatial information in HSI. Among the seven methods, DDCNN achieves
the best classification results in the majority of classes due to the power feature extraction capability
of dual-architecture CNN for various land-cover distributions. Furthermore, DDCNN improves the
classification performance more than the best baseline by 4.1% in the OA index, 7.2% in the AA index,
and 4.4% in the Kappa index.

Figure 8 shows the classification maps of the seven algorithms on the Indian Pines dataset.
As shown in Figure 8b–d,f, there are massive noisy scattered points in SVM, SAE, DBN, and PPF-CNN,
especially in the corn-notill, corn-mintill, soybean-notill, and soybean-mintill classes. Compared
with these methods, CNN, 3DCNN, and DDCNN improve the region uniformity significantly.
Howerer, edge over-smoothness occurs in the visual maps of CNN and 3DCNN. Compared
with CNN and 3DCNN, DDCNN obtains better boundary localization of the soybean-notill and
soybean-mintill classes.

Table 2. The 16 Classes of the Indian Pines dataset and the numbers of training and test samples for
each class.

Class Number of Samples

No Name Training Test

1 Alfalfa 2 42
2 Corn-notill 71 1286
3 Corn-mintill 42 746
4 Corn 12 213
5 Grass-pasture 24 435
6 Grass-trees 36 658
7 Grass-pasture-mowed 1 26
8 Hay-windrowed 24 430
9 Oats 1 18
10 Soybean-notill 49 874
11 Soybean-mintill 123 2209
12 Soybean-clean 30 533
13 Wheat 10 185
14 Woods 63 1139
15 Buildings-Grass-Trees-Drives 19 348
16 Stone-Steel-Towers 5 83

Total 512 9225
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Table 3. Classification results of RBF-SVM, SAE, DBN, CNN, PPF-CNN, 3DCNN, and DDCNN on the
Indian Pines dataset.

Class RBF-SVM SAE DBN CNN PPF-CNN 3DCNN DDCNN
1 6.1±11.2 10.0±6.4 13.6±5.6 78.4±10.2 50.4±8.4 83.8±13.4 99.3±1.6
2 72.9±3.6 79.7±2.3 79.8±2.9 75.4±2.4 89.2±2.1 92.7±3.5 94.3±2.5
3 58.0±3.6 74.9±4.8 70.5±2.2 82.8±3.3 77.1±2.7 87.2±10.4 99.0±0.8
4 39.0±15.0 62.8±8.3 71.3±6.6 89.2±3.5 87.7±3.7 83.4±8.3 95.0±3.3
5 87.0±4.5 84.2±3.3 80.1±4.1 69.0±4.6 92.7±1.0 84.0±5.7 92.7±2.8
6 92.4±2.0 94.3±1.7 94.2±2.4 92.8±2.5 93.1±1.9 93.4±2.5 98.8±0.8
7 0±0 24.4±18.8 28.1±22.6 51.1±12.3 0±0 97.2±4.8 100.0±0.0
8 98.1±1.4 98.8±0.4 98.5±1.5 97.1±1.6 99.6±0.3 97.4±2.8 99.8±0.6
9 0±0 11.1±10.1 9.5±2.4 41.6±9.9 0±0 77.0±11.1 97.8±5.4
10 65.8±3.7 73.6±3.8 73.2±4.7 81.0±2.6 85.6±2.8 93.3±5.0 93.8±1.2
11 85.3±2.9 83.4±2.0 82.7±2.2 87.2±1.5 83.8±1.6 94.9±2.7 98.1±1.3
12 69.6±6.5 70.4±8.0 62.0±5.8 84.4±2.3 90.4±3.1 89.8±4.3 94.4±2.5
13 92.3±4.1 94.2±4.3 89.7±10.6 83.1±4.2 97.8±0.9 92.8±5.9 99.9±0.2
14 96.6±1.0 94.2±1.5 94.4±1.6 98.2±0.8 95.5±1.1 98.3±1.3 99.5±0.4
15 41.7±7.0 66.1±5.6 64.2±6.5 84.7±4.5 78.0±2.4 77.8±13.4 95.7±2.6
16 75.2±9.0 87.6±8.1 80.5±13.2 76.0±8.1 97.3±1.3 88.4±5.3 89.7±9.4

