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Abstract: Monthly gravitational field solutions as spherical harmonic coefficients produced by the
GRACE satellite mission require post-processing to reduce the effects of shortwave-length noises and
north–south stripe errors. However, the spatial smoothing and de-striping filter commonly used in
the post-processing step will either reduce spatial resolution or remove short-wavelength features
of geophysical signals, mainly at high latitudes. Here, by using prior covariance information that
reflects the spatial and temporal features of the geophysical signals and the correlated errors derived
from the synthetic model, together with the covariance matrix of the formal errors for the monthly
gravity spherical harmonic coefficients, we apply the Kalman filter to separate the geophysical signal
from GRACE Level-2 data and simultaneously to estimate the correlated errors. By increasing the
number of observations, the iterative process is applied to update the state vector and covariance
in the Kalman filter because the prior information is not accurate. Due to the inevitable truncation
error, multiple gridded-gain factors method considering different temporal frequencies has been
developed to recover the geophysical signal. The results show that the Kalman filter can reduce the
high-frequency noises and correlated errors remarkably. When compared with the commonly used
filter, no spatial filter (such as Gaussian filter) is used in the Kalman filter. Therefore, the estimated
signal preserves its natural resolution, and more detailed information is retained. It shows good
consistency when compared with mascon solutions in both secular trend and annual amplitude.

Keywords: GRACE; Kalman filter; multiple gridded-gain factors

1. Introduction

After more than 15 productive years in orbit, the U.S./German Gravity Recovery and Climate
Experiment (GRACE) satellite mission has provided unprecedented insights into how our planet
is changing (mainly the surface mass variations) by tracking the continuous movement of liquid
water, ice, and the solid Earth [1]. Generally, there are two categories of processing methods to obtain
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the surface mass variations from the GRACE observations. The first one is the mascon approach,
directly using the intersatellite range-rate and acceleration observation to estimate the mass changes
of mass concentration blocks (or “mascons”) on the Earth’s surface [2–4]. These mascon solutions
are computed in presence of regularization constraint and no additional smoothing or empirical
de-striping or filtering is applied. The second approach uses the monthly gravity field solutions
(GRACE Level-2 data) as spherical harmonic (SH) Stokes coefficients provided by GRACE analysis
centers [5]. Due to the errors of the satellite instruments and the imperfections of the background
models [6], the SH coefficients are seriously polluted by errors. Therefore, the direct use of GRACE
Level-2 data to measure the surface mass changes of the Earth is affected by different kinds of noises,
and if they are not filtered in the post processing, it is difficult to extract useful geophysical signals
from the Level-2 data.

The noises among the Level-2 data are mainly manifested in two types. One is the high-frequency
(short-wavelength) noise, namely mainly existing in the high degree part of the gravity field. And the
other is the north–south stripe error which is shown as north–south stripe distribution features. In order
to obtain the pure geophysical signals, it is necessary to isolate the signals from the SH coefficients
accurately. The principle of the separation is to obtain the signals as completely as possible (without
any attenuation or damage) from the global observations of the GRACE mission. To solve this problem,
many algorithms have been proposed.

One type of the algorithms is spatial smoothing filtering method mainly to weaken the impact
of high-frequency noise. The first such filter is the degree-dependent isotropic Gaussian filter [5,7].
The higher degree of the SH coefficients, the more serious the effect caused by high-frequency noise is.
Therefore, by reduction of the weight of high degree of the SH coefficients, this filter can obviously
reduce the effects of the shortwave-length noise. Unlike the isotropic Gaussian filter, the non-isotropic
filter [8], such as Fan filter [9], is constructed depending on both the degree and the order of the SH
coefficients, and it has been proved to be a better method. The nature of this type of methods is to
achieve a smooth effect by sacrificing spatial resolution of signals. Therefore, the selection of the
smoothing radius of the filter is a problem. Only if the smoothing radius is large enough can the noise
be eliminated significantly and can the signal be clearly displayed. However, the short-wavelength
features of the original signals will be removed, and simultaneously the original spatial resolution
will also be destroyed. Moreover, the smoothing radius will change with time and latitude, since the
satellite orbit height changes with time, and the data on different latitudes on the Earth will have
different spatial resolution. For example, a smoothing radius of 350 km may be appropriate for areas
near the equator, but it is too large for denser ground track coverage near the poles. Another problem
of this spatial smoothing filtering method is that it will yield signal leakage. Even though researchers
have put forward the forward-modeling method [10] and the scaling technique [11–15] to restore the
signal, and the effect is obvious, the signals cannot be completely restored.

