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Abstract: The spaceborne transmitter/missile-borne receiver (ST/MR) synthetic aperture radar (SAR)
could provide several unique advantages, such as wide coverage, unrestricted geography, a small
detection probability of the missile, and forward-looking imaging. However, it is also accompanied by
problems in imaging, including geometric model establishment and focusing algorithm design. In this
paper, an ST/MR SAR model is first presented and then the flight-path constraint, characterized by
geometric configurations, is derived. Considering the impacts brought about by the maneuvers of the
missile, a non-‘Stop-Go’ mathematical model is devised and it can avoid the large errors introduced by
the acceleration, which is neglected in the traditional model. Finally, a two-dimensional (2-D) scaling
algorithm is developed to focus the ST/MR data. Without introducing any extra operations, it can
greatly remove the spatial variations of the range, azimuth, and cross-coupling phases simultaneously
and entirely in the 2-D hybrid domain. Simulation results verify the effectiveness of the proposed
model and focusing approach.

Keywords: spaceborne transmitter/missile-borne receiver (ST/MR); synthetic aperture radar (SAR);
two-dimensional (2-D) scaling algorithm; cross-coupling; spatial variation

1. Introduction

The bistatic synthetic aperture radar (BiSAR) is characterized by different locations for the
transmitter and receiver and hence offers a considerable capability, reliability, and flexibility in
designing BiSAR missions. Compared with the monostatic synthetic aperture radar (SAR), BiSAR
systems can achieve many benefits, like the exploitation of additional information contained
in the bistatic reflectivity of targets, an increased radar cross section, and bistatic along-track
interferometry [1,2]. Unlike the conventional BiSAR, installed on aircrafts [3,4], satellites [5,6],
or satellite/aircraft hybrid platforms [7,8], the spaceborne transmitter/missile-borne receiver SAR
(ST/MR SAR) transmits and receives the radar signals by a transmitter on the satellite and receiver
on the missile, respectively, as shown in Figure 1. As a transition platform between the satellite and
the aircraft corresponding to the altitude and the velocity, the missile with great maneuvers in the
ST/MR SAR system is able to provide a wider observation area than that of the aircraft and greater
flexibility than that of the satellite. It has broad application prospects in the military fields, namely,
comprehensive detection and precision guidance, according to its strong survival ability, fast response,
and wide detection range features [9].

Considering the functions and characteristics of the missile, it is better to improve the concealment,
reduce the power consumption, and increase the detection range in the SAR system design [10].
Because the transmitter and receiver devices are both mounted on the missile platform, the monostatic

Remote Sens. 2019, 11, 346; doi:10.3390/rs11030346 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-9213-0085
http://www.mdpi.com/2072-4292/11/3/346?type=check_update&version=1
http://dx.doi.org/10.3390/rs11030346
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 346 2 of 18

missile-borne SAR will inevitably bring some limitations, such as the large power antenna and high
probability of being detected. Moreover, the monostatic SAR is incapable of forward-looking imaging,
which seriously limits its applicability in the military field because information in the movement
direction cannot be obtained directly. Compared with the monostatic missile-borne SAR, the ST/MR
SAR has many advantages and they are:

(1) The large-maneuver and receiving-only features of the missile-borne receiver reduce the detection
probability. The corresponding anti-interference and anti-interception are greatly improved in
the ST/MR SAR system.

(2) The radar antenna, installed on the missile-borne platform, is used to receive the echo signals
without a transmitting function, which indicates that a large power device can be avoided in the
missile system to greatly save space and costs.

(3) Spaceborne transmitter has the characteristics of wide coverage, unrestricted geography, net
flexibility, and a high revisiting-frequency, which could provide some degrees of freedom (DOFs)
in target area selection, flight trajectories, and number of missile-borne receivers.

(4) By setting the transmitter and receiver on different platforms with a special style,
the non-complete coupling areas between iso-range and iso-Doppler lines could be formed in
front of missile, which means that the missile has the capability of forwarding-looking imaging.

