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Abstract: Based on widely used remote sensing ocean net primary production (NPP) datasets,
the spatiotemporal variability of NPP is first analyzed over the tropical eastern Indian and western
Pacific Ocean for the period 1998–2016 using the conventional empirical orthogonal function (EOF),
the lead–lag correlation and the ensemble empirical mode decomposition (EEMD) technique. Barnett
and Preisendorfer’s improved Canonical Correlation Analysis (BPCCA) is also applied to derive
covariability patterns of NPP with major forcing factors of the chlorophyll a concentration (Chla),
sea surface temperature (SST), sea level anomaly (SLA), ocean rainfall (Rain), sea surface wind (Wind),
and current (CUR) under climate changes of El Niño–Southern Oscillation (ENSO) and Indian Ocean
Dipole (IOD). We find that: (1) The first two seasonal EOF modes capture significant temporal and
meridional NPP variability differences, as NPP reaches peaks approximately three months later
in the western Pacific Ocean than that of in the eastern Indian Ocean. (2) The second and third
interannual EOF modes are closely related with ENSO with a two-month lag and synchronous with
IOD, respectively, characterized by southwesterly positive anomaly centers during positive IOD
years. (3) NPP presents different varying tendencies and similar multiscale oscillation patterns with
interannual and interdecadal cycles of 2~3 years, 5~8 years, and 9~19 years in subregions of the
Bay of Bengal, the South China Sea, the southeastern Indian Ocean, and the northwestern Pacific
Ocean. (4) The NPP variability is strongly coupled with negative SST, SLA, and Rain anomalies,
as well as positive Chla, Wind and CUR anomalies in general during El Niño/positive IOD years.
The results reveal the diversity and complexity of large-scale biophysical interactions in the key
Indo-Pacific Warm Pool region, which improves our understanding of ocean productivity, ecosystems,
and carbon budgets.

Keywords: remote sensing; spatiotemporal variability; ocean net primary production; El Niño; Indian
Ocean Dipole; covariability patterns

1. Introduction

Contributing roughly half of the biosphere’s net primary production (NPP), photosynthesis by
oceanic phytoplankton is a vital link in the cycling of carbon between living and inorganic stocks,
whose variability profoundly affects the global carbon cycle and climate changes [1,2]. As ocean
absorption of atmospheric CO2 can contribute to moderate future climate change and the marine
environment. Moreover, additional large-scale modifications associated to global change such as
the predicted alterations in ocean chemistry, temperature, and so on are also expected to impact
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considerably marine ecosystems. Therefore, the distribution and dynamic variability of ocean NPP and
its relationship with physical driving factors and climate indices have received increasing attention
with the accumulation of multiple remote sensing products over the past decades [3–6].

Compared to the seas off Somalia and the Arabian Sea, few studies have focused on the biological
variability associated with ocean physical environments in the tropical eastern Indian Ocean [7–14].
In addition, existing studies mainly investigate the strongly impacted chlorophyll a concentration
(Chla) off the coast of Java by monsoon-driven currents and upwelling changes on a seasonal timescale
or interannual modulation driven by the Indian Ocean Dipole (IOD). El Niño–Southern Oscillation
(ENSO), as a well-known interannual climate mode, develops in the tropical Pacific. Its remote
forcing on biological variation in the tropical eastern Indian Ocean has received far less attention, with
the exception of Currie et al. [7], who studied the Chla anomaly patterns for the period 1961–2001
driven by ENSO and IOD within the Indian Ocean using a coupled model. Meanwhile, many
studies have committed to the biological variability in the tropical western Pacific Ocean. The ocean
primary production has been found to be low in the western Pacific but with strong biological
variability associated with ENSO [15–19]. Though the spatiotemporal variability of Chla associated
with the physical variables of sea surface temperature (SST), sea level anomaly (SLA), sea surface
wind (Wind) and ENSO have been studied in western Pacific on seasonal and interannual timescale by
Hou et al. [17], the possible influence of IOD events was not included.

The tropical eastern Indian and western Pacific Ocean between 25◦S–25◦N and 75◦–165◦E
(Figure 1) is known as a key Indo-Pacific Warm Pool region, which is characterized by low surface
salinity and oligotrophic conditions but is sensitive to climate changes. The Indonesian Throughflow
(ITF) here allows low latitude exchanges between the western Pacific and eastern Indian Ocean, which
impacts the basin-scale biogeochemistry of the eastern Indian Ocean [20]. However, spatiotemporal
biophysical variability patterns and their responses to two climate modes of ENSO and IOD in the
study area have not been available to date. Therefore, we systematically analyze the seasonal to
interannual variability and long-term trends of NPP as well as the covariability patterns with typical
environmental variables (Chla, SST, SLA, Rain, Wind, and Current) over the tropical eastern Indian
and western Pacific Ocean during 1998–2016, using the conventional empirical orthogonal function
(EOF) analysis, the lead–lag correlation analysis, the ensemble empirical mode decomposition (EEMD)
analysis and the Barnett and Preisendorfer improved Canonical Correlation Analysis (BPCCA).Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 18 
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Figure 1. Climatological ocean net primary production (NPP) during 1998–2016 in the study area,
derived based on SeaWiFS and MODIS Chla using the VGPM algorithm.