Focusing on the north–south stripe errors, Swenson and Wahr [16] developed another type of
algorithm called the de-striping filter, which aims to reduce the empirical errors owing to certain
even–odd degree correlations found in the GRACE SH coefficients. Duan et al. [17] empirically
designed a moving window filter to reduce these correlations. The core idea of this kind of filtering
method is to use the polynomial to fit the correlation errors between certain SH coefficients. Next,
by subtracting the fitted values from the original SH coefficients, the residual values are treated as the
signals. The de-striping filter for the Stokes’ coefficients with order m or higher using a polynomial of
degree n is also known as the PnMm filter, such as P7M7 and P11M11 [18], P3M10 [19], P3M6 [20,21],
P4M6 [22],and P5M8 [23]. Different values of the parameter n and m in the de-striping filter can
suppress the stripe features to a different extent in different research contexts. However, there are
still many stripe features around the equator area after they are by de-striping filter method. After
that, a spatial smoothing filtering method such as Gaussian or Fan smoothing is usually required.
The so-called correlation and the parameters n and m are all empirical, so they cannot be accurately
obtained. Because of a certain width of the moving window, the high order parts of the SH coefficients
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which have much more serious north–south stripe errors cannot be filtered [9]. Moreover, some
shortwave-length features of the geophysical signals are removed after this filter method, mainly at
high latitudes [16].

In addition to the algorithms above, some other algorithms have also been proposed to filter the
observations to obtain useful signals. Chen et al. [24] constructed an optimized smoother based
on a criterion of maximizing the ratio of variance over land relative to that over the oceans to
suppress high-degree noise in the monthly gravity field solutions. Empirical orthogonal function (EOF)
analysis [25,26] was developed to extract signals from the GRACE Level-2 data. Frappart et al. [27]
denoised satellite gravity signals by independent component analysis (ICA).

Even though the filtering methods described above can successfully suppress the high-frequency
noise and the north–south stripe errors, they do not take advantage of the prior information. Therefore,
it is impossible to obtain the rigorous estimates of north–south stripe errors of SH coefficients and
the signals are also suppressed at the same time. However, using some prior information that reflects
both the spatial spectral features and temporal correlations among the data, Kurtenbach et al. [28]
obtained daily gravity field solutions based on GRACE Level 1B data. Wang et al. [29] developed a
new stochastic filter technique for the statistically rigorous separation of gravity signals and correlated
“stripe” noises in the GRACE Level-2 data. This stochastic filter is able to remove the correlated stripe
noise even without a spatial smoothing procedure. However, the stochastic model designed to reflect
monthly GRACE correlated errors for all months is not time-varying, so this is not in line with the
actual situation.

The study in this article is inspired by Kurtenbach et al. [28] and Wang et al. [29], who focused
on the construction of stochastic models and used the Kalman filter to improve GRACE gravity field
solutions. The correction of the truncation error is also the subject of our research. The main contents of
this article are as follows: In Section 2, the Kalman filter approach is explained, and the prior covariance
information used in the Kalman filter and multiple gridded-gain factors to correct the truncation error
are given. Section 3 shows the results, and Section 4 is the discussion. Conclusions are presented
in Section 5.

2. Methods

2.1. The Kalman Filter Approach

The surface mass temporal variations of the Earth can be expressed by the GRACE-derived SH
coefficients. Due to the errors mentioned above, we can consider the SH coefficients are composed
of geophysical signal, north–south stripe error, and a zero-mean Gaussian white noise. Therefore,
the observation equations for the GRACE observations (Level-2 data) in time t (i.e., a particular month)
can be formulated as follows [29]:

Lt = AtXt + Vt =
[

E E
][ Xsignal

t

Xstripe
t

]
+ Vt (1)

where Lt is the GRACE SH coefficients as the observation vector in time t, At is the design matrix, Xt is
the unknown state vector which contains geophysical signal Xsignal

t and stripe noise Xstripe
t , and Vt

is the Gaussian white noise with covariance matrix Rt of the GRACE SH coefficients. Commonly,
the degree of the monthly GRACE solutions is truncated to 60, so there are a total of 7434 unknown
parameters in the state vector Xt, and the design matrix At is a sparse matrix of dimension 3717 × 7434.

