
remote sensing

Article

Detecting Square Markers in
Underwater Environments

Jan Čejka 1,* , Fabio Bruno 2 , Dimitrios Skarlatos 3 and Fotis Liarokapis 1

1 Human Computer Interaction Laboratory, Faculty of Informatics, Masaryk University, Botanická 68a,
602 00 Brno, Czech Republic; liarokap@mail.muni.cz

2 3D Research s.r.l., University of Calabria, Rende, 87036 Cosenza, Italy; fabio.bruno@unical.it
3 Photogrammetric Vision Laboratory, Department of Civil Engineering and Geomatics, Cyprus University

of Technology, 3036 Limassol, Cyprus; dimitrios.skarlatos@cut.ac.cy
* Correspondence: xcejka2@fi.muni.cz

Received: 16 January 2019; Accepted: 18 February 2019; Published: 23 February 2019
����������
�������

Abstract: Augmented reality can be deployed in various application domains, such as enhancing
human vision, manufacturing, medicine, military, entertainment, and archeology. One of the least
explored areas is the underwater environment. The main benefit of augmented reality in these
environments is that it can help divers navigate to points of interest or present interesting information
about archaeological and touristic sites (e.g., ruins of buildings, shipwrecks). However, the harsh
sea environment affects computer vision algorithms and complicates the detection of objects, which
is essential for augmented reality. This paper presents a new algorithm for the detection of fiducial
markers that is tailored to underwater environments. It also proposes a method that generates
synthetic images with such markers in these environments. This new detector is compared with
existing solutions using synthetic images and images taken in the real world, showing that it performs
better than other detectors: it finds more markers than faster algorithms and runs faster than robust
algorithms that detect the same amount of markers.

Keywords: augmented reality; marker-based tracking; generating synthetic images; real time;
cultural heritage

1. Introduction

Historical objects and places play important roles in the lives of people, since history is of
great significance for every culture. Old buildings are repaired, protected, and preserved for future
generations. Archaeologists search for artifacts to recover data about our history. They connect pieces
of information together to obtain a solid basis of our culture. Sites of archaeological significance are
not only on land, but can be located under water. Typical examples are ships that sank into water
with the cargo they transported or cities that were submerged due to earthquakes or tsunami waves.
Their remains are recovered to understand the culture of the sailors or learn about the history of the
sites [1]. During last few decades, people started diving to experience an underwater view of these
sites in such high numbers, that old ships were intentionally sunk to become artificial shipwrecks for
tourists, to protect natural underwater sites [2].

Currently, technology has evolved and provides new options and opportunities to present the
past to people. Advances in the field of mobile devices allow us to use them for augmented reality
(AR) applications to see in real time what cannot be seen in the real world, and through the screens of
smart phones or tablets, it is possible to visualize in three-dimensions how buildings looked hundreds
or thousand of years ago [3,4].

One of the most crucial things that is necessary for AR applications is to know the precise pose
(position and orientation) of the device and all important objects around it. In urban environments,

Remote Sens. 2019, 11, 459; doi:10.3390/rs11040459 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-4460-4100
https://orcid.org/0000-0002-9755-475X
https://orcid.org/0000-0002-2732-4780
https://orcid.org/0000-0003-3617-2261
http://www.mdpi.com/2072-4292/11/4/459?type=check_update&version=1
http://dx.doi.org/10.3390/rs11040459
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2019, 11, 459 2 of 23

there are many available solutions such as sensors (GPS, Wi-Fi, etc.) or computer vision solutions.
Unfortunately, the situation is different under water. In the sea, GPS, Wi-Fi, or Bluetooth signals are
absorbed in water after 25 cm [5], which prevents the devices from obtaining their location, and also
due to worsening visibility conditions, objects that are further away than a dozen meters cannot be
distinguished. If water is very turbid, the visibility drops to a few meters. For these reasons, it is still
very hard to recognize objects under water and to track their position, so it is necessary to populate
the underwater environment either with sensors (e.g., acoustic beacons) or recognizable objects (e.g.,
markers) to give divers a robust solution to see the history of underwater places in AR.

This paper is focused on AR applications in underwater environments and especially on the
detection of square markers that are used to obtain the pose of mobile devices and objects under water.
The main contributions of this paper are:

• a new method for generating synthetic images of markers in underwater conditions;
• a new algorithm for the detection of square markers that is adapted for bad visibility in underwater

environments;
• comparison of this algorithm with other state-of-the-art algorithms on synthetically-generated

images and on real images.

After presenting a state-of-the-art in the field of detecting markers, Section 2 presents the new
algorithm and algorithms with which it is compared. Then, Sections 3 and 4 present the method for
generating synthetic images, experiments done with these images, and results of these experiments.
Similarly, Section 5 describes the videos taken under water and results of tests performed with these
videos. The final conclusion of this paper is in Section 6.

Related Work

Square markers are one of the most common methods for pose estimation in AR applications.
They are easy and fast to detect and contain enough information to compute their relative pose to the
camera, which helps AR applications to orient in the real world and place virtual objects at the proper
positions. One of the first software libraries that offered this functionality was the ARToolKit [6], or
its newer version ARToolKitPlus, optimized to run especially on mobile devices [7]. To distinguish
between square markers, this library uses an arbitrary image that is placed inside the marker. Square
markers are also used in the ARTag library [8], which is also focused on a description of individual
markers. This library uses a 6× 6 binary pattern located inside each marker and is able to correct
several bits of wrongly-detected code using redundancy information. ARUco [9] and its improved
version ARUco3 [10] are libraries for the detection of square markers based on OpenCV. They also use
a 6× 6 binary pattern like ARTag, but unlike ARTag, they design a dictionary of patterns specifically
to be able to correct the largest number of error bits. Another detector, AprilTag [11] or its newer
version AprilTag2 [12], provides a robust implementation of square marker detectors that are resistant
to lighting conditions and steep angles of view.

Other types of markers are also used in AR. Circular or elliptic markers [13,14] can be used
to compute the position of these markers even when the markers are partially occluded, since the
elliptic shape of their contours provides more information about the position than in the case of
square markers. A price for this is a higher processing time. RUNE tag [15] defines markers that are
made of unconnected dots, and therefore, it does not detect any contours like the previous solutions.
Other markers are also possible: markers of irregular shapes are described in [16] and used in the
reacTIVision library; markers described in [17] are designed specifically to be detectable in blurred
and unfocused images; and Fourier tag markers [18], which are also designed to be used in non-ideal
conditions and encode their information in the frequency domain.

Markers simplify the problem of detecting 3D objects, since they are 2D and designed to be easily
recognized. However, it is also possible to perform this detection and recognition without markers,
using distinctive image features like edges, corners, or textures. Such algorithms consist of two parts:

Remote Sens. 2019, 11, 459 3 of 23

detection of these features and computation of a descriptor for each feature that is able to match the
features between frames. One of the first algorithms for natural feature detection used in augmented
reality was SIFT [19,20]. This algorithm uses the difference of Gaussians to detect interesting features
in the image and describes each feature with a feature vector of 128 floating point numbers computed
from gradient magnitudes around it. The SURF detector [21] uses the approximation of Hessians to
detect important features and builds its descriptor on the response of Haar wavelets. Both of these
solutions use floating point arithmetic, which is more demanding than integer arithmetic, but there
are also solutions that use mainly integer operations and binary comparisons to detect and register
features. FAST [22] is a corner detector that uses a machine learning approach to find the fastest order
of comparisons, and since it performs comparisons only, it runs very fast. This algorithm itself does
not describe the features, but can be used in combination with feature descriptors. BRIEF [23] is a
descriptor that assigns each feature a vector of 128 bits representing a binary result of 128 comparisons
of pixels around a feature. Since it is a binary vector, matching features is faster than in the case of SIFT
and SURF. BRISK [24] is a natural feature detector that uses AGAST [25] (variation of FAST) to detect
features and compares pixels in circular patterns around features to obtain rotation and scale invariance.
FREAK [26] is a detector similar to BRISK, but its circular pattern is based on the human retina. The
ORB detector [27] is composed of the FAST detector and BRIEF descriptor, which are optimized to
provide robust detection invariant to rotations and scales. Natural feature detectors that run fast can
also be used in simultaneous localization and mapping (SLAM) solutions, e.g., ORB-SLAM [28] or
LSD-SLAM [29].

The problem of improving images taken in bad visibility conditions for the purpose of improving
computer vision results was examined in several scenarios. Agarwal et al. [30] compared methods
for increasing contrast of images taken in smoke-occluded environments to improve visual odometry
based on a sequence of RGB-D images. Cesar et al. [31] evaluated the performance of marker detecting
algorithms in artificially-simulated bad underwater conditions. The evaluation of circular self-similar
markers [32] in open sea environments was presented in [33]. The performance of marker detection
and image-improving algorithms was also evaluated by Žuži et al. [34] and Čejka et al. [35] on
videos taken in the sea. Several authors focused on the registration of images and based their
comparisons on the number of detected and matched SIFT features. Andono et al. [36] compared
contrast-enhancing techniques for matching a sequence of underwater images. Ancuti et al. presented
an algorithm removing haze in foggy images [37] and another algorithm for correcting colors in
underwater images [38], both for the purpose of matching images taken from different views.
Gao et al. [39] developed a method for restoring the color of underwater images and compared
it with other methods using a number of detected SIFT features and a number of detected Canny edges.
Image-improving methods were also used to improve the results of reconstructed underwater objects
using photogrammetry in the work of Agrafiotis et al. [40] and Marino et al. [41].