The paper is organized as follows. Section 2 describes the various datasets and methods used.
The results in Section 3 include the following four parts: (1) dominant seasonal NPP variability patterns
through the EOF analysis; (2) dominant interannual NPP variability through the EOF and the lead–lag
correlation analysis; (3) long-term trends and multiscale oscillation patterns of NPP through the EEMD
analysis in four subregions of the Bay of Bengal (BoB), the South China Sea (SCS), the southeastern
Indian Ocean and the northwestern Pacific Ocean; and (4) covariability patterns of NPP with major
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forcing factors on an interannual timescale through the BPCCA analysis. Finally, the discussion and
conclusions are provided in Sections 4 and 5.

2. Datasets and Methods

2.1. Datasets

The multisource satellite observation and reanalysis products from January 1998 to December
2016 are obtained. NPP datasets are from the Standard VGPM algorithm based on SeaWiFS and MODIS
from the Ocean Productivity site. The VGPM is a ‘chlorophyll-based’ model that estimates net primary
production from chlorophyll using a temperature-dependent description of chlorophyll-specific
photosynthetic efficiency [21]. Though studies have suggested that VGPM predicts larger NPP in
temperate and subpolar regions and lower values in equatorial regions compare to Eppley-VGPM,
it still keeps the robust nature of the primary temporal trends of the NPP [1,22–24]. The VGPM
NPP does provide a means of quantifying ocean productivity on a regional or global scale and
linking its variability to environmental factors. We also use Chla datasets from the Ocean Color
Climate Change Initiative (OC-CCI); SST datasets from the NOAA High Resolution SST data provided
by the NOAA/OAR/ESRL PSD; SLA datasets from the Archiving, Validation and Interpretation
of Satellite Oceanographic (AVISO); rain datasets from the Tropical Rainfall Measuring Mission
(TRMM) 3B43 precipitation product, provided by the NASA Goddard Earth Sciences Data and
Information Services Center (GES DISC); wind datasets from the Cross-Calibrated Multi-Platform
(CCMP) Version-2.0 vector wind analyses produced by Remote Sensing Systems; and ocean current
(CUR) datasets from the GLOBAL-REANALYSIS-PHY-001-030 reanalysis product provided by the
Copernicus Marine Environment Monitoring Service (CMEMS). Variables and their sources, timespans,
and temporal–spatial resolutions are described in Table 1.

Table 1. Sources, timespans, and temporal–spatial resolutions of the datasets.

Variable Data Source Timespan Resolution

NPP SeaWiFS/MODIS Standard VGPM Oct 1997–present 9 km, monthly
Chla OC-CCI V3.1 Sep 1997–present 4 km, monthly
SST OI SST V2 Dec 1981–present 0.25◦, daily
SLA AVISO Dec 1992–present 0.25◦, monthly
Rain TRMM_3B43 V7 Jan 1998–present 0.25◦, monthly
Wind CCMP V2.0 Jan 1987–present 0.25◦, monthly
CUR CMEMS Jan 1993–Dec 2016 0.083◦, monthly

In addition, two climate variability indices are used, the representative multivariate ENSO index
(MEI) and dipole mode index (DMI), whose positive values can characterize El Niño/positive IOD
years (IODs) while negative values represent La Niña/negative IODs.

2.2. Data Preprocessing

To get monthly mean NPP datasets, we multiplied each pixel by the number of days represented
by the downloaded files (monthly) to transform units of mg C/m2/day to mg C/m2/month. Before
proceeding with any long time series analysis, all variables were resampled to grids of 0.25◦ by 0.25◦ for
computational efficiency. Since the computation of EOF analysis required no gaps in the time series, the
missing values were filled by interpolating spatially adjacent values, if they existed. Pixels where the
original time series contained more than 50% missing data were set as NAN, and the remaining gaps
were filled at each pixel using a temporal linear interpolation. In particular, due to the approximated
lognormal distribution of satellite-derived NPP and Chla, they were log-transformed before the EOF
analysis [17,25]. We also removed seasonal cycles to get standardized monthly mean anomaly fields
of variables using the z-score algorithm, which calculates the mean and standard deviation for a
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given month’s values, and then standardizes each value by subtracting the mean and dividing by the
standard deviation [26].

2.3. Methods

The empirical orthogonal function (EOF) analysis was used on the climatological monthly mean
NPP fields over the 19 years and standardized monthly NPP anomaly fields, respectively, to study
the seasonal and interannual variability of NPP. EOF is a statistical method for diagonalizing the
covariance matrix of a given field into a set of eigenvalues and corresponding eigenvectors and then
projecting the eigenvectors onto the original field to obtain a time series [27]. Thus, the variability of the
field is decomposed into sums of modes, each of which is described by a spatial pattern (the so-called
EOF) and a time series (principal component, PC) [28]. The statistical significance test of the EOF modes
is based on the rule of thumb proposed by North et al. [29]. Furthermore, the lead–lag correlation
analysis was used to estimate the time lags of the NPP variability associated with the climate modes of
ENSO and IOD.