OA (%) 77.8±0.8 81.9±0.1 80.6±0.1 85.4±0.8 87.9±0.8 92.8±0.8 96.9±0.6
AA (%) 61.3±1.4 69.4±1.9 68.3±1.7 79.4±1.6 76.5±0.6 89.4±1.4 96.6±0.7

Kappa (%) 74.5±1.0 79.3±1.1 77.8±1.3 84.3±2.9 86.3±0.9 91.9±0.9 96.3±0.8
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(2) Classification results of the Pavia University dataset: The Pavia University dataset is randomly
divided into a 3% training set and 97% test set. The numbers of training and test samples for each class
are listed in Table 4. Table 5 records the classification results for the Pavia University dataset.
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Table 4. 9 Classes of the Pavia University dataset and the numbers of training and test samples for
each class.

Class Number of Samples

No Name Training Test

1 Asphalt 199 6233
2 Meadows 559 17531
3 Gravel 63 1973
4 Trees 92 2880
5 Painted metal sheets 40 1265
6 Bare Soil 151 4727
7 Bitumen 40 1250
8 Self-Blocking Bricks 110 3462
9 Shadows 28 891

Total 1282 40212

Table 5. Classification results of RBF-SVM, SAE, DBN, CNN, PPF-CNN, 3DCNN, and DDCNN on the
Pavia University dataset.

Class RBF-SVM SAE DBN CNN PPF-CNN 3DCNN DDCNN
1 90.7±1.1 92.3±1.1 91.6±0.8 93.1±1.4 98.0±0.1 95.5±1.2 97.8±1.1
2 96.8±0.7 97.6±0.3 97.4±0.4 97.6±0.9 99.2±0.2 99.4±0..3 99.5±0.1
3 60.2±5.4 72.1±3.5 69.7±6.0 77.9±4.5 84.9±1.8 92.6±5.4 98.4±0.9
4 90.8±2.0 90.9±1.4 91.2±1.4 86.4±3.6 95.8±0.8 75.2±4.9 95.9±1.1
5 98.8±0.4 98.7±0.4 98.6±0.6 98.5±1.4 99.8±0.1 95.4±4.3 99.4±0.5
6 79.5±4.9 86.9±1.9 85.6±2.2 91.0±2.8 96.4±0.3 99.4±0.6 99.7±0.3
7 74.3±5.1 78.1±4.9 74.8±4.8 81.2±2.9 89.2±0.8 91.5±3.4 99.6±0.4
8 88.8±2.2 87.8±1.4 88.2±1.3 92.5±2.2 93.7±1.2 94.8±1.4 97.8±1.3
9 99.8±0.1 99.5±0.3 99.6±0.1 79.0±4.1 98.5±0.7 77.4±2.8 87.9±2.5

OA (%) 90.3±0.6 92.4±0.3 91.9±0.3 93.0±0.6 96.9±0.2 95.2±0.7 98.5±0.2
AA (%) 86.6±0.9 89.3±0.7 88.5±0.8 88.6±0.8 95.1±0.2 91.2±1.1 97.3±0.4

Kappa (%) 87.1±0.8 89.9±0.4 89.2±0.4 90.7±0.7 96.0±0.2 93.8±0.9 98.1±0.2

As shown in Table 5, compared with other methods, DDCNN gains a certain degree of
improvement in most classes, especially in the gravel and bitumen classes. DDCNN improves 38.2%
more than SVM in the gravel class, and improves 24.8% than DBN in the bitumen class. For all the
classes, the proposed DDCNN method improves by 8.2%, 6.1%, 6.6%, 5.5%, 1.6%, and 3.3% more
than the other six methods in the OA index.The visual classification maps of the Pavia University
dataset are shown in Figure 9. As shown in Figure 9b–f, many samples belonging to the bitumen class
are misclassified as the asphalt class because of similar spectral signatures. The proposed DDCNN
method provides a better distinction for these two classes. Besides, the samples in the gravel class are
misclassified as the class of the self-blocking bricks by SVM, SAE, and DBN, and as the class of the
asphalt by 3DCNN. Compared with them, DDCNN obtains better classification performance for the
gravel class. Compared with the other methods, DDCNN achieves better region uniformity in the bare
soil class, and obtains better boundary localization in the gravel and bitumen classes.