One of the first examples of using markers for underwater AR was presented in the work of
Morales et al. [42], who discussed the advantages of AR in providing visual cues like an artificial
horizon or navigation arrows to help in underwater operations. In the clear water of swimming
pools, developers of games for diving children can use AR to place visually-appealing virtual objects
and rewards on markers, as was presented by Bellarbi et al. [43], who used specialized hardware,
or Oppermann et al. [44], who used a tablet in a waterproof housing. In the bad visibility conditions of
open sea, markers are used to detect and track the position of remotely-operated vehicles (ROVs) [45],
which is extremely important when performing an automatic docking of autonomous underwater
vehicles (AUVs) [46,47]. In close ranges where the visibility conditions are still sufficient, markers are
used for underwater photogrammetry either in the form of large calibration frames [48] or small and
light quadrats [49].

Remote Sens. 2019, 11, 459 4 of 23

2. Marker Detection and Image-Improving Algorithms

This section presents algorithms that are used further in experiments. First, it describes
the marker detection algorithms ARUco, ARUco3, and AprilTag2, then the image-improving
algorithms contrast-limited adaptive histogram equalization (CLAHE), deblurring, white balancing,
and marker-based underwater white balancing, and finally, our new marker-detecting algorithm
Underwater ARUco (UWARUco).

2.1. ARUco, ARUco3, and AprilTag2

Marker detecting algorithms ARUco, ARUco3, and AprilTag2 follow the general structure
described in Figure 1. First, the incoming image is thresholded using global or local adaptive methods
to obtain a simplified binary image. This image is in the second step searched for square polygons
that become candidates for markers. In the third step, identification code is extracted from inner area
of each candidate, and the candidate is then in the fourth step identified and discarded if it does not
belong to a set of valid codes. Finally, the position of the marker is computed from its corners or edges.

Thresholding

Local Adaptive,
Global

Square
Detection

Contours,
Components

Marker Code
Extraction

Marker
Identification

Hamming distance,
Dictionaries

Marker
Position

Figure 1. General workflow of algorithms detecting square markers.

The ARUco detector [9] was designed to run fast and to recognize marker codes reliably. It uses
an adaptive algorithm to threshold the input image, which computes the threshold value for each pixel
as an average of the surrounding pixels. To detect marker-like shapes, it finds all contours and filters
out those that do not represent square polygons (small contours, non-polygonal contours, etc.). After
the squares are detected, it unprojects them to remove perspective distortion, thresholds them again
(this time using the Otsu threshold), and obtains the inner code, which is checked with a dictionary to
remove errors. If correct, the corners of these squares are used to compute their relative position to
the camera.

The ARUco3 detector [10] is based on the ARUco detector and was improved to run fast with
high-resolution images. There are two main differences between this algorithm and ARUco. The first
difference is that this algorithm exchanges adaptive thresholding with simpler global thresholding,
which is faster, but less robust to uneven lighting. The second difference is that it scales the image
down, so that its size is still sufficient to detect and recognize markers, but the detection runs faster than
in the original image. The implementation provided by the authors involves in three versions: Normal,
Fast, and VideoFast. The Normal version uses adaptive thresholding like ARUco and therefore should
be more robust to uneven illumination. The Fast version uses global thresholding and applies the Otsu
method on an image part with a marker to compute the threshold for the next frame (or if no marker
is available, it chooses the threshold randomly). The VideoFast version is like the Fast version, but
additionally, it assumes that markers in a frame have approximately the same size as the markers in
the previous frame and optimizes the scaling accordingly.

The AprilTag2 detector [12] also uses an adaptive algorithm for thresholding, but instead of using
an average of all surrounding pixels, it searches these pixels for the lowest and highest intensities and
chooses the threshold as the average between these two intensities. Then, it segments the binary result,
fit quads, recovers codes, and uses a hash table to check if the code is correct and the quad is a marker.

Remote Sens. 2019, 11, 459 5 of 23

2.2. Real-Time Algorithms Improving Underwater Images

In our previous work [35], we discussed the possibility of using real-time image-improving
algorithms to increase the number of detected markers. The paper compared four algorithms, CLAHE,
deblurring, white balancing (WB), and marker-based underwater white balancing (MBUWWB), which
are also compared in this paper.

Contrast-limited adaptive histogram equalization (CLAHE) [50] is based on equalizing image
histograms. At each pixel, it computes a histogram of its surroundings, rearranges it to avoid unnatural
changes in contrast, and equalizes it to obtain new intensity. Deblur [51] (also known as deblurring or
the unsharp mask filter) stresses edges by removing low frequencies from the original image, which
can be described by the following equation:

Imageout = (1 + w) · Imagein − w ·Gaussian(Imagein, σdeblur) (1)

White balancing algorithms change the colors in the image to look more natural. There are
many white-balancing algorithms, but for performance reasons, the authors in [35] chose a simple
algorithm from [52]. This algorithm computes a histogram of input image, removes percdark percent
of the darkest pixels and 100− percbright percent of the brightest pixels, and changes the colors to
stretch the rest of it linearly. Its adaptation for marker-based tracking, marker-based underwater white
balancing, described also in [35], does the same, but computes the initial histogram only of areas that
contain markers.

Many of these algorithms have parameters that influence their behavior. In the experiments
presented in this paper, we use the same parameters as in [35]: 2 as a clip limit of CLAHE, 4 as both
σdeblur and w for deblurring, and 2 as percdark and 99 as percbright for white balancing and marker-based
underwater white balancing.

2.3. Detection of Markers under Water

Underwater ARUco (UWARUco) is an adaptation of the ARUco algorithm [9] for underwater
environments. The workflow of the original ARUco algorithm is shown in Figure 2a. It starts with
an input grey-scale image, which is thresholded in the Threshold step and searches for contours in the
Find Contours step three times in parallel threads, each time with different parameters of adaptive
thresholding. The original algorithm used various sizes of the window that computed the threshold
(by default, the sizes are 3, 13, and 23 pixels), and additionally, it decreased this threshold with a
constant to suppress contours created by small noise (by default, this constant is seven). The contours
found in each thresholded image are merged in the Merge Contours step to represent each marker with
only one contour no matter how many thresholded images the contour is found in, and finally, in
the Identify Marker step, the original image is thresholded again using the Otsu method to obtain the
marker code that is identified. The algorithm is described in more detail in [9].

We analyzed the results presented in [35] to investigate which steps are influenced by image
improving algorithms when the number of detected markers increases. In Figure 3a, we see an image of
a marker taken in bad visibility conditions under water. When it is thresholded by ARUco, the marker’s
border may get disconnected (see Figure 3b), and the marker is not recognized as a rectangular object.
It was found that all four tested image-improving algorithms increased the contrast of the image,
and additionally, deblur also acted as another blur applied to the image before thresholding. The
same effect can be achieved by changing the parameters of the Threshold step to lower the constant
decreasing the threshold and to increase the threshold window size, as is shown in Figure 3c, where
the border stays connected when the threshold is not decreased. This change of parameters is not
enough, since image-improving methods also affect the image that is thresholded by the Otsu method
in the Identify Marker step. To solve this issue, the Identify Marker step is moved between the Find
Contours step and the Merge Contours step (here renamed Merge Markers), and the identification is
based on the thresholded image from the Threshold step instead of performing an additional threshold.

Remote Sens. 2019, 11, 459 6 of 23

These changes in the ARUco workflow form the base of our UWARUco algorithm. We call this
algorithm the Base version of UWARUco and show its workflow in Figure 2b. Preliminary experiments
showed that optimal window sizes for thresholding were 10, 20, and 40 pixels, and the constant that
decreased the threshold was lowered to zero, i.e., the best results were obtained when the threshold
was not decreased.

Remote Sens. 2019, 00, 5 7 of 24

Input Image Threshold(13, 7)

Threshold(3, 7)

Threshold(23, 7)

Find Contours

Find Contours

Find Contours

Merge
Contours

Identify
Marker

Final
Position

(a) Workflow of ARUco.

Input Image Threshold(20, 0)

Threshold(10, 0)

Threshold(40, 0)

Find Contours

Find Contours

Find Contours

Identify Marker

Identify Marker

Identify Marker

Merge
Markers

Final
Position

(b) Workflow of the Baseversion of Underwater ARUco (UWARUco).

Input Image

Compute
Mask

Parameters
from the

previous frame

Mask

Threshold(20, 0)

Threshold(10, 0)

Threshold(40, 0)

Masking

Masking

Masking

Filtering

Filtering

Filtering

Find Contours

Find Contours

Find Contours

Identify Marker

Identify Marker

Identify Marker

Merge
Markers

Mask
Feedback

Parameters for
the next frame

Final
Position

(c) Workflow of Maskedversion of UWARUco.

Figure 2. Workflows of ARUco, Base version of UWARUco, and Masked version of UWARUco.Figure 2. Workflows of ARUco, Base version of UWARUco, and Masked version of UWARUco.

Remote Sens. 2019, 11, 459 7 of 23

(a) Input image (b) Threshold Window 13,
Threshold decreased by 7

(c) Threshold Window 13,
Threshold decreased by 0

Figure 3. (a) shows a marker recorded in bad visibility conditions. ARUco uses adaptive thresholding
and compares pixels to a threshold that is decreased by seven (see (b)); notice a discontinuous border of
the marker. The Base version of UWARUco does not decrease the threshold (see (c)), which preserves
the border, but introduces many small objects.