Note that these advantages for the ST/MR SAR also hold for other BiSAR systems, such as the
spaceborne/airborne SAR and the airborne BiSAR, which are of special significance for the missiles
mainly applied in the military fields. Generally, these common features of the BiSAR can avoid
disadvantages inherent in the monostatic missile-borne SAR and make the ST/MR SAR a flexible and
effective tool for information retrieval [11–15]. However, there are also a number of problems brought
about by the ST/MR SAR, such as the complex geometric model, high cross-couplings, and serious
spatial variations. Thus, further studies are still necessary for ST/MR SAR.
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Figure 1. BiSAR mounted on different platforms.

In the traditional BiSAR system, the platforms are required to fly at constant velocities (magnitudes
and directions), and the hyperbolic range history (HRH) hypotheses can be well-represented for both
the transmitter and receiver motions during the synthetic aperture [1,4]. Considering the complex
geometry and flight characteristics of both the transmitter and the receiver, the HRH would introduce
significant phase errors for the satellite, missile, or aircraft platforms with a curved path. In [11,16,17],
several accurate models, based on the Taylor series expansion, are established for the air-missile borne
or missile BiSARs. Compared with the HRH, the presented models introduce accelerations into the
range histories. However, for ST/MR SAR, the variation of the instantaneous slant range introduced
by the continuous motion is no longer negligible since the conventional ‘stop-go’ approximation does
not hold. In [18–20], the effects of the ‘Stop-Go’ approximations of the monostatic SAR have been
analyzed and the non-‘Stop-Go’ models have been presented. However, by neglecting the maneuvers
of the missile in the BiSAR system, the errors of these non-‘Stop-Go’ models would greatly deteriorate
the final image for the ST/MR SAR.
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Several studies on BiSAR focusing approaches have been published in recent years. Some
popular monostatic SAR signal processing algorithms can be used for the BiSAR based on some
approximations and simplifications of the dual square root (DSR) [21,22]. The common shortcoming of
these algorithms is their rigorous applying condition. For example, the range between the transmitter
and receiver is always required to be relatively short. Neo etc. [23] proposed a way to get the
formula of a two-dimensional (2-D) spectrum using the method of series reversion (MSR). Bamler
and Boerner [24] and Bamler etc. [25] suggested the use of numerically computed transfer functions
for bistatic SAR processing. In the case of the 2-D spectrum with MSR, the range Doppler algorithm
(RDA) [26], the chirp scaling algorithms (CSA) [27], the frequency scaling algorithm (FSA) [28],
the omega-K algorithm (OKA) [29], and their extended forms [30,31] have been accommodated. All
the aforementioned algorithms, however, directly deal with the original data and focus on the analysis
of the characteristics of the BiSAR data spectrum without taking the maneuvers into consideration.
Considering the maneuvers of the platforms, [17] proposed a frequency domain algorithm (FDA)
to eliminate the cross-coupling phases for the missile-borne BiSAR. However, neglecting the spatial
variations would greatly defocus the image. Zhang etc. [32] proposed a nonlinear CSA (NCSA) for the
maneuvering-platform BiSAR which could eliminate the spatial variations of the azimuth modulation
phases, but could not do so for the range modulation and cross-coupling phases. Considering the
acceleration of the missile, a generalized polar format algorithm (GPFA) [16] has been proposed
to focus the air-missile borne BiSAR data. However, the wavefront curvature would greatly affect
the depth of field and it should be compensated for by sub-aperture techniques [33,34]. Moreover,
the BiSAR data with non-uniform curves, caused by the acceleration, can be focused by the back
projection algorithm (BPA) [35–37]. However, in terms of computation burden, the BPA is not always a
best choice compared with the frequency domain algorithms.

In this paper, the geometric model is established firstly, and the flight-path constraint and
the mathematic model are analyzed and presented accordingly. This new mathematic model can
well-present the motion of the satellite and the missile by taking several factors into consideration.
Then, a 2-D scaling algorithm is proposed, which could greatly remove the range, azimuth,
and cross-coupling spatially variant terms simultaneously in the 2-D hybrid domain by using two
perturbation functions. Moreover, to avoid possible spectra distortion and aliasing, the distortion
minimization is operated between these two perturbations.