(3) Classification results of the Salinas dataset: The Salinas dataset is randomly divided into 1%
for training and 99% for testing. The numbers of training and test samples for each class are listed
in Table 6. The classifcation results of all seven algorithms on the Salinas dataset are summarized
in Table 7. It can be seen that many samples in the grapes_untrained and vinyard_untrained classes
are misclassified by RBF-SVM, SAE, DBN, CNN, and PPF-CNN. Compared with these methods,
DDCNN obviously improves the classification results. For the vinyard_untrained class, DDCNN
improves by 42.6%, 20.7%, 27.1%, 16.5%, and 23.7%. For the broccoli_green_weeds_1 class, DDCNN
achieves completely correct classification result. Among all the seven methods, DDCNN obtains the
best classification performance by OA=98.8%, AA=98.6%, and Kappa=98.6%.
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Figure 9. (a) Ground truth and (b–h) classification visual maps of the Pavia University dataset by
RBF-SVM, SAE, DBN, CNN, PPF-CNN, 3DCNN, and DDCNN, respectively.

Table 6. The 16 Classes of the Salinas dataset and the numbers of training and test samples for
each class.

Category Number of samples

No Name Training Test

1 Brocoli_green_weeds_1 20 1969
2 Brocoli_green_weeds_2 37 3652
3 Fallow 20 1936
4 Fallow_rough_plow 14 1366
5 Fallow_smooth 27 2624
6 Stubble 40 3879
7 Celery 36 3507
8 Grapes_untrained 113 11045
9 Soil_vinyard_develop 62 6079
10 Corn_senesced_green 33 3212
11 Lettuce_romaine_4wk 11 1046
12 Lettuce_romaine_5wk 19 1889
13 Lettuce_romaine_6wk 9 898
14 Lettuce_romaine_7wk 11 1048
15 Vinyard_untrained 73 7122
16 Vinyard_vertical 18 1771

Total 543 53043
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Table 7. Classification results of RBF-SVM, SAE, DBN, CNN, PPF-CNN, 3DCNN, and DDCNN on the
Salinas dataset.

Class RBF-SVM SAE DBN CNN PPF-CNN 3DCNN DDCNN
1 97.4±1.5 97.9±0.5 98.5±0.8 93.3±8.7 98.5±0.5 88.6±3.5 100.0±0.0
2 99.7±0.2 99.1±0.5 98.9±0.2 97.4±1.2 99.7±0.2 94.5±2.9 99.8±0.2
3 93.7±1.5 95.3±0.6 97.5±0.1 86.4±4.1 99.8±0.1 91.4±4.7 99.7±0.4
4 97.8±1.3 99.5±0.6 99.0±0.3 98.2±1.8 99.7±0.2 96.8±2.1 98.3±0.8
5 97.5±1.1 98.5±0.4 97.5±0.2 98.1±1.0 96.8±0.2 96.7±2.7 99.3±0.5
6 99.5±0.3 99.9±0.1 99.3±0.1 99.9±0.2 99.8±0.3 98.5±1.2 99.9±0.2
7 99.3±0.2 99.2±0.1 99.0±0.3 99.0±0.9 99.5±0.2 98.0±1.3 99.9±0.1
8 88.9±2.9 82.7±0.7 83.0±1.4 88.4±2.8 89.9±0.9 92.3±1.1 99.4±0.3
9 99.2±0.3 99.2±0.1 99.0±0.1 95.1±0.7 99.8±0.2 98.9±0.4 99.9±0.1

10 88.8±1.9 88.9±0.9 92.8±0.1 93.6±2.4 88.3±2.7 99.1±0.8 95.3±1.2
11 87.5±4.6 93.6±7.0 91.7±0.1 97.6±1.0 93.4±2.9 97.6±2.1 99.8±0.2
12 98.0±2.3 98.6±1.0 99.0±0.1 98.9±1.1 99.7±0.7 96.6±2.7 98.6±0.9
13 98.0±0.8 99.2±0.7 99.3±0.2 94.7±2.4 98.6±0.7 90.9±0.7 99.7±0.2
14 89.6±2.6 94.8±0.2 92.0±7.4 92.5±3.9 92.3±1.7 98.2±1.0 93.8±1.8
15 53.9±7.6 75.9±2.4 69.5±0.2 80.1±5.3 72.9±2.5 98.6±0.8 96.6±0.5
16 90.8±5.0 96.1±1.9 96.1±2.5 93.6±2.6 95.7±1.8 96.3±3.0 98.0±1.0