The traditional linear regression analysis has been widely used to assess the trend of ocean
chlorophyll and productivity [1,4,30]. However, to identify more complex variations of NPP, we used
the ensemble empirical mode decomposition (EEMD) technique designed for adaptive analysis of
nonlinear and nonstationary time series [31], which has been recently applied to characterize significant
Chla oscillation patterns and trend estimation [32,33].The statistical significance of IMFs is based on
the distribution of energy as a function of the mean period of the IMF relative to that of pure white
noise. This method allows one to differentiate true signals from components of noise with any selected
statistical significance level (90%, 95%, or 99%).

To identify coupling patterns of NPP with typical physical variables, we chose the improved
canonical correlation analysis presented by Barnett and Preisendorfer [34], namely BPCCA.
The resulting coupled modes aim to successively maximize the covariability between the given
pair of fields [35]. The BPCCA is followed to filter out small-scale noise in the datasets and to produce
more stable patterns than the classical CCA, which is particularly apparent when the sample size is
smaller than the spatial dimensionality of the field. Accordingly, on the basis of the EOF analysis, only
the most relevant orthogonal modes (cumulatively representing approximately 70% of the temporal
variance) are retained for the CCA [36]. The Bartlett–Lawley significance test is applied at the 95%
confidence level in order to assess the statistical significance of the couple modes [37].

3. Results and Analysis

3.1. Dominant Seasonal NPP Variability Patterns

For the EOF on monthly mean NPP fields, the first two modes, which accounts for 71.71% and
11.85% of the total variance, respectively, capture the dominant seasonal variability patterns. The spatial
patterns and their corresponding principal components are shown in Figure 2. The positive (negative)
spatial distributions and positive (negative) temporal coefficients yield positive NPP anomalies,
whereas the positive (negative) spatial distributions and negative (positive) temporal coefficients yield
negative NPP anomalies.

In terms of the temporal variation, the first principal component (PC1) shown in Figure 2c
indicates the seasonal NPP variation, with peaks in boreal winter (January–February) and troughs in
boreal summer (July–August), whereas PC2 shown in Figure 2d exhibits variation with peaks in boreal
autumn (October–November) and troughs in boreal spring (April–May). The combination of the two
modes thus describes a consecutive annual cycle of NPP variations over the study area.
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Figure 2a shows the NPP variation pattern in boreal winter and summer, with an approximate
southwest–northeast trend but opposite structure. Specifically, for boreal winter, significant positive
anomalies exist in most of the western Pacific region, which means that NPP remarkably increases in
the SCS, the north Pacific subtropical oligotrophic region and seas north of New Guinea, as well as the
northeastern BoB. Meanwhile, NPP shows an obvious reduction during boreal winter in almost all
the eastern Indian Ocean, especially in seas around Sri Lanka and south of 10◦S in the southeastern
Indian Ocean, as well as the Java-Banda Sea and seas of northeastern Australia in the western Pacific.
In addition, the reverse situation occurs in boreal summer.

Figure 2d presents the transition variation pattern of NPP in boreal autumn and spring. The boreal
autumn positive maxima describe weak late summer peaks in the western BoB, the equatorial Indian
Ocean, the coasts of Sumatra and Java and the entire SCS basin. Meanwhile, NPP decreases in most
of the western Pacific, the eastern Seychelles–Chagos Thermocline Ridge (SCTR) along 10◦S and the
northern coast of Australia in boreal autumn. In contrast, the reverse situation occurs in boreal spring.
Briefly, the first two EOF modes capture the significant temporal and meridional NPP variability
differences in the study area, as NPP reaches peaks approximately three months later in the western
Pacific than that of in the eastern Indian Ocean.

3.2. Dominant Interannual NPP Variability Patterns

The interannual NPP variability is determined using the EOF on standardized monthly mean
anomaly fields. The first three leading modes accounting for 9.43%, 8.61%, and 5.03% of the total
variance, respectively, and all passed the statistical significant test at the 95% confidence level.
Correlations of the first three principal components with MEI and DMI are listed in Table 2. The first
mode is found to be associated with MEI and DMI, with correlations of 0.46 and 0.23, respectively,
which indicates the combined action of ENSO and IOD. However, here we only focus on the second
and third modes, which are strongly correlated with MEI and DMI separately. The spatial distribution
and principal components of these three modes are shown in Figures 3 and 4.



Remote Sens. 2019, 11, 391 6 of 18

Table 2. Correlations of the first three principal components (PC1, PC2 and PC3) with MEI and DMI.