The Base version of UWARUco detects more markers in underwater videos than the original
ARUco, as will be shown in Sections 4 and 5.1. However, its processing time is slow, due to an increase
in the number of contours that are found in thresholded images and that must be processed by the
detector. To improve the processing speed of the detection, the algorithm is extended with a binary
mask and a filter that are applied on the thresholded image before the contours are detected, to simplify
the image and reduce the number of contours. We call this algorithm the Masked version of UWARUco;
its workflow is shown in Figure 2c. This algorithm computes the binary mask from original image in
the Compute Mask step. This step requires parameters derived in the previous video frame and creates a
mask that is applied on thresholded images in the Masking steps. Before detecting contours in the Find
Contour step, masked images are filtered in the Filtering steps to remove very small objects that appear
in the image due to noise. After the results are merged in the Merge Markers step, the parameters for
the next frame are derived from the input image and the result of detection in the Mask Feedback step.

The mask computed in the Compute Mask step identifies parts of image that do not contain markers
and is composed of two submasks: brightness masks (Figure 4a) and noise masks (Figure 4b). The
brightness mask detects parts of the image with very high intensity, since the brightest pixels are often
white areas of markers and the noise mask removes areas that do not contain strong edges to keep only
those parts that represent edges of markers. The final mask is created from parts that are in both masks,
i.e., they are both very bright and contain a strong edge; see Figure 4c. The computation of the mask is
described in Algorithm 1. First, the algorithm computes the minimum and maximum of intensities for
blocks of 4× 4 pixels, which results in images mins and maxs, which are in each dimension four-times
smaller than the original image. These images are blurred to spread the minima and maxima of each
pixel into its neighborhood by taking the minimum and maximum of a region of 3× 3 surrounding
pixels. This blur is very important to keep the contours of markers connected, since without this
blur, the mask will not contain areas where 4× 4 blocks are separated by marker contours, because in
such cases, the blocks contain no strong edge and only one block is very bright. After blurring, the
mins image is subtracted from the maxs image, and the difference is stored in the diffs image. Finally,
the maxs image is thresholded by comparing it with a value of brightness_threshold and used for the
brightness mask, and similarly, the difference image diffs is compared to a value of noise_threshold to
obtain the noise mask. At the end, both masks are ANDed together to obtain the final mask, which is
applied in the Masking step. The effect of masking is illustrated in Figure 4d.

Remote Sens. 2019, 11, 459 8 of 23

(a) Brightness mask of Figure 3a (b) Noise mask of Figure 3a (c) Both masks composed together

(d) Mask applied on thresholded
image Figure 3c

(e) Applying a 3× 3 median filter
to remove small objects

Figure 4. Brightness mask (a) and noise mask (b) computed from the input image in Figure 3a and the
final mask computed by ANDing both masks together (c). When applied to the thresholded image
in Figure 3c, the number of objects is reduced, while the border is still preserved (d). Small pixel-size
objects are further removed by a median filter.

Algorithm 1: Pseudocode of the algorithm for computing the brightness mask, the noise mask,
and the final mask.

Input :Grey scale image Imagein whose mask is to be computed, threshold for brightness
mask brightness_threshold, threshold for noise mask noise_threshold

Output :Brightness and noise masks brightness_mask and noise_mask
mins← image of one fourth of the size of Imagein with minimums of 4× 4 pixels of Imagein;
maxs← image of one fourth of the size of Imagein with maximums of 4× 4 pixels of Imagein;
mins←minimum of 3× 3 surrounding pixels of mins;
maxs←maximum of 3× 3 surrounding pixels of maxs;
diffs← maxs−mins;
brightness_mask← maxs ≥ brightness_threshold;
noise_mask← diffs ≥ noise_threshold;
final_mask← brightness_mask ∧ noise_mask;

The computation of thresholds brightness_threshold and noise_threshold is based on areas with
detected markers and is done after the detection in the Mask Feedback step. The procedure is described
in Algorithm 2. Images maxs and diffs that are used to compute masks are inspected at pixels of
contours of found markers, and the lowest values of these pixels are used as thresholds. Such values
would be sufficient as thresholds for the current frame, but to handle small changes in lighting between
frames, they are decreased by 20% to obtain actual thresholds for the following frame (this value was
chosen after several experiments with different constants). If there are no contours, the thresholds
are set to zero to disable masking in the following frame. Similarly, the thresholds are also set to zero
before processing the very first frame of the video.

Remote Sens. 2019, 11, 459 9 of 23

Algorithm 2: Pseudocode of the algorithm for computing thresholds for the brightness mask
and the noise mask.

Input : maxs and diffs from computing masks, upscaled to the size of the original image,
contours of all detected markers contours

Output :Thresholds brightness_threshold and noise_threshold.
if contours is empty then

brightness_threshold← 0;
noise_threshold← 0;

else
brightness_threshold← 80% of minimum of maxs at pixels of contours;
noise_threshold← 80% of minimum of diffs at pixels of contours;

end

After applying the mask on the thresholded image, the result is filtered in the Filtering step using a
3× 3 median filter to remove small objects that appear due to the presence of noise. This filter removes
pixel-sized objects and closes small holes, as illustrated in Figure 4e. Since the input image is binary,
the median can be obtained fast by computing a mean of the surrounding pixels and thresholding it to
a threshold of 0.5.

3. Generating Synthetic Images

Our generator of synthetic images considers the following effects that appear under water:
turbidity of water, glowing of markers, sensor noise, and a blur caused by not having objects perfectly
focused. The effect of turbidity and glow in the real world is depicted in Figure 5.

Figure 5. Effect of turbidity and glow in a real image. Due to the turbidity, distant objects are less
visible than close objects, as in foggy images. Furthermore, notice a small glow around the central and
the right marker.

The effect of turbidity simulates a decrease in visibility of distant objects, which is caused by very
small particles dispersed in water. This effect is very close to the effect of fog, and for this reason, in the
rest of the paper, we refer to this effect as the effect of fog. Small particles in water and post-processing
effects in cameras also make markers glow, which happens when white areas of markers reflect a high
amount of light (for example, when the marker is facing up), and this light is blurred due to the fog.

Remote Sens. 2019, 11, 459 10 of 23

This glow often makes white areas of the marker overexposed and black marker areas to have higher
intensity than marker background. Sensor noise consists of thermal noise and other types of noise
that appear when shooting images. We consider only thermal noise and simulate it with Gaussian
random noise, as other types of noises can be either simulated as a part of this Gaussian noise or are
not very significant. The effect of blur caused by objects that are not perfectly focused is added to
avoid unnaturally sharp color changes of markers in images and is represented by Gaussian blur with
a small sigma.

A pipeline of this image-generating algorithm is presented in Figure 6. It consists of five main
steps that change the generated image (Background, Drawing Markers, Out-of-focus Blur, Glow Blur, and
Sensor Noise), and three supporting steps that compute the parameters for main steps (Glow Effect,
Fog Effect, and Perspective Effect).

Background Drawing Markers

Fog
Effect

Glow
Effect

Perspective
Effect

Out-of-focus
Blur

Glow
Blur

Sensor
Noise

Final
Image

w, h, Cbg Cb, Cw Cbg, dist, fd dist, scale pos, rot

σoofσglow, αglowσsn

Figure 6. Pipeline of the synthetic image generator. See the text for further details.

The first step is the Background step. In this step, the image is allocated with width w and
height h (in our experiments, we used images in full HD resolution: 1920× 1080 pixels) and filled
with background color Cbg. In the Drawing Markers step, six markers are generated and rendered
onto the background image with intensities Cb and Cw representing black and white marker regions.
Each marker contains a 6× 6 pixels of binary code, one pixel of a black border, and one additional
pixel of a white border, as if the marker were printed on a white square paper. Then, they are rotated
with an angle rot, scaled by a factor scale, placed at position pos to form a grid of two rows and three
columns, and further displaced by up to 40 pixels.

Parameters scale, Cb, and Cw are changed by supporting steps Glow Effect, Fog Effect, and Perspective
Effect. In the Perspective Effect step, basic scale is divided by the distance of the marker from the camera
dist, so the markers that are further away are smaller. Intensities Cb and Cw are first increased in the
Glow effect step and then mixed with background intensity Cbg in the Fog effect step. The increase
in intensity done by the glow effect depends on the experiment, but generally, this increase can be
arbitrary. The mix done by the fog effect is based on Koschmieder’s model [53], which depends on the
distance from the camera dist and uses the following equation:

Cout
{b,w} = Cin

{b,w} · e
− fd ·dist + Cbg · (1− e− fd ·dist) (2)

The third step called Out-of-focus Blur blurs the image very little to remove sharp changes in
colors, which is done with a simple Gaussian blur with sigma σoof (in all our images, this sigma was
set to 1.0). The glow effect not only changes the intensities of black and white areas of the marker, but
also blurs the image. This blurred image is obtained by applying a Gaussian blur with sigma σglow,

Remote Sens. 2019, 11, 459 11 of 23

which is then mixed with the original image with factor αglow to preserve sharp edges, as described in
the following equation:

Imageout = (1− αglow) · Imagein + αglow ·Gaussian(Imagein, σglow) (3)

In the last step, the Sensor Noise step, the image is changed by adding a sensor noise represented
by Gaussian noise with zero mean and sigma σsn (note that the intensities of pixels can be decreased,
as well as increased in this step). The intensities of pixels are then clamped to range from 0–255 and
written to the final image.