OA (%) 89.3±0.7 91.5±0.1 90.8±0.6 92.3±1.2 92.8±0.4 95.9±0.2 98.8±0.2
AA (%) 92.5±0.6 94.9±0.2 94.5±0.8 94.2±0.9 95.5±0.7 95.8±0.2 98.6±0.2

Kappa (%) 88.0±0.8 90.6±0.4 89.7±0.7 91.4±1.4 91.9±0.4 95.5±0.2 98.6±0.2

Figure 10 shows the classification visual maps of the seven algorithms on the Salinas dataset.
As shown in Figure 10b–f, many samples belonging to the grapes_untrained and vinyard_untrained
classes are confused by RBF-SVM, SAE, DBN, CNN, and PPF-CNN. Compared with them, 3DCNN
and DDCNN provide better distinction for these two classes. Compared with 3DCNN, DDCNN
obtains better boundary localization for these two classes.Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 28 
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4.4. Investigation on Running Time and Parameters

Tables 8–10 list the training and test times of the seven methods on the Indian Pines,
Pavia University, and Salinas datasets, respectively. Futhermore, the number of parameters involved
with the seven methods are listed. As shown in Tables 8–10, compared with RBF-SVM, six deep
learning-based methods, SAE, DBN, PPF-CNN, CNN, 3DCNN, and DDCNN, cost more training time
due to heavily parameterized models. Among all the comparison methods, 3DCNN costs lots of time
in the training process because three-dimensional convolution operation involves a large number of
parameters. PPF-CNN is time-consuming due to the expansion of a large number of training samples,
especially when the number of training samples is large. DDCNN involve two CNN architectures,
which cost more time than CNN but less time than 3DCNN and PPF-CNN. The number of parameters
for DDCNN is almost 376,000, where multi-scale CNN has nearly 347,000 paremeters and fine-grained
CNN has nearly 29,000 parameters. In the testing procedure, DDCNN is more time-consuming than
SAE, DBN, and CNN due to the computation burden in double CNN architectures. Compared with
PPF-CNN and 3D-CNN, DDCNN has obvious advantage because PPF-CNN uses the voting strategy
with the adjacent samples and 3D-CNN uses a complex 3D convolution operation. DDCNN costs 0.7s,
2.3s, and 4.7s on the Indian Pines, Pavia University, and Salinas datasets, respectively.

Table 8. Running time and Parameters of RBF-SVM, SAE, DBN, CNN, PPF-CNN, 3DCNN,
and DDCNN on the Indian Pines dataset.

Dataset Method Training Time (s) Test Time (s) Parameters

Indian Pines

RBF-SVM 0.4±0.1 1.2±0.1 200
SAE 76.3±8.4 0.2±0.1 26160
DBN 114.3±20.1 0.2±0.1 24060
CNN 220.7±27.9 0.5±0.1 81408

PPF-CNN 2056.0±36.7 5.3±0.3 61870
3DCNN 2690.2±57.9 16.0±0.1 44961792
DDCNN 587.2±22.7 0.7±0.1 376932
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Table 9. Running time and Parameters of RBF-SVM, SAE, DBN, CNN, PPF-CNN, 3DCNN,
and DDCNN on the Pavia University dataset.

Dataset Method Training Time (s) Test Time (s) Parameters

Pavia
University

RBF-SVM 0.5±0.1 3.5±0.1 200
SAE 82.2±5.3 0.3±0.1 19920
DBN 147.0±10.6 0.4±0.2 21420
CNN 371.8±15.3 1.2±0.1 61249

PPF-CNN 4367.9±29.5 7.2±0.4 61310
3DCNN 1979.0±12.6 31.4±5.5 5866224
DDCNN 682.1±10.6 2.3±0.1 375140

Table 10. Running time and Parameters of RBF-SVM, SAE, DBN, CNN, PPF-CNN, 3DCNN,
and DDCNN on the Salinas dataset.