Indices PC1 PC2 PC3

MEI 0.46 0.65 0.05
DMI 0.23 0.10 0.48
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The time series of PC2 and MEI are highly correlated with a correlation coefficient of 0.65 and a
two-month time lag (Figure 4c,e), which indicates that the second EOF mode captures the interannual
NPP variability associated with ENSO. The positive PC2 values plotted in Figure 4c coincide with El
Niño years, namely, 2002–2003, 2004–2005, 2006–2007, 2009–2010, and 2014–2016, and negative values
coincide with La Niña years, namely, 1998–2000, 2000–2001, 2007–2008, 2010–2011, and 2011–2012. The
spatial pattern of EOF2 shown in Figure 4a is characterized by a negative–positive dipole structure
with one conspicuous positive anomaly center located in the eastern Philippines and northern New
Guinea seas during El Niño years. The strongest negative anomalies are found in the southern SCS,
the equatorial Pacific east of 155◦E, as well as the western BoB and central southern Indian Ocean
during El Niño years. The reverse NPP anomalies occur over similar regions during La Niña events.
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The time series of PC3 has no close relationship with MEI (the correlation coefficient is 0.05) but
is obviously correlated with DMI, with a correlation coefficient of 0.48 and no time lag (Figure 4d,f),
which means that the third EOF mode describes an IOD-associated pattern. Moreover, the positive
values of PC3 coincide with positive IODs of 2006, 2007, 2008, 2011, 2012, and 2015, and negative
values coincide with negative IODs of 1998, 2005, 2010, 2013, and 2016. The spatial pattern of EOF3
presents an obvious negative–positive–negative anomaly feature, with positive anomalies existing
in the deep basin of SCS and around the Indonesian archipelago, including coasts of Sumatra and
Java, the Banda Sea, and the northeastern coasts of New Guinea and Australia during positive IODs
(Figure 4b). Meanwhile, negative NPP anomalies are mainly found in the seas south of India, the Sulu
Sea, and the north Pacific subtropical oligotrophic region. During negative IODs, the opposite NPP
anomalies can be discovered over similar regions.

It is noteworthy that the increased NPP off the coasts of Sumatra and Java is caused by IOD and
ENSO, though the variability explained by IOD is far greater than that of ENSO (Figure 4a,b). In the
central southern Indian Ocean and southern SCS, marked converse variability is discovered, with
increased NPP induced by positive IODs and decreased NPP related to El Niño. Particularly notable is
that significant positive NPP anomalies induced by positive IODs are found first off the coasts of New
Guinea and the Solomon Islands.

3.3. Long-Term Trend and Multiscale Oscillation Patterns of NPP

To identify more complex variations of NPP in the study area, first, we calculate NPP trends on a
point-by-point basis using the linear regression analysis to understand changes occurring over the
past 19 years intuitively. The trend distribution map is shown in Figure 5.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 18 
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Negative trends are apparent in the study area, particularly on the northeastern coasts and
southern BoB, as well as open seas south of India and the north subtropical and equatorial Pacific
(Figure 5). There are also significant positive trends along the northwestern coasts of SCS and seas of
northeastern New Guinea and the Solomon Islands, while weaker increases are also distributed in the
southern SCS, northeastern Banda Sea and eastern seas of Australia. Then, we divide four subregions
to compare the multi-timescale variability of NPP in detail, namely, the Bay of Bengal (BoB, 80◦–100◦E,
0◦–25◦N), the South China Sea (SCS, 100◦–120◦E, 0◦–25◦N), the southeastern Indian Ocean (75◦–120◦E,
0◦–25◦S), and northwestern Pacific Ocean (120◦–165◦E, 0◦–25◦N).

Using the EEMD analysis for NPP in these four subregions, the significant tests of IMFs are shown
in Figure 6 with respect to their mean period and corresponding energy. The statistically significant
IMFs and residual components are shown in Figure 7, with their corresponding mean periods and
variance contribution rates shown in Table 3.
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Table 3. The mean periods and variance contribution rates of the significant IMFs for domain-averaged
NPP in the BoB, SCS, southeastern Indian Ocean, and northwestern Pacific Ocean.

Regions IMF Mean Period/Month
(Year)

Variance Contribution
Rate/%

BoB
C2 10.43 29.16
C4 31.76 (2.6a) 8.04
C6 233.22 (19.4a) 1.56

SCS
C2 13.57 56.70
C3 19.62 (1.6a) 14.98
C4 73.41 (6.1a) 4.12

southeastern
Indian Ocean

C2 13.28 82.44
C3 33.45 (2.8a) 5.90
C4 94.80 (7.9a) 3.93
C5 119.43 (9.9a) 0.56

northwestern
Pacific Ocean

C2 14.38 78.91
C3 31.00 (2.6a) 2.68
C4 61.46 (5.1a) 4.88
C5 114.00 (9.5a) 3.67

A 19-year trend was revealed on the whole (dashed red line in the top panel of Figure 7) from
the residual signals. We find a great decrease in the BoB and obvious increase in the SCS with rates of
−5.08 and 2.95 mg C/m2/month2, respectively. Meanwhile, NPP in the southeastern Indian Ocean
is experiencing a larger decline than that of the northwestern Pacific Ocean, with rates of −2.64 and
−0.98 mg C/m2/month2, respectively.