Obviously, this is an ill-posed problem because the number of unknown parameters is twice the
number of observations. Up to now, no temporal correlations have been introduced into the processing
strategy. However, it can be safely predicted that the estimate of the gravity field will not change
arbitrarily from one month to the next. Therefore, we can assume a simplified case that the time
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evolution of the gravity field is a linear process and can be written as the following first order Markov
process [28]:

Xt = BXt−1 + Wt = EXt−1 + Wt (2)

This represents a prediction of the gravity field coefficients from month t − 1 to the current month
t. The prediction is characterized by the matrix of the process dynamic B, namely the state transition
matrix. Wt is process noise and we assume that it is zero mean with covariance matrix Qt (including
covariance matrix of geophysical signal and stripe noise):

Qt =

[
Qsignal

t 0
0 Qstripe

t

]
(3)

This is different from Wang et al. [29]; they assumed the stripe noise is uncorrelated with
the temporal changes of the geophysical signal. Therefore, the part of the state transition matrix
representing the stripe noise is a zero matrix, and the covariance matrix Qstripe

t is the same for every
month. However, since the evolving state of the GRACE flight segment will lead to varying errors in
each monthly field over time [30], this is not consistent with the actual situation. Therefore, the state
transition matrix here is a diagonal matrix, and time-varying month-by-month stochastic models of
monthly GRACE correlated errors based on GRACE data quality information need be designed.

Based on the above assumptions and analysis, we can use standard Kalman filter formulation to
estimate the state vector at the current month. The standard Kalman filter approach is divided into
two steps: prediction and update. In the prediction step, the state of the current epoch is predicted
by the previously updated state. Therefore, the previously updated state vector, with its covariance
matrix, and the time-varying covariance matrix of process noise should be known. When in the update
step, new observations (namely the monthly GRACE solutions) of the current epoch are included,
and the predictions of the current epoch are improved by these observations. The Gaussian white
noise with covariance matrices of these observations are also needed. Therefore, the construction of
the previously updated state vector and the covariance matrices Rt and Qt are crucial in the Kalman
filter. The design matrix and the state transition matrix are also important, and they are determined in
this section.

It is clear that the prior information will have a significant impact on the filtering results. However,
the synthetic model as the prior information is not accurate for various reasons. It is inevitable that
the prior models have a variety of errors, but we can improve the accuracy and reliability of the
results by increasing the number of observations. Here, we introduce an iterative process. The four
sets of monthly gravity solutions and covariance matrices obtained by CSR [30], GFZ [31], JPL [32],
and ITSG-Grace2014 [33] are introduced into the iterative process as observations. Firstly, the GRACE
Level-2 data provided by the first analysis center is combined with the constructed prior information,
so a solution through Kalman filtering can be obtained. The solution obtained in the first step is then
taken as the prior information and combined with the GRACE Level-2 data provided by the second
analysis center, so another solution is obtained by Kalman filtering. In the same way, the solutions
from the remaining two analysis centers are incorporated into the iteration process. The observations,
the state vectors, and the covariance matrices are updated in each iteration. Therefore, the final filtered
result fuses the information of the solutions of each GRACE analysis center.

2.2. Prior Information

As we know, the estimated state at the current month depends on prior information, such as
the earlier states and the associated covariance matrices in the Kalman filter approach. Therefore,
a previously updated state vector with its covariance matrix as well as the time-varying process noise
covariance matrix Qt and the covariance matrix Rt of the observational white noise as mentioned above
should be determined. The acquisition and construction of the prior information and the associated
covariance matrices used in the Kalman filter procedure are described in this section.
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The geophysical signals detected by the GRACE satellites are the sum of terrestrial water
storage changes, ocean mass variations, glacial isostatic adjustment (GIA), and the evolution of
other geophysical phenomena [1]. In order to obtain prior information on the surface mass variation
of the entire planet, we should make full use of various models and observations related. Here,
we combine the global mass variations from the Global Land Data Assimilation System (GLDAS)
land water content model [11], the GRACE-derived monthly mass variations (as in some regions,
such as Antarctica and Greenland, few models are available), and the ocean bottom pressure (OBP)
model [34], together with a GIA model [35], as synthetic monthly models (see Figure 1) that offer the
prior information of the geophysical signals.
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(b) OBP, (c) GRACE (unfiltered) expressed as the equivalent water height (EWH, unit: cm), and (d)
GIA expressed as the EWH rate (unit: mm/year).