Dataset Method Training Time (s) Test Time (s) Parameters

Salinas

RBF-SVM 0.4±0.1 2.7±0.1 204
SAE 70.1±2.4 0.6±0.1 26160
DBN 102.6±9.1 0.5±0.2 24060
CNN 165.1±2.1 0.7±0.1 82216

PPF-CNN 1940.1±17.4 64.6±1.5 61870
3DCNN 1157.7±25.7 28.1±0.4 5867520
DDCNN 657.2±20.6 4.7±0.2 376932

4.5. Sensitivity to the Number of Training Samples

Figure 11 shows the classification performance with different numbers of training samples.
The classification performance of deep learning-based methods depends on the number of training
samples greatly. Thus, it’s necessary to investigate the sensitivity to the number of training samples.
In the experiment, the number of training samples per class is changed from 1% to 9% with an interval
of 2% on the Indian Pines dataset, 1% to 5% with an interval of 1% on the Pavia University dataset,
and 1% to 3% with an interval of 0.5% on the Salinas dataset. Generally, deep learning-based methods
are usually heavily parameterized and a large number of training samples are required to guarantee
the performance. When the ratio of training samples is larger than 9% on the Indian Pines, 5% on the
Pavia University, and 3% on the Salinas, the training samples are sufficient to estimate the models.
CNN-based methods, CNN, PPF-CNN, 3DCNN, and DDCNN, perform better than the other three
methods. When the ratio of training samples decreases, the classification performance of all the seven
algorithms declines. In this case, deep learning-based methods SAE, DBN, and CNN have no obvious
advantage over RBF-SVM. Compared with them, 3D-CNN, PPF-CNN, and DDCNN show better
classification performance for the small-sized sample set. Among these methods, DDCNN consistently
provides superior performance with different ratios of training samples. DDCNN improves by at least
6.8%, 5.6%, and 2.9% on the Indian Pines, Pavia University, and Salinas datasets, respectively, when the
ratio of training sample is 1%. Thus, DDCNN is a better choice when the number of training samples
is limited.
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4.6. Comparison with Other Classification Techniques

Table 11 shows the classification results of different methods on three HSI datasets. RPCA-RNN
obtains better classification results than CNN because RPCA-RNN makes full use of spatial information.
Compared with CNN and RPCA-CNN, DCNN improves the classification performance by extracting
joint spatial-spectral features. Compared with RPCA-CNN and DCNN, DDCNN obtains better
classification results by using divide-and-conquer dual-architecture CNN and effective sample
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augmentation. It increases by 17.4% and 3.5% on the Indian Pines datasets, 19.7% and 7.1% on
the Pavia University dataset, and 7.1% and 4.3% on the Salinas dataset in terms of OA index.

Table 11. Classification results of CNN, RPCA-CNN, DCNN, and DDCNN on the Indian Pines, Pavia
University, and Salinas Datasets.

Data set Classification Index CNN RPCA-CNN DCNN DDCNN

Indian Pines
Dataset

OA (%) 85.4±0.8 88.6±0.6 93.4±0.5 96.9±0.6
AA (%) 79.4±1.6 82.6±2.3 89.5±1.7 96.6±0.7

Kappa (%) 84.3±2.9 86.1±0.7 92.5±0.5 96.3±0.8

Pavia
University

Dataset

OA (%) 93.0±0.6 94.2±0.2 95.7±0.8 98.5±0.2
AA (%) 88.6±0.8 91.6±0.2 95.3±0.8 97.3±0.4

Kappa (%) 90.7±0.7 92.4±0.5 95.2±0.9 98.1±0.2

Salinas Dataset
OA (%) 92.3±1.2 92.9±0.6 94.5±0.6 98.8±0.2
AA (%) 94.2±0.9 94.2±0.9 94.5±0.6 98.6±0.2

Kappa (%) 91.4±1.4 91.4±1.4 93.9±0.7 98.6±0.2

4.7. Effectiveness Analysis to Dual-Architecture CNN and Data Augmentation in DDCNN

To verify the effectiveness of data augmentation, we have added the proposed method without
data augmentation (DDCNN-WDA) as the comparison method. To validate the structure effectiveness
of the proposed dual-architecture CNN method, a multi-scale CNN (MCNN) and a fine-gained CNN
(FCNN) have been added as the comparison methods. The experimental results on the Indian Pines,
Pavia University, and Salinas datasets are recorded in Table 12.

Table 12. Classification results of DDCNN, MCNN, FCNN, and DDCNN-WDA on the Indian Pines,
Pavia University, and Salinas Datasets.