The IMFs in Figure 7 indicate the NPP variability on different timescales. C2 in the BoB shows
more scale mixing with quasi-annual and semiannual variability in some years and with the highest
variance contribution rate of 29.16%. Clearly, the seasonal pattern (the cycle is approximately
12 months) occurs in all three other regions and contributes the most variance separately. C3 in
the SCS, and C2 in the northwestern Pacific Ocean and southeastern Indian Ocean presents extreme
values in boreal winter and summer. The results are in good agreement with the dominant seasonal
NPP variability patterns recorded in Section 3.1. On the interannual timescale, C4 in the BoB as well
as C3 in the SCS, the southeastern Indian Ocean and northwestern Pacific Ocean shows a 2~3-year
oscillation, while a 5~8-year oscillation is observed in other three regions, except in BoB. Moreover,
we also find the interdecadal oscillation with the oscillation cycle of 19 or 9 years in the BoB, the
southeastern Indian Ocean and northwestern Pacific Ocean. Such observations cannot be discovered
using most traditional time series analysis methods that assume a steady seasonal or annual cycle.

3.4. Covariability Patterns of NPP with Major Forcing Factors on Interannual Timescale

We compiled the coupled patterns of NPP with typical environmental variables (Chla, SST, SLA,
Rain, Wind, and CUR) using the BPCCA analysis to understand different covariability patterns under
the influence of ENSO and IOD. The correlation coefficient maps of canonical coupled patterns labeled
as CCA (NPP, Chla), CCA (NPP, SST), CCA (NPP, SLA), CCA (NPP, Rain), CCA (NPP, Wind), and
CCA (NPP, CUR) associated with ENSO and IOD separately are displayed in Figure 9 and Figure
10, respectively. Their corresponding temporal variations are shown in Figure 8. The correlation
coefficients of the canonical time series with MEI and DMI are shown in Table 4.



Remote Sens. 2019, 11, 391 10 of 18

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 18 

 

and C2 in the northwestern Pacific Ocean and southeastern Indian Ocean presents extreme values in 
boreal winter and summer. The results are in good agreement with the dominant seasonal NPP 
variability patterns recorded in Section 3.1. On the interannual timescale, C4 in the BoB as well as C3 
in the SCS, the southeastern Indian Ocean and northwestern Pacific Ocean shows a 2~3-year 
oscillation, while a 5~8-year oscillation is observed in other three regions, except in BoB. Moreover, 
we also find the interdecadal oscillation with the oscillation cycle of 19 or 9 years in the BoB, the 
southeastern Indian Ocean and northwestern Pacific Ocean. Such observations cannot be discovered 
using most traditional time series analysis methods that assume a steady seasonal or annual cycle. 

3.4. Covariability Patterns of NPP with Major Forcing Factors on Interannual Timescale 

We compiled the coupled patterns of NPP with typical environmental variables (Chla, SST, 
SLA, Rain, Wind, and CUR) using the BPCCA analysis to understand different covariability patterns 
under the influence of ENSO and IOD. The correlation coefficient maps of canonical coupled 
patterns labeled as CCA (NPP, Chla), CCA (NPP, SST), CCA (NPP, SLA), CCA (NPP, Rain), CCA 
(NPP, Wind), and CCA (NPP, CUR) associated with ENSO and IOD separately are displayed in 
Figure 9 and Figure 10, respectively. Their corresponding temporal variations are shown in Figure 8. 
The correlation coefficients of the canonical time series with MEI and DMI are shown in Table 4. 

 
Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 18 

 

 
Figure 8. The time series and correlation coefficient of canonical coupled BPCCA modes associated 
with ENSO (left panel) and IOD (right panel), respectively. (a1) the canonical time series of NPP 
(green line) and Chla (red line) associated with ENSO, (b1) the canonical time series of NPP (green 
line) and Chla (red line) associated with IOD. (a2–a6, b2–b6) are the same as (a1, b1) but for the 
modes of NPP with SST, SLA, Rain, Wind, and CUR. 

For the first coupled modes of NPP with all environmental variables, the canonical time series 
closely correlated with MEI indicates that these dominant covariability modes are associated with 
ENSO (Table 4). In addition, the canonical time series value differences also deliver the intensity of 
El Niño and La Niña events (Figure 8a1–8a6). With respect to the spatial patterns, NPP strongly 
coupled with Chla, SST, SLA, Rain, Wind, and CUR on interannual timescales is discovered (Figure 
9a1–a6, 9b1–b6). These NPP spatial patterns are similar to the second EOF spatial pattern presented 
in Figure 4a, meaning that the BPCCA results are credible. 