The monthly mass variations of all the synthetic models are truncated to degree 60, and we
take the truncated SH coefficients of the synthetic models as the previously updated state of the
geophysical signals. Therefore, drawing on the idea of degree variance [29,36], we can design the
diagonal components of the SH coefficients variances as the matrix Qsignal

t (Figure 2(a)). It is divided
into two parts (coefficients of cosineC and sineS) and expressed as follows:

(σ
signal,C
l )

2
=

1
2l + 1

l

∑
m=0

∆C2
l,m, (σsignal,S

l )
2
=

1
2l + 1

l

∑
m=0

∆S2
l,m (4)

where ∆Cl,m and ∆Sl,m are the differences between the truncated SH coefficients of two adjacent
months’ synthetic models. The values of degree variance at all different orders m of the SH coefficients
are the same when given a certain degree l. It should be noted that the assumption that the SH
coefficients are not correlated with each other is made here, so the matrix Qsignal

t is diagonal.
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However, no model or observation can be used to estimate the prior information of the stripe
noise currently. According to the characteristics of the stripe error, Wang et al. [29] designed the
matrix Qstripe

t with a number of trials and choices. Therefore, the design is empirical and statistical.
Most importantly, the covariance matrix does not change with the month, and this does not match the
reality. By comparing the unfiltered results with the filtered results (traditionally, the PnMm filter and
spatial smoothing such as Gaussian smoothing are adopted) expressed as the equivalent water height
(EWH), we can find that the stripe noise is dominant in the observation, and almost no obvious signal
can be used, especially in the middle and low latitudes. This is why the original GRACE Level-2 data
needs to be post-processed. Thus, the original observation subtracted from the filtered result can be
considered as the approximation of the time-varying stripe error. Although this is an approximation,
since the magnitude of the stripe error is much larger than the magnitude of the geophysical signal,
this approximation is very close to the true value of the stripe error. It should be noted that the
spatial filtering here can only be Gaussian smoothing, because the PnMm filtering can significantly
change the signal, especially in high latitudes [16]. Therefore, we can take the approximation as the
previously updated state of the stripe noise. Similarly, we can also calculate the diagonal components
the covariance matrix Qstripe

t (Figure 2b) according to Equation (4).
Owing to the errors in the model and observation, and to the approximation of the error, these are

just approximate estimates of the signal and stripe error (although they prevail in the true signal
and stripe error), but we can reduce the errors caused by these approximations by increasing the
observations with an iterative process as mentioned in Section 2.1. Moreover, Wang et al. [29] had
proved that increasing or decreasing the covariance Qsignal

t in a certain range in the Kalman filter
procedure does not have great effect on the results. Thus, in some way, using a highly accurate
covariance Qsignal

t is not urgently needed.
When the monthly gravitational field solutions are released by each GRACE analysis center,

the formal errors that can describe the white noise of the observations for the SH coefficients are
also released. Therefore, the formal errors can be directly used as the covariance of the observational
white noise in the Kalman filter. We used four analysis center products. Among them, CSR and
ITSG-Grace2014 provided the full formal error covariance matrices, but the formal error covariance
matrices obtained by GFZ and JPL were only diagonal components. To examine the feasibility of the
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simplified diagonal covariance matrix, the results of using a diagonal matrix and a full matrix were
compared. The result of the comparison is that the RMS (root mean square) difference in mass estimate
expressed as the EWH is less than 1 cm. In addition, the quotient of the latitude-weighted RMS of
the EWH of the continental and oceanic signals that represent the signal-to-noise ratio (SNR) [24]
was calculated, and the results showed that the difference was not obvious. Therefore, we used the
diagonal components of the formal errors as the observational covariance matrices Rt when the full
formal error covariance matrices were not accessible. Figure 2c shows the covariance matrix of the
observation provided by CSR. It can be seen in Figure 2c that the values of the main diagonal elements
are much larger than the elements of other locations, and this can partly explain the feasibility of using
diagonal elements. Moreover, using the full covariance matrices greatly increases computation time
and consumes a substantial amount of memory.

2.3. Multiple Gridded-Gain Factors

Based on the method described above, the geophysical signals expressed by SH coefficients can
be separated from the GRACE monthly solutions by using the Kalman filter. Typically, the geophysical
signal is truncated to a certain spectral degree (60 in this article). When the truncated SH coefficients
are converted to gridded surface mass variations of our planet [5], non-negligible signal attenuation
and leakage can result. Therefore, the mass variations should be corrected for signal modification
due to the truncation errors. The scaling technique is a commonly effective method [14,15], which
employs the gain factor to reconcile the differences in spatial scale between the true signal and the
truncated signal. Since the signals we need to recover are on a global scale, a single gain factor based
on a regionally averaged time series is not appropriate. Moreover, the mass variability may have
different temporal modes, so the scaling factor should consider the signals of seasonal, long-term
trends and residual components [10,14].