Data set Classification Index DDCNN FCNN MCNN DDCNN-WDA

Indian Pines
Dataset

OA (%) 96.9±0.6 93.3±0.7 95.8±0.5 95.9±0.7
AA (%) 96.6±0.7 90.6±2.1 92.6±1.9 93.2±2.0

Kappa (%) 96.3±0.8 92.4±0.8 95.3±0.6 95.3±0.8

Pavia
University

Dataset

OA (%) 98.5±0.2 97.4±0.2 97.8±0.4 97.7±0.9
AA (%) 97.3±0.4 95.9±0.5 95.5±1.1 95.9±0.9

Kappa (%) 98.1±0.2 96.6±0.3 97.1±0.5 96.9±1.3

Salinas Dataset
OA (%) 98.8±0.2 96.3±0.7 97.1±1.5 98.4±0.3
AA (%) 98.6±0.2 97.4±0.5 97.1±1.7 97.7±0.6

Kappa (%) 98.6±0.2 95.9±0.9 96.8±1.7 97.9±1.4

As shown in Table 12, compared with FCNN, DDCNN increases by 3.6%, 1.1%, and 2.5% on
the Indian Pines, Pavia University, and Salinas datasets. Compared with MCNN, DDCNN increases
by 1.1%, 0.7%, and 1.7% on three HSI datasets. It is shown that dual-architecture is more effective
than single network architecture for HSI classification. DDCNN exploits dual-architecture CNN to
improve the classification performance of HSIs. Compared with DDCNN-WDA, DDCNN increases by
1.0%, 0.8%, and 0.4% on the Indian Pines, Pavia University, and Salinas datasets. It is shown that data
augmentation is effective for HSI classification. DDCNN improves the classification performance of
HSIs by exploiting the data augmentation.

4.8. Analysis of Free Parameters in DDCNN

There are two important parameters w1 and w2 in DDCNN; w1 and w2 represent the size of spatial
window in multi-scale CNN and fine-grained CNN, respectively. In Figure 12, w1 is set to [23, 25, 27,
29, 31], while w2 is set to [1, 3, 5, 7, 9]; w1 and w2 control the input size of samples in the homogeneous
and heterogeneous regions. Figure 12a–c shows the OA results of DDCNN on the Indian Pines,
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Pavia University, and Salinas datasets under different parameters w1 and w2. As shown in Figure 12,
when w1 and w2 are selected as 27 and 7 on the Indian Pines, 31 and 9 on the Pavia University, and 31
and 9 on the Salinas, the classification performance reaches the peak values. The Pavia University and
Salinas dataset have higher spatial resolution than the Indian Pines dataset. Therefore, the sizes of w1

and w2 in the Pavia University and Salinas datasets are larger than that in the Indian Pines dataset.
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The depth of the network plays an important role because it determines the quality of extracted
features. Table 13 shows the classification results of DDCNN as the number of convolutional layers
increases from 1 to 5. The experimental results show that the model achieves the best classification
results when 4 convolutional layers are chosen for hyperspectral datasets. When the number of layers
is large enough, the model extracts abstract and invariant features.

The number of superpixel is an important free parameter. The superpixel segmentation is utilized
in the regional division and data augmentation of DDCNN. As shown in Table 14, DDCNN obtains
the best classification performance when the number of superpixels is set as 100 on the Indian Pines
dataset and Salinas dataset, and 1000 on the Pavia University dataset. The number of superpixels on
the Pavia University dataset is larger than that on other datasets due to more complex distribution on
the Pavia University dataset. When the number of superpixels is too small, the same superpixel may
contain different classes. In this case, the classification results would deteriorate due to misdivision of
homogeneous and heterogeneous regions. On the contrary, when the number of superpixels is too
large, fewer unlabeled samples are pre-labeled to augment the data. In this case, DDCNN has limited
ability to alleviate the overfitting problem.
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Table 13. The sensitivity analysis of numbers of convolutional layers.

Dataset Classification Index
the Number of Convolutional Layers

1 2 3 4 5

Indian Pines
Dataset

OA (%) 93.6±0.4 95.5±0.4 96.0±0.1 96.9±0.6 96.4±0.3
AA (%) 91.6±1.1 94.5±0.3 95.5±0.3 96.6±0.7 95.3±0.7

Kappa (%) 92.8±0.4 94.9±0.4 95.4±0.1 96.3±0.8 95.8±0.4

Pavia
University

Dataset

OA (%) 95.8±0.1 97.4±0.2 98.7±0.1 98.5±0.2 98.4±0.1
AA (%) 95.1±0.4 96.7±0.3 98.3±0.1 97.3±0.4 98.2±0.2

Kappa (%) 94.5±0.1 96.6±0.3 98.4±0.2 98.1±0.2 97.8±0.1

Salinas
Dataset

OA (%) 94.3±0.2 95.5±0.6 98.5±0.2 98.8±0.2 98.6±0.2
AA (%) 96.2±0.3 97.1±0.5 98.5±0.2 98.6±0.2 98.5±0.3

Kappa (%) 93.7±0.3 95.1±0.7 98.4±0.2 98.6±0.2 98.5±0.2

Table 14. The sensitivity analysis of numbers of superpixels in DDCNN.