The highly correlated feature in Figure 9 reveals a basin-scale decrease in NPP in the southern 
SCS and western BoB as well as the equatorial Pacific east of 155°E and the central southern Indian 
Ocean during El Niño years (2002–2003, 2004–2005, 2006–2007, 2009–2010, and 2014–2016), where 
NPP and Chla are anomalously negative in concert with sensitive responses to ENSO (Figure 9a1, 
9b1). Meanwhile, El Niño induces the elevated SST and SLA and increased rainfall in the open seas 
of the equatorial Pacific east of 155°E and the central southern Indian Ocean (Figure 9a2–a4,b2–b4), 
which strengthens the ocean stratification and deepens the thermocline leading to reduced mixing 
efficiency and inhibited vertical nutrient inputs into the euphotic layer, as well as reduces the solar 
radiation resulted in the decreased phytoplankton production. However, in coastal regions of the 
southern SCS and western BoB, negative NPP is closely correlated with negative rain anomalies, 
which reveals that the decreased rainfall leading to the reduction in nutrients from the river 
discharge directly is greater than that of the impact of the solar radiation in these areas [38,39]. The 
formation and intensification of the Ekman convergence indicated by anticyclonic wind and current 
is clearly observed in the southern SCS, the western BoB and the central southern Indian Ocean 
(Figure 9a5–a6,b5–b6), which is known to result in a reduced NPP as a consequence of downwelling. 
Whereas in the equatorial Pacific east of 155°E, despite the westerly wind blast near the New 

Figure 8. The time series and correlation coefficient of canonical coupled BPCCA modes associated
with ENSO (left panel) and IOD (right panel), respectively. (a1) the canonical time series of NPP (green
line) and Chla (red line) associated with ENSO, (b1) the canonical time series of NPP (green line) and
Chla (red line) associated with IOD. (a2–a6,b2–b6) are the same as (a1,b1) but for the modes of NPP
with SST, SLA, Rain, Wind, and CUR.
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Table 4. Canonical time series correlation coefficients of biophysical variables with climate-related
indices of MEI and DMI.

Variable MEI DMI Variable MEI DMI

CCA1 (NPP, Chla)-NPP 0.81 0.01 CCA5 (NPP, Chla)-NPP 0.20 0.45
CCA1 (NPP, Chla)-Chla 0.81 0.01 CCA5 (NPP, Chla)-Chla 0.21 0.45
CCA1 (NPP, SST)-NPP 0.68 0.39 CCA3 (NPP, SST)-NPP 0.18 0.39
CCA1 (NPP, SST)- SST 0.65 0.37 CCA3 (NPP, SST)- SST 0.18 0.39
CCA1 (NPP, SLA)-NPP 0.75 0.28 CCA4 (NPP, SLA)-NPP 0.02 0.35
CCA1 (NPP, SLA)- SLA 0.74 0.29 CCA4 (NPP, SLA)- SLA 0.03 0.36
CCA1 (NPP, Rain)-NPP 0.78 0.27 CCA3 (NPP, Rain)-NPP 0.24 0.43
CCA1 (NPP, Rain)- Rain 0.76 0.27 CCA3 (NPP, Rain)- Rain 0.23 0.41

CCA1 (NPP, WindUV)-NPP 0.35 0.20 CCA2 (NPP, WindUV)-NPP 0.18 0.53
CCA1 (NPP, WindUV)- WindUV 0.32 0.17 CCA2 (NPP, WindUV)- WindUV 0.19 0.46

CCA1 (NPP, WindW)-NPP 0.36 0.27 CCA3 (NPP, WindW)-NPP 0.24 0.34
CCA1 (NPP, WindW)-WindW 0.33 0.27 CCA3 (NPP, WindW)-WindW 0.24 0.26

CCA1 (NPP, CURUV)-NPP 0.66 0.34 CCA5 (NPP, CURUV)-NPP 0.08 0.37
CCA1 (NPP, CURUV)-CURUV 0.66 0.35 CCA5 (NPP, CURUV)-CURUV 0.07 0.34

CCA1 (NPP, CURW)-NPP 0.67 0.34 CCA2 (NPP, CURW)-NPP 0.03 0.45
CCA1 (NPP, CURW)-CURW 0.67 0.33 CCA2 (NPP, CURW)-CURW 0.03 0.44

For the first coupled modes of NPP with all environmental variables, the canonical time
series closely correlated with MEI indicates that these dominant covariability modes are associated
with ENSO (Table 4). In addition, the canonical time series value differences also deliver the
intensity of El Niño and La Niña events (Figure 8a1–a6). With respect to the spatial patterns, NPP
strongly coupled with Chla, SST, SLA, Rain, Wind, and CUR on interannual timescales is discovered
(Figure 9a1–a6,b1–b6). These NPP spatial patterns are similar to the second EOF spatial pattern
presented in Figure 4a, meaning that the BPCCA results are credible.
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Figure 9. The canonical coupled BPCCA modes associated with ENSO. (a1,b1) spatial correlation
patterns of NPP and Chla for the first canonical pair labeled as CCA1 (NPP, Chla)-NPP and CCA1
(NPP, Chla)-Chla, respectively. (a2–a6,b2–b6) are the same as (a1,b1) but for the modes of NPP with
SST, SLA, Rain, Wind, and CUR, respectively.