The generator does not generate images with markers that are occluded or severely deformed
due to perspective transformations. An example of an image generated by this algorithm is presented
in Figure 7.

Figure 7. Synthetically-generated image.

4. Experiments with Synthetically-Generated Images

Synthetically-generated images were used in five experiments: a reference experiment with
good conditions, an experiment simulating bad visibility conditions, an experiment simulating
markers at different depths in foggy conditions, an experiment simulating glowing markers, and an
experiment with all effects applied together. Experiments were performed on a desktop PC with a
processor Intel Core i5 760, 8 GB of operating memory, and the operating system Windows 10, and the
image-generating algorithm was implemented using the functions of OpenCV 3.4.3.

Processing time was computed only from frames that contained identified markers and followed
after another frame with identified markers. This procedure provided better results regarding the
performance of algorithms that utilize data from previous frames, because these algorithms are often
optimized for such situations. If there were no such frames, the result was missing, as is visible in
the graphs.

4.1. Reference with Good Visual Conditions

The first experiment evaluated the basic performance of marker detectors in very good visual
conditions to obtain a reference for other results. In this test, fog effect, glow effect, perspective effect,
and sensor noise effect were not applied, the intensity of the background was set to 150, the intensities
of black and white marker colors were set to 0 and 255, respectively, and the scale of the markers was a
variable parameter in this experiment, changing from 5–30 pixels. The intensity of the background
was chosen to be a bit lighter that half-tone intensity to resemble real images, but did not influence the
results, as observed in preliminary tests.

Each value of scale was tested in 20 videos consisting of 100 frames, and the results (percentage
of detected markers and detection time) were averaged and are presented in Figure 8. It is shown

Remote Sens. 2019, 11, 459 12 of 23

that good visibility conditions were not a problem for any of the solutions, although some solutions
had problems with specific scales of markers. The ARUco detector started to lose some markers
when the scale of the marker was higher than 23 (the same value as the maximum window size of
its adaptive thresholding algorithm). When the scale was larger, the thresholded image contained a
fictional contour inside the marker border, and in some cases, this contour was chosen as the contour
of the marker, which made the detected marker smaller and often not identified. This behavior was
emphasized by some image-improving algorithms.

5 10 15 20 25 30
0

20

40

60

80

100

Marker scale

D
et

ec
te

d
m

ar
ke

rs
(%

)

5 10 15 20 25 30
0

20

40

60

Marker scale

D
et

ec
ti

on
ti

m
e

(m
s)

ARUco
UWARUco, Base

UWARUco, Masked
ARUco3, Normal

ARUco3, Fast
ARUco3, VideoFast

AprilTag2

5 10 15 20 25 30
0

20

40

60

80

100

Marker scale

D
et

ec
te

d
m

ar
ke

rs
(%

)

5 10 15 20 25 30
0

20

40

60

80

Marker scale

D
et

ec
ti

on
ti

m
e

(m
s)

ARUco, Original
ARUco, CLAHE
ARUco, Deblur

ARUco, WB
ARUco, MBUWWB

UWARUco, Masked, Original
UWARUco, Masked, CLAHE
UWARUco, Masked, Deblur

UWARUco, Masked, WB
UWARUco, Masked, MBUWWB

Figure 8. Results of the reference test. Top row: results of marker-detecting algorithms; bottom
row: results of image-improving algorithms; left column: percentage of detected markers; right
column: detection time in milliseconds. Many solutions detected 100% of markers, so their results
overlap. CLAHE, contrast-limited adaptive histogram equalization; WB, white balancing; MBUWWB,
marker-based underwater white balancing.

The Normal version of ARUco3 struggled to find small markers. Further tests found that this was
caused by the white border around markers, which was too small, but when its size was increased, the
number of detected markers reached 100%. The processing times show that the Fast and VideoFast
variants of ARUco3 were clearly the fastest algorithms for the detection of markers in these very
good visual conditions. Normal version of ARUco3 and ARUco provided the results at reasonable
speeds, while the speed of UWARUco and ARUco combined with image-improving algorithms was
lower, since these algorithms contained additional processing steps. The speed of AprilTag2 was also
reasonably low in this test.

None of the solutions had problems with precision of detection, although this precision decreased
with larger markers in the case of ARUco and UWARUco and their variants, because these detectors
chose the wrong contours in some cases. However, even in these cases, the corners of markers were
found with a precision of units of pixels.

4.2. Bad Visibility Conditions

The task here was to simulate bad visibility conditions that cause lower contrast of the image.
Glow and perspective effects were not applied; the intensity of the background was again set to 150;
and the scale of all markers was set to 15 to prevent ARUco and UWARUco from choosing the wrong
contours, as observed in the previous experiment. The sigma of sensor noise σsn was set to five, which

Remote Sens. 2019, 11, 459 13 of 23

creates images that are similar to real images. The effect of fog was applied, but it was modified for
this test. Since this effect changes only the difference between intensities of black and white regions of
the marker, this difference became the main parameter of this analysis. Instead of depending on the
distance dist or fog density fd, the intensities of black and white were set to specific values, starting at
70 and 230 to simulate a low-fog environment, and moving towards the intensity of the background,
ending at 148 and 152 to simulate a high-fog environment. The difference between these intensities
therefore started with 160 and ended with four.

The results are presented in Figure 9. In worse visibility conditions, the Fast and VideoFast
versions of ARUco3 required more trials to find proper global threshold values, but when they did,
they did not lose them, unless the visibility conditions were very bad. The decrease in the number
of detected markers that was visible in the graphs was caused by a loss of markers in the first video
frames. This experiment also showed that UWARUco was able to find markers in very bad conditions,
being the last algorithm that detected markers when the difference between black and white regions
became very low. AprilTag2 was also able to find markers in bad conditions, and so could the Fast and
VideoFast versions of ARUco3 if they chose a good global threshold, but their results were worse than
the results of UWARUco.Version February 14, 2019 submitted to Remote Sens. 13 of 22

050100150
0

20

40

60

80

100

Difference in intensities between black and white regions

D
et

ec
te

d
m

ar
ke

rs
[%

]

050100150
0

200

400

600

800

Difference in intensities between black and white regions

D
et

ec
ti

on
ti

m
e

(m
s)

ARUco
UWARUco, Base

UWARUco, Masked
ARUco3, Normal

ARUco3, Fast
ARUco3, VideoFast

AprilTag2

050100150
0

20

40

60

80

100

Difference in intensities between black and white regions

D
et

ec
te

d
m

ar
ke

rs
[%

]

050100150
0

50

100

150

200

250

Difference in intensities between black and white regions

D
et

ec
ti

on
ti

m
e

(m
s)

ARUco, Original
ARUco, CLAHE
ARUco, Deblur

ARUco, WB
ARUco, MBUWWB

UWARUco, Masked, Original
UWARUco, Masked, CLAHE
UWARUco, Masked, Deblur

UWARUco, Masked, WB
UWARUco, Masked, MBUWWB

Figure 9. Results of test with bad visibility. Top row: results of marker detecting algorithms; bottom
row: results of image improving algorithms; left column: percentage of detected markers; right column:
detection time in milliseconds. Since the detection time is evaluated only when the markers are
detected, there are no values when markers are lost.

version of UWARUco, and Normal and Fast versions of ARUco3 also increases, but less than then369

time of AprilTag2. The processing time of the Masked version of UWARUco remained the same as in370

the reference, so it become faster than other algorithms, whose processing time increased. The fastest371

solution of this test is the VideoFast version of ARUco3, but it detects less markers.372

4.3. Foggy conditions and markers at different distances373

Here, markers were placed in foggy environment at different distances from the viewer, which374

influenced their size and also their contrast, due to the presence of fog. This distance was set between375

values 1.0 and 4.0, and changed continuously between successive frames, since abrupt changes could376

negatively influence marker detectors that use data from previous frames. The scale of the markers377

started at 30 at distance 1.0 and decreased linearly with the distance, intensity of the background was378

again fixed at 150, the intensities of black and white marker regions were 0 and 255 at zero distance,379

the glow effect was not present, and the sigma of sensor noise σsn was again set to 5. Density of the fog380

was set to fd = 1.0, so that the difference in intensities between black and white regions at maximum381

depth was approximately 5, as in the previous test when choosing the worst conditions.382

This test has no variable parameter, so only one set of 20 videos with 100 frames was generated.383

The results are presented in Table 1. Masked version of UWARUco detected the highest number384

of markers, while its processing time is comparable with other algorithms, with an exception of385

VideoFast version of ARUco3, which is faster, but detects lower number of markers. The results of386

image improving algorithms show that in this test, they were able to increase the number of detected387

markers of ARUco at a cost of higher detection time, some of them placing ARUco at approximately the388

same level as Base version of UWARUco. They also slightly improved the results of Masked version of389

UWARUco, again at a cost of increased processing time.390

Figure 9. Results of the test with bad visibility. Top row: results of marker-detecting algorithms;
bottom row: results of image-improving algorithms; left column: percentage of detected markers;
right column: detection time in milliseconds. Since the detection time was evaluated only when the
markers were detected, there were no values when markers were lost.

Image-improving algorithms did not perform well in this test. The results show that there was no
need to improve images for UWARUco, and in the case of ARUco, the improvement in the number
of detected markers was disputable, since the number of detected markers often increased in bad
visibility conditions, but decreased in good visibility conditions.