In order to recover the signal more accurately, we decompose the synthetic model and the
truncated model into three components (namely seasonal, trend, and residual components) respectively.
Correspondingly, three kinds of global gridded-gain factors can be estimated separately by minimizing
the misfit of the entire time series of each component. Therefore, the truncated signals separated by
the Kalman filter can be recovered by the following formula:

Sre = kseasonalSseasonal
tr + ktrendStrend

tr + kresidualSresidual
tr (5)

where Sseasonal
tr , Strend

tr , and Sresidual
tr represent the seasonal, trend, and residual components to be

corrected, respectively; kseasonal , ktrend, and kresidual represent the scale factors of the above three
components derived through a least squares regression, respectively; Sre represents the restored signals.

3. Results

In order to evaluate the performance of the methods as described above, we used the Kalman
filter and multiple gridded-gain factors to process the monthly GRACE Level-2 data. The data sets
provided by GFZ, JPL, and CSR start in April 2002 and end in June 2017, but the data sets provided
by ITSG-Grace2014 lack a substantial amount of the month, so we selected the monthly data start
in January 2003 and end in December 2014 (a total of 133 months) from the four GRACE analysis
centers above.

According to our convention, the results are expressed as equivalent water height (EWH) [5].
Firstly, the mean gravity field of these months was subtracted from the GRACE monthly solutions so
that the EWH can reflect the effects of variations in the gravity field. We then replaced the C2,0 terms
with results observed by satellite laser ranging [37], and the Degree-1 terms obtained by the method of
Swenson et al. [38] in the form of Stokes coefficients. The updated time series for these terms can be
downloaded from PODAAC. Lastly, the results of the Kalman filter expressed as EWH Were compared
with the traditional filtering results (P3M6+Fan filter, smoothing radius of 300 km) and the mascon
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products released by CSR. After separating geophysical signals from GRACE Level-2 data, we needed
to correct the truncation error. Therefore, we first used simulation data to test the performance of
multiple gridded-gain factors proposed in this article.

3.1. The Performance of Multiple Gridded-Gain Factors

We first expanded the synthetic model data to the degree of 60 in the form of harmonic coefficients,
and then converted the harmonic coefficients into EWH as the truncated result. Next, the single
gridded-gain factors and the multiple gridded-gain factors were calculated respectively using the
synthetic model and the truncated result. At last, the truncated result was restored by using these two
types of gridded-gain factors. As shown in Figure 3, we chose two typical grid points in the Amazon
basin of time series to show the performance of these two restored methods. Moreover, we also
tested this method for the averaged surface mass variations in the Mississippi Basin, the Yangtze
River basin, Greenland, and Antarctica. Table 1 shows the RMS value of the surface mass variation
differences between the original synthetic model and the data derived from different approaches in
different regions.

Remote Sens. 2019, 10, x FOR PEER REVIEW  8 of 17 

 

We first expanded the synthetic model data to the degree of 60 in the form of harmonic 298 
coefficients, and then converted the harmonic coefficients into EWH as the truncated result. Next, 299 
the single gridded-gain factors and the multiple gridded-gain factors were calculated respectively 300 
using the synthetic model and the truncated result. At last, the truncated result was restored by 301 
using these two types of gridded-gain factors. As shown in Figure 3, we chose two typical grid 302 
points in the Amazon basin of time series to show the performance of these two restored methods. 303 
Moreover, we also tested this method for the averaged surface mass variations in the Mississippi 304 
Basin, the Yangtze River basin, Greenland, and Antarctica. Table 1 shows the RMS value of the 305 
surface mass variation differences between the original synthetic model and the data derived from 306 
different approaches in different regions. 307 

 
(a) 

 
(b) 

Figure 3. Time series of surface mass variations at two grid points: (a) located at (75.5°W, 12.5S) and 308 
(b) located at (76.5°W, 10.5S). These time series include the variations derived from the original 309 
synthetic model (red), the truncated result (black), signals restored by single gridded-gain factors 310 
(blue), and signals restored by multiple gridded-gain factors (green) at both grid points. 311 