This paper starts with a description of the geometric model by means of vector analysis
(Section 2). Then, considering the complex geometric configurations, a 2-D scaling algorithm is
proposed (Section 3). Section 4 presents the discussions of the proposed approach and Section 5 gives
the numerical simulated results to validate the effectiveness of the presented mathematic model and
imaging approach. In Section 6, the conclusion is drawn.

2. Modeling

2.1. Geometric Model

Assume that the frequency modulation chirp pulse is used as the transmitted signal for the ST/MR
SAR. Figure 2 shows the ST/MR SAR geometric model. In the coordinate of the imaged scene, point C
is the central reference point (CRP) and point A is an arbitrary point on the ground scene. Points S and
M are the positions of the transmitter and receiver at aperture center moment (ACM), respectively. vt

and vr are respectively the transmitter and receiver velocity vectors and ar is the acceleration vector of
the missile-borne receiver. In this paper, ‘t’ and ‘r’ denote the transmitter and receiver, respectively.
After reviewing the studies in the available literature [9,10,16,38–43], we integrate the important results
and then show that the flight path of spaceborne SAR can be equivalent to a curved path, which is
mainly caused by the curved orbit and the rotating planetary surface and the flight path of the missile
can be described by using the motion parameters, including the velocity, acceleration, and higher-order
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parameters, obtained from the information provided by the inertial navigation system (INS). According
to the imaging geometry, the instantaneous slant range |r(η, A)| of the point A is expressed as:

|r(η, A)| = |rt(η, A)|+ |rr(η, A)|
= |rt(0, A)− vtη|+

∣∣rr(0, A)− vrη − arη2/2
∣∣ (1)

where rt(0, A) and rr(0, A) are the slant range vectors of the transmitter and receiver, respectively, to
point A at ACM; η is the azimuth time; and |·| is the absolute operator. In this work, the symbols
‘A’ and ‘C’ denote the arbitrary target A and the reference target C, respectively. Particularly, the
higher-order motion parameters of the satellite and the missile are not included in this work because
they have no impact on the image qualities, which have been analyzed in Appendix A. One way to
treat the complex range history is to expand it in a power series in azimuth time as:

|r(η, A)| = ∑
0

1
n!

µn(A)ηn (2)

where µn(A)(n = 0, 1, 2, 3, · · ·) are expanded coefficients of |r(η, A)|, which are expressed in
Appendix A.
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2.2. Flight-Path Constraint

A key factor in determining the imaging performance of the BiSAR is the spatial resolution,
which we can also say is the acquisition geometry, including the positions and velocities of both the
transmitter and the receiver. This is because it determines the spatial resolution [44]. In this part,
the flight-path constraint of the ST/MR SAR characterized by arbitrary configurations is analyzed.
The application of vector methods to physical problems most frequently takes the form of differential
operations. According to the definition of the gradient operator ∇, the rates of changes of µ0 and µ1 in
the directions of range and azimuth are equal to ∇µ0 and ∇µ1, respectively. Accordingly, the ground
space can be spanned by two unit vectors } and l, which are the projections of ∇µ0 and ∇µ1 on the
ground, respectively. Vectors } and l are normal to the iso-range and iso-Doppler lines, respectively.
Thus, the angle α between the iso-range and iso-Doppler lines is derived as:

α = cos−1{|〈}, l〉/(|}|·|l|)|} (3)

where α is the angle between the iso-range and iso-Doppler lines and 0 ≤ α ≤ π/2. The angle α in
Equation (3) can be used to validate the rationality of the BiSAR geometry. The geometric model is
more like that of the broadside monostatic SAR when α is close to π/2. Generally, ST/MR SAR with
a large α has a better geometric structure than that of the ST/MR SAR with a small one. Employing
the simulation parameters in Table 1 and the simulation scene shown in Figure 3a, Figure 3b shows
the iso-range/iso-Doppler lines by using the parameters of Receiver 1 in Table 1 and Figure 3c is the
simulation result by the parameters of Receiver 2. In these figures, the angle α between iso-range and
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iso-Doppler lines of each point on the ground scene can be derived by using Equation (3). Clearly,
in the blue area in these two figures, the angles between iso-range and iso-Doppler lines are very small,
even close to zero, which means that the cross-couplings between the range and azimuth are extremely
serious. Thus, it is difficult to focus the echo data received from these areas.