The processing time was higher when compared to the times obtained in the reference, mainly
due to the presence of sensor noise in the image. The processing time of AprilTag2 increased greatly,
which makes this algorithm unusable in real-time solutions. The processing times of ARUco, the
Base version of UWARUco, and the Normal and Fast versions of ARUco3 also increased, but less than
then the time of AprilTag2. The processing time of the Masked version of UWARUco remained the

Remote Sens. 2019, 11, 459 14 of 23

same as in the reference, so it became faster than the other algorithms, whose processing time increased.
The fastest solution of this test was the VideoFast version of ARUco3, but it detected fewer markers.

4.3. Foggy Conditions and Markers at Different Distances

Here, markers were placed in a foggy environment at different distances from the viewer, which
influenced their size and also their contrast, due to the presence of fog. This distance was set between
values of 1.0 and 4.0 and changed continuously between successive frames, since abrupt changes
could negatively influence marker detectors that use data from previous frames. The scale of the
markers started at 30 at a distance of 1.0 and decreased linearly with the distance; the intensity of the
background was again fixed at 150; the intensities of black and white marker regions were zero and
255 at zero distance; the glow effect was not present; and the sigma of sensor noise σsn was again set to
five. The density of the fog was set to fd = 1.0, so that the difference in intensities between black and
white regions at maximum depth was approximately five, as in the previous test when choosing the
worst conditions.

This test had no variable parameter, so only one set of 20 videos with 100 frames was generated.
The results are presented in Table 1. The Masked version of UWARUco detected the highest number of
markers, while its processing time was comparable with other algorithms, with the exception of the
VideoFast version of ARUco3, which was faster, but detected a lower number of markers. The results
of image improving algorithms show that in this test, they were able to increase the number of detected
markers of ARUco at the cost of higher detection time, some of them placing ARUco at approximately
the same level as the Base version of UWARUco. They also slightly improved the results of the Masked
version of UWARUco, again at the cost of increased processing time.

Table 1. Results of the test with markers at different distances.

Solution ARUco UWARUco UWARUco ARUco3 ARUco3 ARUco3 AprilTag2Base Masked Normal Fast VideoFast

Detected markers (%) 32.067 64.658 75.050 24.000 60.392 45.450 51.342
Detection time (ms) 96.002 255.633 117.907 76.769 89.064 9.564 1220.796

Solution ARUco ARUco ARUco ARUco ARUco
Original CLAHE Deblur WB MBUWWB

Detected markers (%) 32.067 63.225 43.808 46.025 57.525
Detection time (ms) 96.002 201.421 218.623 200.801 193.417

Solution
UWARUco UWARUco UWARUco UWARUco UWARUco

Masked Masked Masked Masked Masked
Original CLAHE Deblur WB MBUWWB

Detected markers (%) 75.050 79.525 58.500 77.992 77.358
Detection time (ms) 117.907 128.644 141.740 128.436 117.376

4.4. Glowing Markers

Next, the detection of markers in foggy environments that appeared to glow in the image was
evaluated. Perspective and fog effects were not applied; the scale of markers was set to 15; and the
sigma of sensor noise was set to σsn = 5. The intensity of the background was set to a low value of
50, so that black marker areas could have higher intensity than the background. The glow effect was
simulated with 20 levels, each level increasing the intensity of the black marker areas linearly from
0–100, the intensity of white marker areas from 255–400, the glow alpha αglow from 0.0–0.8, and the
glow sigma σglow from 0–60.

As with the previous experiments, each glow effect level was tested with 20 videos consisting
of 100 frames. The averaged results are presented in Figure 10. Several marker-detecting algorithms
(ARUco, the Fast and VideoFast versions of ARUco3, and AprilTag2) struggled to find markers when
the glow was at high levels: the Fast and VideoFast variants of ARUco3 again lost several frames until
they found the proper global threshold value. The processing time of all detectors stayed approximately

Remote Sens. 2019, 11, 459 15 of 23

the same without any influence caused by an increased level of glow. Since the number of detected
markers was already very high, image-improving algorithms could not increase these values. Some of
them (CLAHE and deblur combined with ARUco) decreased the number of detected markers, but
many of them just increased the computation time. One exception to this was the combination of
ARUco and MBUWWB, which decreased the computation time at glow levels above six, while keeping
the number of detected markers very high. This happened because at glow levels higher than six,
black marker regions had higher intensity than the background, so most of the artificial sensor noise
was removed, which made the thresholded image mostly noise-free.

0 5 10 15 20
0

20

40

60

80

100

Glow level

D
et

ec
te

d
m

ar
ke

rs
(%

)

0 5 10 15 20
0

200

400

600

800

Glow level

D
et

ec
ti

on
ti

m
e

(m
s)

ARUco
UWARUco, Base

UWARUco, Masked
ARUco3, Normal

ARUco3, Fast
ARUco3, VideoFast

AprilTag2

0 5 10 15 20
0

20

40

60

80

100

Glow level

D
et

ec
te

d
m

ar
ke

rs
(%

)

0 5 10 15 20
0

50

100

150

200

Glow level

D
et

ec
ti

on
ti

m
e

(m
s)

ARUco, Original
ARUco, CLAHE
ARUco, Deblur

ARUco, WB
ARUco, MBUWWB

UWARUco, Masked, Original
UWARUco, Masked, CLAHE
UWARUco, Masked, Deblur

UWARUco, Masked, WB
UWARUco, Masked, MBUWWB

Figure 10. Results of the test with glowing markers. Top row: results of marker-detecting algorithms;
bottom row: results of image-improving algorithms; left column: percentage of detected markers; right
column: detection time in milliseconds. As with the reference test, many solutions again detected 100%
of markers, and their results overlap.

4.5. All Effects

Finally, all effects affecting synthetically-generated images were incorporated. Several variables
were changed at the same time, continuously between successive frames. To focus more on the bad
visibility conditions, the values were chosen to obtain a difference between the black and white areas
that was lower than 100 and a glow level between 10 and 20: the intensity of background Cbg was
changed between values of 50 and 200, the distance of markers dist between values of 1.5 and 4.0,
and intensity of fog fd between values of 0.6 and 1.0. Additionally, the intensity of the glow effect
was changed to influence the intensity of black and white regions of markers, glow alpha, and glow
sigma simultaneously. The intensity of black regions Cb was changed between values of 50 and 100,
the intensity of white regions Cw between values of 330 and 400, glow alpha αglow between values of
0.4 and 0.8, and glow sigma σglow between values of 30 and 60. As in the previous experiments, the
scale of markers was kept the same at a value of 30 at a distance of one and the sigma of sensor noise
σsn at a value five.

Remote Sens. 2019, 11, 459 16 of 23

This test also had no variable parameter, so only one set of 20 videos with 100 frames was
generated. The results are presented in Table 2. The highest number of detected markers was obtained
by both versions of UWARUco, with the Masked version detecting nearly 73% of markers at times
lower than the other algorithms (except for ARUco3). This shows that UWARUco, especially its
Masked version, is best suited for underwater environments. The Fast and VideoFast versions of
ARUco3 algorithm detected less than 26% of markers, though their detection time was very low,
especially in the case of the VideoFast version. AprilTag2 detected nearly 29% of markers, but at a very
high computation time. The original ARUco did not detect even 8% of markers.

Table 2. Results of the test with all effects active.

Solution ARUco UWARUco UWARUco ARUco3 ARUco3 ARUco3 AprilTag2Base Masked Normal Fast VideoFast

Detected markers (%) 7.967 63.533 72.683 1.875 25.892 18.075 28.900
Detection time (ms) 97.862 263.899 128.422 77.829 56.790 6.979 871.732

Solution ARUco ARUco ARUco ARUco ARUco
Original CLAHE Deblur WB MBUWWB

Detected markers (%) 7.967 42.417 19.767 19.783 21.342
Detection time (ms) 97.862 200.967 219.783 206.210 195.214

Solution
UWARUco UWARUco UWARUco UWARUco UWARUco

Masked Masked Masked Masked Masked
Original CLAHE Deblur WB MBUWWB

Detected markers (%) 72.683 74.992 47.608 73.125 68.633
Detection time (ms) 128.422 136.058 156.065 117.667 94.246

The results of image-improving techniques were rather surprising, because in previous
experiments, these methods gave promising results only when detecting markers at different distances,
but in other tests, they decreased the number of detected markers. Here, these methods increased the
number of detected markers, although again at an increased time of detection. This result is similar to
that obtained in [35] when tested on real images.

Discussion of Synthetic Images

The synthetic generation of images is able to test many situations that appear in underwater
environments; however, some of these situations were not tackled. One limitation of the generated
images is that all markers were facing the camera, but this problem of skewed markers or markers
under severe perspective deformations is not bound solely to underwater environments and requires
the construction of a specialized marker detectors to deal with it. In our experience with real images,
the detection of markers was also influenced by objects that obscured markers, be it floating objects
like fish or static objects like surrounding rocks and plants. As with the previous issue, the solution to
this problem requires a specialized marker detector.

All tested images also had a single-color background, which does not appear in real images, since
the background is made of various objects. The algorithm for generating images can be improved
by swapping the background with an image or a video that is taken under water, but this solution
requires many videos in different environments with well-assessed parameters for the effect, to fit
the generated markers seamlessly into images, and to prevent the results from being shifted towards
specific videos.