Table 1. The root mean square (RMS) of the surface mass variation differences between the original 312 
synthetic model and the data derived from different approaches in different regions (unit in mm). 313 

Point/Region  RMS1 1  RMS2 2  RMS3 3 

Point of Figure 3(a) 30.32 26.82 7.77 

Point of Figure 3(b) 34.19 31.18 9.74 

Amazon 7.24 6.35 4.46 

Mississippi 4.31 3.68 2.31 

Yangtze River 4.82 4.39 2.93 

Greenland 40.60 10.94 7.31 

Antarctica 12.24 6.87 4.22 
1 The RMS of the surface mass variation difference obtained by the original synthetic model and the truncated 314 
result. 315 
2 The RMS of the surface mass variation difference obtained by the original synthetic model and the single 316 
factor. 317 
3 The RMS of the surface mass variation difference obtained by the original synthetic model and multiple 318 
gridded-gain factors. 319 

Although the signals restored by these two methods were somewhat different from the original 320 
synthetic model data in Figure 3, we could also see that the signals restored by multiple 321 
gridded-gain factors were more consistent with the original synthetic model data than those 322 
restored by single gridded-gain factors intuitively. This is confirmed from statistical results in Table 323 

Figure 3. Time series of surface mass variations at two grid points: (a) located at (75.5◦W, 12.5S)
and (b) located at (76.5◦W, 10.5S). These time series include the variations derived from the original
synthetic model (red), the truncated result (black), signals restored by single gridded-gain factors (blue),
and signals restored by multiple gridded-gain factors (green) at both grid points.

Table 1. The root mean square (RMS) of the surface mass variation differences between the original
synthetic model and the data derived from different approaches in different regions (unit in mm).

Point/Region RMS1 1 RMS2 2 RMS3 3

Point of Figure 3a 30.32 26.82 7.77
Point of Figure 3b 34.19 31.18 9.74

Amazon 7.24 6.35 4.46
Mississippi 4.31 3.68 2.31

Yangtze River 4.82 4.39 2.93
Greenland 40.60 10.94 7.31
Antarctica 12.24 6.87 4.22

1 The RMS of the surface mass variation difference obtained by the original synthetic model and the truncated
result. 2 The RMS of the surface mass variation difference obtained by the original synthetic model and the single
factor. 3 The RMS of the surface mass variation difference obtained by the original synthetic model and multiple
gridded-gain factors.

Although the signals restored by these two methods were somewhat different from the original
synthetic model data in Figure 3, we could also see that the signals restored by multiple gridded-gain
factors were more consistent with the original synthetic model data than those restored by single
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gridded-gain factors intuitively. This is confirmed from statistical results in Table 1. Therefore,
the multiple gridded-gain factors had better performance in the correction of truncated errors when
compared with the single factor method. Therefore, the method of multiple gridded-gain factors was
applied to restore signals.

3.2. Monthly Variations of the Separated Signal and Stripe Noise

For the sake of convenience, we show results for six consecutive months. Figure 4 shows
the geophysical signal (surface mass) separated from the GRACE Level-2 data by the Kalman
filter and recovered by multiple gridded-gain factors. It can be seen from the results in Figure 4
that the Kalman filter could effectively extract geophysical signals from the monthly gravity field
model. High-frequency noise and stripe noise were successfully suppressed. Simultaneously,
the short-wavelength features of the signals were well preserved since no spatial smoothing (such
as Gaussian smoothing and Fan filtering) was applied. Seasonal signals in the mid-low latitudes
(such as the Amazon basin, Northern India, Central Africa, and Northern Australia) could be
intuitively represented. Long-term changes in high latitudes (mainly Greenland and Antarctica) can
be clearly seen if the results of all months are observed. With the application of multiple gridded-gain
factors, the attenuation and leakage of the geophysical signals due to the truncation error were
effectively corrected.
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recovered by multiple gridded-gain factors.
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The monthly variations in the separated stripe noise are shown in Figure 5, in which we can see
the temporal and spatial variation characteristics of this noise. From the spatial perspective, the stripe
errors are manifested by the linear characteristics of the north–south elongation. Furthermore, the stripe
errors in the mid-low latitudes are much more serious than those in the high latitudes. This may be
partly explained by the system’s polar orbit. It is important to emphasize that the stripe error varies
significantly over time. This also proves that it is not reasonable to adopt the invariant stochastic
models of north–south stripe errors and that the time-varying month-by-month stochastic models
based on GRACE data quality information in this article are feasible.
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Figure 5. Monthly stripe error variations (from June 2002 to December 2002) separated from the
Kalman filter, using GRACE RL05 Level-2 monthly gravity solutions.