Dataset Classification Index
The Number of Superpixels

50 100 500 1000 5000

Indian Pines
Dataset

OA (%) 94.7±0.4 96.9±0.6 96.3±0.3 93.7±0.3 92.7±0.5
AA (%) 92.1±1.6 96.6±0.7 95.4±0.9 91.6±1.8 91.1±1.3

Kappa (%) 94.0±0.4 96.3±0.8 95.8±0.3 92.8±0.4 91.4±0.9

Pavia
University

Dataset

OA (%) 97.1±0.2 97.5±0.2 98.3±0.1 98.5±0.2 97.3±0.3
AA (%) 95.5±0.4 96.9±0.2 97.8±0.1 97.3±0.4 96.3±0.2

Kappa (%) 96.4±0.3 96.7±0.3 97.8±0.1 98.1±0.2 96.4±0.5

Salinas
Dataset

OA (%) 97.2±0.4 98.8±0.2 97.3±0.4 95.9±0.9 94.9±0.5
AA (%) 96.5±1.0 98.6±0.2 96.7±0.4 94.5±1.6 92.9±0.8

Kappa (%) 96.9±0.5 98.6±0.2 97.0±0.4 95.5±0.9 94.9±0.5

4.9. Analysis of the Thresholds in DDCNN

There are two thresholds, Tk and Tπv , involved in the proposed method. Tk is a threshold
involved in the regional division with non-local decision. The threshold Tk is not empirically set.
It can be calculated by the equation Tk = min

{
SS
(
πv(xi), π′v

(
xj
))∣∣xi, xj ∈ ψk

}
. Tk is the minimum

value of similarities between any two superpixels containing the training samples of the kth category.
For each class, an adaptive threshold Tk can be obtained by considering all the training samples of
this class. When the value of Tk is too large or small, the classification performance would degrade
due to misdivision of homogeneous and heterogeneous regions. Compared with empirical setting,
the proposed adaptive calculation is a better choice due to considering data distribution.

Tπv is a threshold involved in the data augmentation. It is calculated as the minimum value
of the similarities between any two training samples in the superpixel πv. For three hyperspectral
datasets, Tπv is calculated as 0.921, 0.903, and 0.915 in the experiment. We have added the analysis of
classification performance under different thresholds Tπv in Figure 13. In Figure 13, the OA results of
DDCNN on three hyperspectral datasets are shown as Tπv increases from 0.5 to 1.0. When the value of
Tπv is too large, the spatial constraint of sample augmentation becomes strict. Fewer unlabeled samples
are selected to pre-label. In this case, DDCNN has limited ability to alleviate the overfitting problem.
Conversely, when the value of Tπv is too small, unlabeled samples having low confidence may be
selected. In this case, pre-labeled unlabeled samples would deteriorate the classification performance.
When Tπv is in the range of [0.88, 0.93], DDCNN can obtain promising classification results on three
hyperspectral datasets. On three hyperspectral datasets, Tπv is calculated as 0.921, 0.903, and 0.915 in
the experiment. It can be seen that the calculated values of Tπv fall within this range.
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5. Conclusions

In this paper, a novel divide-and-conquer dual-architecture CNN (DDCNN) method is proposed
for HSI classification. In DDCNN, a regional division method based on local and non-local decisions is
designed to divide the HSIs into homogeneous and heterogeneous regions, respectively. A multi-scale
CNN architecture and a fine-grained CNN architecture are constructed to learn spectral-spatial features
on the homogeneous and heterogeneous regions. Dual-architecture CNN guarantees region uniformity
and edge preservation of HSI classification simultaneously. Moreover, to alleviate the problem of
insufficient training samples, the unlabeled samples with high confidence are selected under adaptive
spatial constraints. The experimental results on several hyperspectral datasets demonstrated the
effectiveness of the proposed method for HSI classification.

In the future, more varied CNN architecture will be considered in DDCNN for complex land-cover
distributions in HSIs.
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