The results of the tests do not mention a number of falsely-detected markers. Unless we
included the results with mischosen contours as described in Section 4.1, falsely-detected markers
appeared extremely rarely. From 176,000 frames processed by 15 combinations of marker-detecting
and image-improving algorithms, only 110 falsely-detected markers appeared, detected by ARUco (1),
ARUco with CLAHE (10), ARUco with deblur (11), ARUco with WB (11), ARUco with MBUWWB (7),
the Masked version of UWARUco (5), the Masked version of UWARUco with CLAHE (3), the Masked

Remote Sens. 2019, 11, 459 17 of 23

version of UWARUco with deblur (4), the Masked version of UWARUco with WB (2), the Masked
version of UWARUco with MBUWWB (6), and AprilTag2 (50). The Base version of UWARUco and all
versions of ARUco3 did not report any false positive.

5. Evaluation of Real Underwater Images

Marker-detecting solutions were also compared on images taken under water in the
Mediterranean Sea. This experiment reported only the number of detected markers and the processing
time, and not the precision of the detection, for the following reasons. First, the divers were unable to
measure the location of markers with a sufficient precision, which requires being very high, since the
experiments with synthetic images found that the ground truth location of markers must be known
with a precision of units of pixels. Second, due to the high number of frames, bad visibility conditions,
and required precision, the ground truth was infeasible to obtain manually.

The parameters of videos are shown in Table 3. This table describes the level of turbidity in the
videos, the depth under the sea at which the videos were taken, the device that took the video, the
resolution of the video, the compression algorithm, the frame rate, and the length in seconds. Sets
Baiae1, Athens, Constandis, and Green Bay were taken from [1] and set Villa from [35], and sets
Baiae2 and Epidauros are new. It should be noted that the level of visibility is only illustrative; it is
not based on any measurement and was chosen by the authors by assessing the videos.

Sets Baiae1, Athens, Constandis, and Green Bay contained a board with six markers from the
ARUco library, each with a size of 8 cm. Set Athens also contained a single separate marker with a size
of 16 cm, and sets Villa and Epidauros contained nine separate markers of a size of 19 cm, placed into
a grid of 3× 3 markers. In set Baiae2, separate markers of a of size 19 cm were placed isolated from
each other on the ground around other objects. Measuring was performed on the same computer that
ran the experiments with the synthetically-generated videos. Computation time was also evaluated
only on frames with detected markers if they followed another frame with detected markers.

5.1. Results of Underwater Tests

The total number of detected markers and average processing time are shown in Table 4. ARUco
was able to detect markers in videos with medium visibility (Villa, Baiae2), but struggled to detect
markers in poor visibility conditions (Baiae1). The results were better when using image-improving
techniques; however, no technique provided the best result in all sets. MBUWWB provided good
results in Villa and especially in Baiae1, but it struggled with the detection of markers in set Baiae2,
where the markers were at different distances from the viewer, which also means their visibility was
different. This represents a complication for MBUWWB, because this technique is a global technique
(as well as other techniques, e.g., WB), and it changes the whole image in the same manner. The
ARUco3 detector also did not produce consistent results; the table shows that in the case of Villa, the
Fast version of this detector detected the highest number of markers and the Normal version found the
lowest number of markers, but an opposite result was found in Baiae2 and other sets. It must be noted,
however, that both the Fast and VideoFast versions are also global techniques and exhibited similar
problems as the MBUWWB image-improving technique. AprilTag2 was able to detect a very high
number of markers in most situations; however, its processing time was also very high and therefore
hard to use in real-time augmented reality applications, especially when targeting mobile devices.

Remote Sens. 2019, 11, 459 18 of 23

Table 3. Evaluated sets of videos. Abbreviations: Nm: name of the set; Lc: location where the set was
taken; Tr: assessed level of turbidity; Dp: depth at which the set was taken; Dv: recording device; Rs:
resolution of the video; Cm: compression method; FL: frame rate and length in seconds. Location B., It.
stands for Baiae, Italy.

Nm: Baiae1 Nm: Athens Nm: Constandis
Lc: Baiae, Italy Lc: Athens, Greece Lc: Limassol, Cyprus
Tr: High Tr: Moderate Tr: Moderate
Dp: 5–6 m Dp: 7–9 m Dp: 20–22 m
Dv: iPad Pro 9.7 inch Dv: GoPro camera Dv: GARMIN VIRB XE
Rs: 1920 × 1080 Rs: 1920 × 1080 Rs: 1920 × 1440
Cm: MPEG-2 Cm: MPEG-4 Cm: MPEG-4
FL: 30 fps, 85 s FL: 30 fps, 31 s FL: 24 fps, 160 s

Nm: Green Bay Nm: Villa Nm: Baiae2
Lc: Green Bay, Cyprus Lc: Villa a Protiro, B., It. Lc: Baiae, Italy
Tr: Low Tr: Moderate Tr: Moderate
Dp: 7–9 m Dp: 5–6 m Dp: 5–6 m
Dv: NVIDIA SHIELD Dv: Samsung Galaxy S8 Dv: iPad Mini 2
Rs: 1920 × 1080 Rs: 1920 × 1080 Rs: 1920 × 1080
Cm: MPEG-4 Cm: no compression Cm: MPEG-4
FL: 30 fps, 81 s FL: 30 fps, 141 s FL: 30 fps, 421 s

Nm: Epidauros
Lc: Epidauros, Greece
Tr: Low
Dp: 4–6 m
Dv: Sony FDR-X1000V
Rs: 3840 × 2160
Cm: MPEG-4
FL: 24 fps, 180 s

Remote Sens. 2019, 11, 459 19 of 23

Table 4. Results of detecting markers in real underwater videos.

Solution ARUco UWARUco UWARUco ARUco3 ARUco3 ARUco3 AprilTag2Base Masked Normal Fast VideoFast

Baiae1 # of markers 467 6004 6223 36 2145 1893 5695
Time (ms) 24.627 111.528 57.680 15.397 6.970 1.748 178.874

Athens # of markers 5272 5913 5832 4877 5565 2610 5923
Time (ms) 31.202 86.503 53.771 21.398 6.550 2.843 240.672

Constandis # of markers 6981 6944 6878 6578 5382 4511 6332
Time (ms) 39.010 139.514 65.565 25.030 6.672 5.446 327.887

Green Bay # of markers 7964 7932 7594 7062 6347 5784 7332
Time (ms) 27.531 74.712 49.915 18.040 10.537 5.288 222.003

Villa # of markers 14,457 19,879 20,145 9947 14,316 12,589 20,082
Time (ms) 75.747 140.659 62.872 58.266 6.700 2.368 323.005

Baiae2 # of markers 13,829 15,932 14,976 12,466 8257 3869 14,577
Time (ms) 34.552 83.614 55.093 21.535 4.563 1.672 230.910

Epidauros # of markers 18,749 25,126 25,713 13,864 10,480 6340 21,628
Time (ms) 181.441 425.286 252.327 152.590 23.575 4.692 1252.122

Solution ARUco ARUco ARUco ARUco ARUco
Original CLAHE Deblur WB MBUWWB

Baiae1 # of markers 467 3646 3857 4098 5140
Time (ms) 24.627 38.064 80.560 43.370 47.475

Athens # of markers 5272 5504 5611 5640 5616
Time (ms) 31.202 48.424 86.524 45.867 38.271

Constandis # of markers 6981 6279 6850 6737 6869
Time (ms) 39.010 73.406 136.165 86.436 53.236

Green Bay # of markers 7964 6406 8355 7392 7896
Time (ms) 27.531 49.000 84.394 50.442 35.355

Villa # of markers 14,457 18,981 18,958 19,029 19,398
Time (ms) 75.747 138.263 178.143 114.494 45.239

Baiae2 # of markers 13,829 14,126 11,445 11,500 10,227
Time (ms) 34.552 62.603 100.112 50.598 27.755

Epidauros # of markers 18,749 20,030 23,597 16,929 21,696
Time (ms) 181.441 341.750 586.785 296.562 181.483

Solution
UWARUco UWARUco UWARUco UWARUco UWARUco

Masked Masked Masked Masked Masked
Original CLAHE Deblur WB MBUWWB

Baiae1 # of markers 6223 6612 6081 6129 5605
Time (ms) 57.680 64.902 93.618 64.998 55.866

Athens # of markers 5832 5806 5848 5831 5829
Time (ms) 53.771 60.742 85.729 60.054 52.622

Constandis # of markers 6878 6702 6959 6749 6843
Time (ms) 65.565 75.938 105.121 76.404 68.263

Green Bay # of markers 7594 6776 7464 7149 7599
Time (ms) 49.915 56.289 78.405 56.515 51.390

Villa # of markers 20,145 20,281 19,400 20,225 20,258
Time (ms) 62.872 82.574 114.332 65.231 61.647

Baiae2 # of markers 14,976 15,996 15,356 12,988 13,244
Time (ms) 55.093 65.498 85.929 62.256 55.415

Epidauros # of markers 25,713 26,012 23,618 21,991 25,623
Time (ms) 252.327 305.263 388.771 274.608 247.548

The Base version of UWARUco consistently detected a very high number of markers. This was
compensated by its processing time, which was also higher: it was higher than the processing times
of original ARUco and all versions of ARUco3, approximately the same as the processing times of
slower combinations of ARUco and image-improving algorithms, and still lower than the processing
times of AprilTag2. However, the results of the Masked version of UWARUco show that the number of
detected markers can still be very high while the processing time was much lower. They also show

Remote Sens. 2019, 11, 459 20 of 23

that using additional image-improving techniques is not necessary, although using some of them can
still lead to better results at the price of increased processing time.