Table 1. Parameter settings.

Parameter Platform Transmitter Receiver 1 Receiver 2

Radar Position at ACM (0, 1000, 500) km (12.5, −4, 25) km (−6, −4, 30) km
Velocity Vector (0, 7600, 0) m/s (0, 1000, 0) m/s (−100, −1200, 800) m/s

Acceleration Vector / (10, −30, −50) m/s2 (50, −60, −35) m/s2

Elevation Angle 84.1◦ 45.8◦ 32.3◦
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2.3. Flight-Path Constraint

Traditional methods considering the ‘Stop-Go’ assumption have been widely studied and can be
well-applied for the SAR on the high-speed platform [18–20]. However, in the case of large maneuvers
of the missile, the impacts brought about by the accelerations are beyond consideration. In this part,
a new mathematical model is established to describe the ST/MR SAR with a high accuracy.

It is generally known that the exact solution of the time delay τ brought about by the ‘Stop-Go’
assumption is difficult to obtain because of the higher-order transcendental function. To solve this
problem, an iterative method is presented to explore an efficient solution. Figure 4 shows the
transmitted and received instants, taking the platform movement into account. The radar signal
is transmitted by the radar on the satellite at slow time Tstart and received by the missile at the
position χ at Tend, as shown in Figure 4, and Tstart is a known initial time for the transmission. Thus,
the propagation time τ can be derived as τ = Tend − Tstart. The basic procedure of the iterative
method is listed in Algorithm 1, where c is the speed of light, and rt(0, A), rr(0, A), vt, vr, and ar have
been defined in Section 2.1. The iterative range history can be regarded as a satisfactory result if the
iterative error is less than the error tolerance ∆. The iterative algorithm is applicable for different SAR
with maneuvers.
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Algorithm 1. Basic procedure.

1: Fixed input parameters: rt(0, A), rr(0, A), vt, vr, ar, Tstart, c
2: Initialization (i=0): Tend(0) = Tstart + |r(Tstart, A)|/c
3: Iterations (i≥1):
4: Calculate the delay: τi−1 = Tend(i−1) − Tstart

5: Calculate the slant range of the receiver:
∣∣∣rr

(
Tend(i−1), A

)∣∣∣ = ∣∣∣rr(0, A)− vrTend(i−1) − arT2
end(i−1)/2

∣∣∣
6: If |rt(Tstart, A)|+

∣∣∣rr

(
Tend(i−1), A

)∣∣∣− τi−1·c ≤ ∆, return τ = τi−1 and stop.

7: Calculate the time of the receiver: Tend(i) = Tstart +
{
|rt(Tstart, A)|+

∣∣∣rr

(
Tend(i−1), A

)∣∣∣}/c
8: Set i = i + 1.

Clearly, the complicated procedure would lead to a complex result and make the focusing
algorithm difficult to design. To avoid the cumbersome procedure, a ‘fixed-value’ iterative method
is developed. By analyzing the effects brought about by different iterative numbers, we find that
the delay time errors tend to the extremely small fixed-values after one time iteration. Thus, using
one-time iteration, the new range history can be derived as:

|rnew(η, A)| = |rt(0, A)− vtη|+
∣∣∣rr(0, A)− vr(η + τ)− ar(η + τ)2/2

∣∣∣
= ∑

0

1
n! κn(A)ηn (4)

where τ = |r(η, A)|/c =
(
|rt(0, A)− vtη|+

∣∣rr(0, A)− vrη − arη2/2
∣∣)/c and κn(A)(n = 0, 1, 2, 3, · · ·)

are the expansion coefficients which can be found in Appendix B. Employing the simulation parameters
in Table 2 and the scene in Figure 3a, Figure 5 shows the comparative results of the residual phase
errors. It is noted that the proposed model can be well-applied for the ST/MR SAR, whereas the
traditional method cannot because the acceleration is not considered.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 20 
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3. Imaging Approach