3.3. Comparison with a Commonly Used Filter

Figure 6 compares the commonly used filtering method (the P3M6 and smoothed with the
300 km Fan filter) with the method used in this article. The left column is filtered with the common
method, and the right column applies the Kalman filter. In order to better show the performance of
the post-processing method, we selected three months (February 2003, December 2005, and January
2014) with relatively poor data quality. In addition, multiple gridded-gain factors were not used to
eliminate the effect of signal correction for the truncation error. Hence, the signal leakage due to the
truncation error using these two methods can be clearly seen in Figure 6. In the left column of Figure 6,
some stripe noises have not been removed by the common method, primarily in the middle and low
latitudes. However, with the Kalman filter, this phenomenon becomes inconspicuous.
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Figure 6. GRACE-derived maps of surface mass variations. The left column is filtered with the P3M6
and smoothed with 300 km Fan, and the right column applies the Kalman filter.

It is important to note that signal distortions obtained by the common method are severe and
produce many false signals, mainly in high latitudes, such as in the central and northeastern parts of
Greenland [16,39]. Since the Kalman filter was used without any spatial smoothing, the original spatial
resolution was preserved, and it seems that the resolution is higher because this method retains a
substantial amount of detail signals. Moreover, the effect of the common filtering on signal attenuation
is obvious, especially where the surface mass changes greatly. The signal amplitude is significantly
smaller than the signal amplitude separated by the Kalman filter. This is verified by GPS results.

As we know, temporal mass variations at the Earth’s surface cause surface displacements that can
be measured by GPS receivers. Therefore, monthly vertical station displacements of the global network
of permanent GPS stations can act as independent observations to be compared with the monthly
height series derived from GRACE data. The vertical station displacements of the time series used
in this article are available at ftp://sopac-ftp.ucsd.edu/pub/timeseries/measures/ats/. All the GPS
time series data used here span more than 5 years and we tried to ensure that these stations (a total of
175) were evenly distributed globally.

For each station’s daily height coordinate time series, a trend was removed and monthly means
were computed, in order to correspond to monthly vertical displacements obtained by GRACE data
series. The reduction ratios of the WRMS (weighted root-mean-square) values of the GPS observations
when the GRACE solutions were subtracted were calculated [40]. The WRMS reduction ratio reflects
the agreement of the GPS and GRACE time series in both amplitude and phase. A value of 1.0 indicates
perfect agreement between GPS-observed and GRACE-observed annual plus semiannual seasonal
displacements. Figure 7 shows the WRMS reduction ratio calculated by the GRACE monthly height

ftp://sopac-ftp.ucsd.edu/pub/timeseries/measures/ats/
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series derived from the results of the Kalman filter and the commonly used filtering method (the
P3M6 and smoothed with 300 km Fan filter), respectively. Table 2 lists the statistical results. Overall,
the height time series with the Kalman filter are more consistent with GPS data than that with the
commonly used filter. In addition, 69.7% (122 of 175) of the stations with the Kalman-filtered results
have a larger WRMS reduction than those with the commonly used filtered results. Since GPS data
reflect changes in a local point, we can say that the Kalman-filtered results reflect more details.
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The secular trends and annual amplitudes of the global surface mass variations derived from the
P3M6 and Fan (300 km) filter, the Kalman filter, and the mascon method are compared in Figure 8.
Because the GIA effects are removed in the mascon products provided by CSR, the GIA models have
to be added back. Note that the mascon solutions have restored the GAD products, representing
the atmospheric and oceanic effects over the ocean. So here the effects of GAD are deducted from
the mascon solution. In addition to the global results, we also compare the average mass changes
of basin scales estimated by the Kalman filter with the commonly used filtered solution and the
mascon solution. Figure 9 compares the average mass estimates at various spatial scales ranging from
∼950,000 km2 (the Orinoco River Basin) to ∼2,160,000 km2 (Greenland). Figure 9a–f are ordered by
increasing area.