5.2. Discussion of Underwater Experiments

The comparison between the results of the Base and Masked versions of UWARUco shows that
the number of detected markers can increase when the thresholded image is masked before detecting
contours. This unexpected outcome happens because this mask does not remove contours; instead, it
merges them into larger contours, which can connect borders of markers that are disconnected in the
original image, therefore detecting a marker that is not detected in the original image.

According to [10], ARUco3 was designed to run fast with high-resolution images at the price of
reducing its adaptability to worse visibility and lighting conditions. This is confirmed in the results: the
Fast and VideoFast versions of ARUco3 provided the fastest processing times when compared to other
methods, but the number of detected markers dropped in worse visibility conditions. The number
of false positives was not counted in this experiment, since the ground truth solution was missing.
However, it is expected to be very low, like in the previous test with synthetically-generated images.

6. Conclusions

This paper presented a method for generating synthetic images of square markers in bad visibility
conditions in underwater environments that focuses on high turbidity and glowing markers, as well
as a new algorithm for detecting markers in such environments called UWARUco. This algorithm is
based on the ARUco marker detector, but replaces its method for reducing the number of contours
caused by noise with a method that masks out areas that do not contain any markers. In simulated bad
visibility conditions, our solution detected almost three-times more markers than state-of-the-art robust
solutions, while increasing the processing time by 30% when compared to ARUco. In real underwater
environments, it detected between 95% and 290% of markers detected by other solutions suitable for
real-time AR, while keeping 83–234% of the ARUco processing time, depending on the environment.

Future work will be focused on the fusion of this algorithm with other methods that are used
to compute and maintain the orientation of a mobile device. Using techniques like the Kalman filter,
the position obtained visually by detecting markers will be fused with the results of internal device
sensors like the accelerometer or gyroscope and devices that are able to provide absolute position
underwater like acoustic beacons. This will create a sophisticated solution for underwater augmented
reality, which can be deployed in applications that present underwater cultural heritage to the general
public or to help divers with orientation in deep underwater archaeological sites.

Author Contributions: Conceptualization, J.Č.; data curation, F.B. and D.S.; investigation, J.Č.; methodology, J.Č.
and F.L.; software, J.Č.; writing, original draft, J.Č.; writing, review and editing, F.B., D.S., and F.L.

Funding: This research is a part of the i-MareCulture project (Advanced VR, iMmersive Serious Games and
Augmented REality as Tools to Raise Awareness and Access to European Underwater CULTURal heritagE, Digital
Heritage) that has received funding from the European Union’s Horizon 2020 research and innovation program
under Grant Agreement No. 727153.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Skarlatos, D.; Agrafiotis, P.; Balogh, T.; Bruno, F.; Castro, F.; Petriaggi, B.D.; Demesticha, S.; Doulamis, A.;
Drap, P.; Georgopoulos, A.; et al. Project iMARECULTURE: Advanced VR, iMmersive Serious Games and
Augmented REality as Tools to Raise Awareness and Access to European Underwater CULTURal Heritage; Digital
Heritage; Springer International Publishing: Cham, Switzerland, 2016; pp. 805–813.

2. Edney, J.; Spennemann, D.H.R. Can Artificial Reef Wrecks Reduce Diver Impacts on Shipwrecks?
The Management Dimension. J. Marit. Archaeol. 2015, 10, 141–157. [CrossRef]

http://dx.doi.org/10.1007/s11457-015-9140-5

Remote Sens. 2019, 11, 459 21 of 23

3. Vlahakis, V.; Ioannidis, N.; Karigiannis, J.; Tsotros, M.; Gounaris, M.; Stricker, D.; Gleue, T.; Daehne, P.;
Almeida, L. Archeoguide: An Augmented Reality Guide for Archaeological Sites. IEEE Comput. Graph. Appl.
2002, 22, 52–60. [CrossRef]

4. Panou, C.; Ragia, L.; Dimelli, D.; Mania, K. An Architecture for Mobile Outdoors Augmented Reality for
Cultural Heritage. ISPRS Int. J. Geo-Inf. 2018, 7. [CrossRef]

5. Von Lukas, U.F. Underwater Visual Computing: The Grand Challenge Just around the Corner. IEEE Comput.
Graph. Appl. 2016, 36, 10–15. [CrossRef] [PubMed]

6. Kato, H.; Billinghurst, M. Marker Tracking and HMD Calibration for a Video-Based Augmented Reality
Conferencing System. In Proceedings of the 2nd IEEE and ACM International Workshop on Augmented
Reality, San Francisco, CA, USA, 20–21 October 1999; pp. 85–94. [CrossRef]

7. Wagner, D.; Schmalstieg, D. ARToolKitPlus for Pose Tracking on Mobile Devices. In Proceedings of 12th
Computer Vision Winter Workshop, St. Lambrecht, Austria, 6–8 February 2007; pp. 139–146.

8. Fiala, M. ARTag, a Fiducial Marker System Using Digital Techniques. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA,
20–25 June 2005; IEEE Computer Society: Washington, DC, USA, 2005; pp. 590–596. [CrossRef]

9. Garrido-Jurado, S.; noz Salinas, R.M.; Madrid-Cuevas, F.J.; Marín-Jiménez, M.J. Automatic Generation
and Detection of Highly Reliable Fiducial Markers under Occlusion. Pattern Recognit. 2014, 47, 2280–2292.
[CrossRef]

10. Romero-Ramirez, F.J.; noz Salinas, R.M.; Medina-Carnicer, R. Speeded up detection of squared fiducial
markers. Image Vis. Comput. 2018, 76, 38–47. [CrossRef]

11. Olson, E. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the 2011 IEEE International
Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3400–3407. [CrossRef]

12. Wang, J.; Olson, E. AprilTag 2: Efficient and robust fiducial detection. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Beijing, China, 9–15 October 2016.

13. Naimark, L.; Foxlin, E. Circular Data Matrix Fiducial System and Robust Image Processing for a Wearable
Vision-Inertial Self-Tracker. In Proceedings of International Symposium on Mixed and Augmented Reality,
Darmstadt, Germany, 30 September–1 October 2002; pp. 27–36. [CrossRef]

14. Köhler, J.; Pagani, A.; Stricker, D. Robust Detection and Identification of Partially Occluded Circular
Markers. In Proceedings of the VISAPP 2010—Fifth International Conference on Computer Vision Theory
and Applications, Angers, France, 17–21 May 2010; pp. 387–392.

15. Bergamasco, F.; Albarelli, A.; Cosmo, L.; Rodolá, E.; Torsello, A. An Accurate and Robust Artificial Marker
Based on Cyclic Codes. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2359–2373. [CrossRef] [PubMed]

16. Bencina, R.; Kaltenbrunner, M.; Jorda, S. Improved Topological Fiducial Tracking in the reacTIVision System.
In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05)—Workshops, San Diego, CA, USA, 20–25 June 2005. doi:10.1109/CVPR.2005.475.

17. Toyoura, M.; Aruga, H.; Turk, M.; Mao, X. Detecting Markers in Blurred and Defocused Images.
In Proceedings of the 2013 International Conference on Cyberworlds, Yokohama, Japan, 21–23 October 2013;
pp. 183–190. [CrossRef]

18. Xu, A.; Dudek, G. Fourier Tag: A Smoothly Degradable Fiducial Marker System with Configurable Payload
Capacity. In Proceedings of the 2011 Canadian Conference on Computer and Robot Vision, St Johns, NL,
Canada, 25–27 May 2011; pp. 40–47. [CrossRef]

19. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, Corfu, Greece, 20–25 September 1999; Volume 2, pp. 1150–1157.
[CrossRef]

20. Gordon, I.; Lowe, D.G. Scene modelling, recognition and tracking with invariant image features.
In Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality,
Arlington, VA, USA, 2–5 November 2004; pp. 110–119. [CrossRef]

21. Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded Up Robust Features. In Proceedings of the Computer
Vision—ECCV 2006, Graz, Austria, 7–13 May 2006; Leonardis, A., Bischof, H., Pinz, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 404–417.

22. Rosten, E.; Drummond, T. Machine Learning for High-Speed Corner Detection. In Proceedings of the
Computer Vision—ECCV 2006, Graz, Austria, 7–13 May 2006; Leonardis, A., Bischof, H., Pinz, A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2006; pp. 430–443.

http://dx.doi.org/10.1109/MCG.2002.1028726
http://dx.doi.org/10.3390/ijgi7120463
http://dx.doi.org/10.1109/MCG.2016.24
http://www.ncbi.nlm.nih.gov/pubmed/26960024
http://dx.doi.org/10.1109/IWAR.1999.803809
http://dx.doi.org/10.1109/CVPR.2005.74
http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://dx.doi.org/10.1016/j.imavis.2018.05.004
http://dx.doi.org/10.1109/ICRA.2011.5979561
http://dx.doi.org/10.1109/ISMAR.2002.1115065
http://dx.doi.org/10.1109/TPAMI.2016.2519024
http://www.ncbi.nlm.nih.gov/pubmed/26800529
http://dx.doi.org/10.1109/CW.2013.58
http://dx.doi.org/10.1109/CRV.2011.13
http://dx.doi.org/10.1109/ICCV.1999.790410
http://dx.doi.org/10.1109/ISMAR.2004.53

Remote Sens. 2019, 11, 459 22 of 23

23. Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary Robust Independent Elementary Features.
In Proceedings of the Computer Vision—ECCV 2010, Heraklion, Crete, Greece, 5–11 September 2010;
Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 778–792.

24. Leutenegger, S.; Chli, M.; Siegwart, Y. Brisk: Binary robust invariant scalable keypoints. In Proceedings of
the 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011;
pp. 2548–2555.