The highly correlated feature in Figure 9 reveals a basin-scale decrease in NPP in the southern
SCS and western BoB as well as the equatorial Pacific east of 155◦E and the central southern Indian
Ocean during El Niño years (2002–2003, 2004–2005, 2006–2007, 2009–2010, and 2014–2016), where
NPP and Chla are anomalously negative in concert with sensitive responses to ENSO (Figure 9a1,b1).
Meanwhile, El Niño induces the elevated SST and SLA and increased rainfall in the open seas of the
equatorial Pacific east of 155◦E and the central southern Indian Ocean (Figure 9a2–a4,b2–b4), which
strengthens the ocean stratification and deepens the thermocline leading to reduced mixing efficiency
and inhibited vertical nutrient inputs into the euphotic layer, as well as reduces the solar radiation
resulted in the decreased phytoplankton production. However, in coastal regions of the southern SCS
and western BoB, negative NPP is closely correlated with negative rain anomalies, which reveals that
the decreased rainfall leading to the reduction in nutrients from the river discharge directly is greater
than that of the impact of the solar radiation in these areas [38,39]. The formation and intensification of
the Ekman convergence indicated by anticyclonic wind and current is clearly observed in the southern
SCS, the western BoB and the central southern Indian Ocean (Figure 9a5–a6,b5–b6), which is known to
result in a reduced NPP as a consequence of downwelling. Whereas in the equatorial Pacific east of
155◦E, despite the westerly wind blast near the New Guinea during El Niño, the zonal advection of
nutrient-rich waters originating from the Indonesian coast could not reach the zone in the east of 155◦E
along the equator [38]. These combined effects of the deepening thermocline, weak vertical mixing,
formative downwelling, reduced river discharge, and solar radiation can explain why NPP decreased
in the southern SCS and western BoB as well as the equatorial Pacific east of 155◦E and the central
southern Indian Ocean during El Niño years.

Increased NPP is also observed in the seas of eastern Philippines and northern New Guinea,
the Banda-Arafura Sea and the northeastern coasts of Australia, as well as coasts off Sumatra and Java
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during El Niño years, cooccurring with positive Chla, wind and current speed as well as negative
rainfall, SST and SLA. The cold SST and low SLA are generally associated with the weak ocean
stratification and shoaling thermocline layer favoring entrainment nutrients to the upper ocean, which
leads to substantially NPP increase in these areas during El Niño years. Meanwhile, the reduced
rainfall diminishing the effect on the surface solar radiation and photosynthesis enhances the higher
NPP [40]. In addition, we can observe the prominent northwesterly wind burst near the New Guinea
and the intensified North Equatorial Current and Countercurrent in the eastern Philippines which
induces considerable upwelling and offshore advection favoring nutrient-rich deep water to the surface
and nutritional water from the western coasts, triggering the phytoplankton bloom [17,28]. Therefore,
the increased NPP in the eastern Philippines and northern New Guinea seas during El Niño years
could be attributed to the shoaling of the thermocline depth, the reduced rainfall, the prominent
northwesterly wind burst and the enhanced North Equatorial Current and Countercurrent favoring
for upwelling and offshore advection. Nevertheless, El Niño-induced easterly winds and coastal
currents off the coasts of Sumatra and Java are weaker, which shoals the thermocline depth, brings
cold water to the surface, and causes relatively weaker NPP augmentation. Moreover, during La Niña
years (1998–2000, 2000–2001, 2007–2008, 2010–2011, and 2011–2012), the situation is opposite to that
observed during El Niño years.

For the fifth mode of CCA (NPP, Chla), the third mode of CCA (NPP, SST) and CCA (NPP, Rain),
the fourth mode of CCA (NPP, SLA), the second mode of CCA (NPP, Wind) and CCA (NPP, CUR)
shown in Figure 10, the canonical time series are closely correlated with DMI (Table 4). Therefore,
these coupled modes can be regarded as the dominant interannual covariability associated with IOD.
This is credible with the similar spatial patterns of NPP presented in Figure 10a1–a6 and Figure 4b.

As is shown in Figure 10, a close correspondence of positive NPP and Chla anomalies is observed
off the coasts of Sumatra and Java, the central southern Indian Ocean, and the BoB as well as the
southern SCS and coasts off New Guinea and the Solomon Islands during positive IODs (2006, 2007,
2008, 2011, 2012, and 2015). Off the coasts of Sumatra and Java, the cold SST and low SLA cause
a shallower thermocline and variations in mixed layer depth triggering strong vertical mixing and
bringing highly nutritional water to the surface (Figure 10b2,b3). The reduced rainfall also contributes
a lot to the increased NPP through promoting the solar radiation and photosynthesis (Figure 10b4).
The stronger southeast winds along Sumatra and Java coasts strengthen the offshore currents and
provide favorable conditions for the formation of coastal upwelling leading to enhanced biological
productivity during positive IODs (Figure 10b5,b6) [41]. Moreover, we can find that the upwelling
regions are also influenced by nutrient inputs associated with the stronger Indonesian Throughflow
(ITF) through the Lombok and Ombai Straits. Briefly, the shallower thermocline, stronger vertical
mixing, the less rainfall and the upwelling caused by the strong southeast winds and offshore currents,
as well as the stronger ITF are responsible for the increased NPP off the coasts of Sumatra and Java
during positive IODs.