Moreover, the indexes of the SNR as mentioned in Section 2.2 are calculated with the results
derived from these three methods, and they are 2.45 (P3M6 and Fan filtered), 3.35 (Kalman-filtered),
4.94 (Kalman-filtered and with truncated errors corrected), and 4.50 (mascon), respectively. When
compared with the Kalman filter, it can also be seen that the common method has removed a substantial
amount of detail as mentioned above. The signals obtained by the common method are attenuated in
many places, while the other two methods perform well. When comparing the results with mascon
solutions that do not need processing of de-striping or smoothing, the results obtained by the Kalman
filter show good consistency in both secular trend and annual amplitude.
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Figure 8. The estimates of secular trend (left column) and annual amplitude (right column) applying
P3M6 and Fan (300 km) filter (the top row), the Kalman filter (the middle row), and the mascon method
(the bottom row).
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4. Discussion

When different temporal modes of mass variations are taken into consideration, the multiple
gridded-gain factors method improves the signal recovery performance compared with the single
gridded-gain factors method [14]. However, in some areas, where the temporal modes of mass
changes vary simply, such as desert areas, the effect of this improvement will be weakened. Conversely,
the more complex mass variations are at time scale, the better performance of the multiple gridded-gain
factors method will be. The two grid points in the Amazon basin in Figure 3 are representative of
this. Therefore, the reduced value of RMS is substantial at some grid points. However, in this basin,
the reduction in average surface mass variations is smaller than the reduction at these grid points.

It should be noted that there is no signal attenuation and leakage caused by spatial filtering,
because the Kalman filter is used to obtain the signal, and the signal recovery here is mainly aimed
at truncation error. As we know, the more serious the signal is damaged, the harder it is to recover.
Therefore, it is relatively easy to recover the signal here. In order to achieve better effects in a specific
application of a certain area, we can divide the time series of mass changes into several periods to
restore the signal separately.

In the separation of geophysical signals from GRACE gravity data based on the Kalman filter,
the determination of the prior covariance information that reflects the spatial and temporal features
of the geophysical signals and the correlated errors is crucial. Obviously, the more accurate the prior
information, the more accurate the signal separated by the Kalman filtering. Therefore, we carefully
used a variety of geophysical models to synthesize a priori models in order to achieve better results.
Since there is no time-varying model to reflect the information of the stripe noise, we designed an
approximate method to describe the temporal-spatial characteristics of the stripe error.

After obtaining the signals by Kalman filtering, we compared them with signals derived from
the commonly used filter and the mascon solution. The data of a total of 175 GPS stations, which are
evenly distributed globally, were used to evaluate the result of GRACE. The WRMS reduction ratio,
which reflects the agreement of the GPS and GRACE time series, shows that the Kalman filter can
obtain more details regarding geophysical signals than can the P3M6 and Fan filter. The approximate
estimate of the SNR is based on the fact that GRACE measurement errors are at approximately the
same level over both land and ocean, but the surface mass variability is stronger in the continents than
that in the oceans [24]. We used this estimate to evaluate the signals derived from different methods.
Furthermore, we used the average mass changes of different basins to compare the secular trend and
annual amplitude of the signal.

5. Conclusions

We used the Kalman filter to separate the geophysical signals from GRACE gravity data with prior
information derived from a variety of models and observations. In order to correct the truncation error,
a multiple gridded-gain factors method considering different temporal frequencies of the geophysical
signal was developed to recover the signal. The results show that this method can considerably
reduce the high-frequency noises and correlated errors. Without spatial filtering, the estimated signal
preserves its original resolution and retains more detailed information. This is confirmed by the
GPS data and the SNR value. Good consistency is shown when comparing the results with mascon
solutions in both secular trend and annual amplitude.

The covariance matrix of process noise based on time-varying prior information was designed,
and the results of the separated stripe noise prove that this error does vary with time. By increasing the
number of observations with an iterative process, the accuracy of the results is improved. Therefore,
the Kalman filter can fuse the information of the solutions provided by each GRACE analysis center.
Because no spatial smoothing is needed, more details on the separated signal are retained. Without the
signal distortion due to spatial smoothing, after using the multiple gridded-gain factors method to
correct the truncation error, the method performs satisfactorily. In addition, full covariance matrices in
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the prior information are not urgently needed, so we can use the diagonal components of the formal
errors when the full formal error covariance matrices are not accessible.

These methods can be used as a complete post-processing method for monthly GRACE Level-2
data, and the results can then be used in continental water, ice, ocean mass, and atmospheric mass
research. We believe that, as these models become more refined in the future, the results of this
algorithm will greatly improve. In application, more prior information will lead to better results.
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