25. Mair, E.; Hager, G.D.; Burschka, D.; Suppa, M.; Hirzinger, G. Adaptive and Generic Corner Detection Based
on the Accelerated Segment Test. In Proceedings of the Computer Vision—ECCV 2010, Heraklion, Crete,
Greece, 5–11 September 2010; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 183–196.

26. Ortiz, R. FREAK: Fast Retina Keypoint. In Proceedings of the 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; IEEE Computer Society: Washington,
DC, USA, 2012; pp. 510–517.

27. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings
of the 2011 International Conference on Computer Vision, Tokyo, Japan, 25–27 May 2011; pp. 2564–2571.
[CrossRef]

28. Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System.
IEEE Trans. Robot. 2015, 31, 1147–1163. [CrossRef]

29. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. In Proceedings of the
Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele, B.,
Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 834–849.

30. Agarwal, A.; Maturana, D.; Scherer, S. Visual Odometry in Smoke Occluded Environments; Technical Report;
Robotics Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 2014.

31. Dos Santos Cesar, D.B.; Gaudig, C.; Fritsche, M.; dos Reis, M.A.; Kirchner, F. An Evaluation of Artificial
Fiducial Markers in Underwater Environments. In Proceedings of the OCEANS 2015, Washington, DC, USA,
19–22 October 2015; pp. 1–6. [CrossRef]

32. Briggs, A.J.; Scharstein, D.; Braziunas, D.; Dima, C.; Wall, P. Mobile robot navigation using self-similar
landmarks. In Proceedings IEEE International Conference on Robotics and Automation, San Francisco, CA,
USA, 24–28 April 2000; Volume 2, pp. 1428–1434. [CrossRef]

33. Nègre, A.; Pradalier, C.; Dunbabin, M. Robust vision-based underwater homing using self-similar landmarks.
J. Field Robot. 2008, 25, 360–377. [CrossRef]

34. Žuži, M.; Čejka, J.; Bruno, F.; Skarlatos, D.; Liarokapis, F. Impact of Dehazing on Underwater Marker
Detection for Augmented Reality. Front. Robot. AI 2018, 5, 1–13. [CrossRef]

35. Čejka, J.; Žuži, M.; Agrafiotis, P.; Skarlatos, D.; Bruno, F.; Liarokapis, F. Improving Marker-Based Tracking
for Augmented Reality in Underwater Environments. In Proceedings of the Eurographics Workshop on
Graphics and Cultural Heritage, Vienna, Austria, 12–15 November 2018; Sablatnig, R., Wimmer, M., Eds.;
Eurographics Association: Vienna, Austria, 2018; pp. 21–30. [CrossRef]

36. Andono, P.N.; Purnama, I.K.E.; Hariadi, M. Underwater image enhancement using adaptive filtering for
enhanced sift-based image matching. J. Theor. Appl. Inf. Technol. 2013, 51, 392–399.

37. Ancuti, C.; Ancuti, C. Effective Contrast-Based Dehazing for Robust Image Matching. IEEE Geosci. Remote
Sens. Lett. 2014, 11, 1871–1875. [CrossRef]

38. Ancuti, C.; Ancuti, C.; Vleeschouwer, C.D.; Garcia, R. Locally Adaptive Color Correction for Underwater
Image Dehazing and Matching. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 997–1005. [CrossRef]

39. Gao, Y.; Li, H.; Wen, S. Restoration and Enhancement of Underwater Images Based on Bright Channel Prior.
Math. Probl. Eng. 2016, 2016, 1–15. [CrossRef]

40. Agrafiotis, P.; Drakonakis, G.I.; Georgopoulos, A.; Skarlatos, D. The Effect Of Underwater Imagery
Radiometry On 3D Reconstruction And Orthoimagery. ISPRS Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci. 2017, XLII-2/W3, 25–31. [CrossRef]

41. Mangeruga, M.; Bruno, F.; Cozza, M.; Agrafiotis, P.; Skarlatos, D. Guidelines for Underwater Image
Enhancement Based on Benchmarking of Different Methods. Remote Sens. 2018, 10. [CrossRef]

http://dx.doi.org/10.1109/ICCV.2011.6126544
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/OCEANS-Genova.2015.7271491
http://dx.doi.org/10.1109/ROBOT.2000.844798
http://dx.doi.org/10.1002/rob.20246
http://dx.doi.org/10.3389/frobt.2018.00092
http://dx.doi.org/10.2312/gch.20181337
http://dx.doi.org/10.1109/LGRS.2014.2312314
http://dx.doi.org/10.1109/CVPRW.2017.136
http://dx.doi.org/10.1155/2016/3141478
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W3-25-2017
http://dx.doi.org/10.3390/rs10101652

Remote Sens. 2019, 11, 459 23 of 23

42. Morales, R.; Keitler, P.; Maier, P.; Klinker, G. An Underwater Augmented Reality System for Commercial
Diving Operations. In Proceedings of the OCEANS 2009, Biloxi, MS, USA, 26–29 October 2009; pp. 1–8.
[CrossRef]

43. Bellarbi, A.; Domingues, C.; Otmane, S.; Benbelkacem, S.; Dinis, A. Augmented reality for underwater
activities with the use of the DOLPHYN. In Proceedings of the 10th IEEE International Conference on
Networking, Sensing and Control (ICNSC), Evry, France, 10–12 April 2013; pp. 409–412. [CrossRef]

44. Oppermann, L.; Blum, L.; Shekow, M. Playing on AREEF: Evaluation of an Underwater Augmented Reality
Game for Kids. In Proceedings of the 18th International Conference on Human-Computer Interaction
with Mobile Devices and Services, Florence, Italy, 6–9 September 2016; ACM: New York, NY, USA, 2016;
pp. 330–340. [CrossRef]

45. Jasiobedzki, P.; Se, S.; Bondy, M.; Jakola, R. Underwater 3D mapping and pose estimation for ROV operations.
In Proceedings of the OCEANS 2008, Quebec City, QC, Canada, 5–18 September 2008; pp. 1–6. [CrossRef]

46. Hildebrandt, M.; Christensen, L.; Kirchner, F. Combining Cameras, Magnetometers and Machine-Learning
into a Close-Range Localization System for Docking and Homing. In Proceedings of the OCEANS
2017—Anchorage, New York, NY, USA, 5–9 June 2017.

47. Mueller, C.A.; Doernbach, T.; Chavez, A.G.; Köhntopp, D.; Birk, A. Robust Continuous System Integration
for Critical Deep-Sea Robot Operations Using Knowledge-Enabled Simulation in the Loop. In Proceedings
of the International Conference on Intelligent Robots and Systems (IROS 2018), Madrid, Spain, 1–5 October
2018; pp. 1892–1899. [CrossRef]

48. Shortis, M. Calibration Techniques for Accurate Measurements by Underwater Camera Systems. Sensors
2015, 15, 30810–30826. [CrossRef] [PubMed]

49. Drap, P.; Merad, D.; Mahiddine, A.; Seinturier, J.; Gerenton, P.; Peloso, D.; Boï, J.M.; Bianchimani, O.;
Garrabou, J. In situ Underwater Measurements of Red Coral: Non-Intrusive Approach Based on Coded
Targets and Photogrammetry. Int. J. Herit. Digit. Era 2014, 3, 123–139. [CrossRef]

50. Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; Romeny, B.T.H.;
Zimmerman, J.B. Adaptive Histogram Equalization and Its Variations. Comput. Vis. Graph. Image Process.
1987, 39, 355–368. [CrossRef]

51. Krasula, L.; Callet, P.L.; Fliegel, K.; Klíma, M. Quality Assessment of Sharpened Images: Challenges,
Methodology, and Objective Metrics. IEEE Trans. Image Process. 2017, 26, 1496–1508. [CrossRef] [PubMed]

52. Limare, N.; Lisani, J.L.; Morel, J.; Petro, A.B.; Sbert, C. Simplest Color Balance. IPOL J. 2011, 1. [CrossRef]
53. Koschmieder, H. Theorie der horizontalen Sichtweite; Beiträge zur Physik der freien Atmosphäre, Keim &

Nemnich: Munich, Germany, 1924.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.23919/OCEANS.2009.5422365
http://dx.doi.org/10.1109/ICNSC.2013.6548773
http://dx.doi.org/10.1145/2935334.2935368
http://dx.doi.org/10.1109/OCEANS.2008.5152076
http://dx.doi.org/10.1109/IROS.2018.8594392
http://dx.doi.org/10.3390/s151229831
http://www.ncbi.nlm.nih.gov/pubmed/26690172
http://dx.doi.org/10.1260/2047-4970.3.1.123
http://dx.doi.org/10.1016/S0734-189X(87)80186-X
http://dx.doi.org/10.1109/TIP.2017.2651374
http://www.ncbi.nlm.nih.gov/pubmed/28092541
http://dx.doi.org/10.5201/ipol.2011.llmps-scb
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Marker Detection and Image-Improving Algorithms
	ARUco, ARUco3, and AprilTag2
	Real-Time Algorithms Improving Underwater Images
	Detection of Markers under Water

	Generating Synthetic Images
	Experiments with Synthetically-Generated Images
	Reference with Good Visual Conditions
	Bad Visibility Conditions
	Foggy Conditions and Markers at Different Distances
	Glowing Markers
	All Effects

	Evaluation of Real Underwater Images
	Results of Underwater Tests
	Discussion of Underwater Experiments

	Conclusions
	References