In the BoB, coastal trapped Kelvin waves during positive IODs results in lower SST and SLA
anomalies, which leads to the shallower thermocline and weaker barrier layer favoring for the transport
of subsurface high-nutrient water to the surface and causing the increased NPP [42]. Meanwhile, we can
observe the increased NPP in the southern SCS and coasts off New Guinea and the Solomon Islands
association with the positive IODs, with contributions of the cold SST, low SLA, increased rainfall and
the cyclone circulation anomalies, producing increased nutrient availability for phytoplankton growth.
However, along the equator in the Indian Ocean, the strong easterly wind and current anomalies
induces equatorial convergence zone and forces anomalous downwelling Rossby, which deepens the
thermocline and leads to the decreased NPP during positive IODs. The reverse covariability patterns
occur over similar regions during negative IODs (1998, 2005, 2010, 2013, and 2016).
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4. Discussion

In the study, we have analyzed the seasonal, interannual, long-term, and multiscale variability
oscillation patterns of NPP over the tropical eastern Indian and western Pacific Ocean. Spatiotemporal
changes of NPP are generally caused by variations of phytoplankton biomass and environmental
factors including light, nutrient salt, water temperature, and disturbance, which can be indicated by
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variables of Chla, SST, SLA, Rain, Wind, and CUR [12,28]. To investigate the dominant mechanisms
driving the diverse biophysical interactions associated with ENSO and IOD, we find that the combined
effects of the deepening thermocline, weak vertical mixing, formative downwelling, reduced river
discharge and solar radiation process could explain why NPP decreases in the southern SCS and
western BoB as well as the equatorial Pacific east of 155◦E and the central southern Indian Ocean during
El Niño years. However, the increased NPP in the eastern Philippines and northern New Guinea
seas during El Niño years could be attributed to the shoaling of the thermocline depth, the reduced
rainfall, the prominent northwesterly wind burst and the enhanced North Equatorial Current and
Countercurrent favoring for upwelling and offshore advection, which is in good accord with the ones
published by Hou et al. [17]. Nevertheless, El Niño-induced relatively weaker easterly winds and
coastal currents off the coasts of Sumatra and Java cause weaker NPP augmentation.

The shallower thermocline, stronger vertical mixing, less rainfall, and the upwelling caused by
the stronger southeast winds and offshore currents, as well as the stronger ITF are responsible for
the increased NPP off the coasts of Sumatra and Java during positive IODs, consistent with results
of previous studies [6,7,10]. Meanwhile, the increased NPPs in the southern SCS and coasts off New
Guinea and the Solomon Islands during positive IODs are contributions of the cold SST, low SLA,
increased rainfall and the cyclone circulation anomalies producing increased nutrient availability for
phytoplankton growth. The increased NPP in the BoB and the decreased NPP along the equator in
the Indian Ocean during positive IODs are due to the coastal trapped Kelvin waves and anomalous
downwelling Rossby, respectively.

In addition, studies have suggested that VGPM predicts larger NPP in temperate and subpolar
regions and lower values in equatorial regions compare to Eppley-VGPM [24–27], which may lead to
deviation of the NPP variability in the tropical eastern Indian and western Pacific Ocean. Therefore,
we will concentrate on studying the NPP estimates model to get more precise NPP products for the
study area in the future work.

5. Conclusions

The key Indo-Pacific Warm Pool region has the diversity and complexity of large-scale biophysical
interactions. In the study, the seasonal to interannual and long-term NPP variability over the tropical
eastern Indian and western Pacific Ocean are analyzed through the EOF, the lead–lag correlation and
the EEMD analyses, based on continuous satellite observation and reanalysis datasets for 1998–2016.
We find that NPP variations present obviously temporal and meridional differences on seasonal
timescales, as NPP reaches peaks approximately three months later in the western Pacific than that of
in the eastern Indian Ocean. On interannual timescales, the NPP variability are closely correlated with
ENSO (two-month lag) and IOD (synchronization). Furthermore, the long-term trend of NPP on a
point-by-point basis using the linear regression reveals an apparent negative trend in the study area.
Using EEMD analysis, we find different varying tendencies and similar multiscale oscillation patterns
in subregions of the Bay of Bengal (BoB), the South China Sea (SCS), the southeastern Indian Ocean,
and the northwestern Pacific Ocean. The spatiotemporal NPP covariability patterns with variables of
the Chla, SST, SLA, Rain, Wind, and CUR are assessed in detail using the BPCCA analysis to explain
the dominant mechanisms driving the diverse biophysical interactions associated with ENSO and
IOD. NPP variability exhibits strong negative correlations with SST, SLA, and Rain anomalies, as well
as positive correlations with Chla, Wind, and CUR in general, though the coupling relationship and
intensity largely varied on a regional basis. The observed modifications of NPP with major forcing
factors under the effects of ENSO and IOD events in the Indo-Pacific Warm Pool region could help
improve our understanding of the projected impacts of long-term climate changes on the marine
ecosystem and physical dynamics.
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