The geometric model is established, and the mathematic model of the ST/MR SAR is derived
in Section 2. Based on the accurate model, we concentrate on the corresponding imaging algorithm
in this section. A 2-D scaling algorithm is proposed to focus the ST/MR SAR data. The flowchart is
shown in Figure 6. Because of the complicated mathematic model, we design the imaging approach
performed in the 2-D hybrid domain. Two short remarks will be helpful to understanding the 2-D
scaling algorithm:

â Cross-couplings. Traditionally, the cross-coupling phases in the 2-D spectrum derived by using
the principle of stationary point (POSP) and MSR are divided into two parts, i.e., the range- and
azimuth-dependent ones, and they are eliminated separately, which would introduce errors in
the final image. The 2-D scaling algorithm in this work can avoid this division and make the
processing more accurate than that of the traditional methods.

â Spatial variations. Generally, the range, azimuth, and cross-coupling spatial variations in the
2-D spectrum are difficult to be removed simultaneously and entirely because of the complex
phase expressions. In the 2-D scaling algorithm, two perturbation functions performed in the
hybrid domains can eliminate the range, azimuth, and cross-coupling spatially variant terms
simultaneously and entirely, which can avoid the defect of the traditional methods that the range
and cross-coupling spatial variations cannot be removed.
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3.1. 2-D Scaling in Range Frequency/Azimuth Time Domain

Assume that a linear frequency modulation (LFM) signal is transmitted with the frequency
modulation (FM) rate being γ. After range compression, the received echo signal in the range
frequency/azimuth time domain can be expressed as

S0( fr, η) = Ar( fr)Aa(η) exp
{
−j 2π( fc+ fr)

c |rnew(η, A)|
}

= Ar( fr)Aa(η) exp
{
−j 2π( fc+ fr)

c ∑
0

κn(A)ηn
} (5)

where Ar(·) and Aa(·) are the range and azimuth windows, respectively; and fc and fr are the carrier
and range frequencies, respectively. Note that the traditional methods are difficult to apply for the
ST/MR SAR case directly because of the complex phase in Equation 5.
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In the 2-D scaling algorithm, a perturbation function, performed in the 2-D hybrid domain (hybrid
domain between range frequency fr and azimuth time η), is firstly designed to weaken the spatially
variant phases and also provides many more DOFs for the echo signal, i.e.,

H1st( fr, η) = exp

[
−j

2π( fr + fc)

c

4

∑
i=2

ςiη
i

]
(6)

where the coefficients ς2, ς3, and ς4 are all the scaling factors and can be derived at the next step.
Multiplying Equation (6) with Equation (5) and ignoring the unimportant amplitudes, one can
obtain that

S1( fr, η) = exp
{
−j 2π( fc+ fr)

c

[
4
∑

i=2
ςiη

i +
4
∑
0

κn(A)ηn
]}

· exp
{
−j 2π( fc+ fr)

c ∑
5

κn(A)ηn
} (7)

Note that the spatial variations of the high-order terms corresponding to κn(A)(n = 5, 6, · · ·) in
Equation (7) are generally very small and can be ignored, which indicates that the second phase term
can be compensated for by using the bulk compensation function corresponding to the reference target.
Then, the echo signal can be expressed as

S2( fr, η) = exp

{
−j

2π( fc + fr)

c

[
4

∑
i=2

ςiη
i +

4

∑
0

κn(A)ηn

]}
(8)

3.2. Distortion Minimization

After perturbation processing, the echo signal is transformed into the 2-D spectrum. Of particular
note is the spectral distortion and aliasing after azimuth Fourier transform (FT). Three main uncertainty
factors should be faced and they could greatly deteriorate the final image if we do not pay attention to
them:

â Generally, by steering the beam to different fixed centers, the spatial resolution can be controlled
flexibly during the data acquisition interval. Consequently, the corresponding azimuth signal
bandwidth might span over several pulse repetition frequency (PRF) intervals [45,46].

â The expression of the azimuth bandwidth differs from the usual representation based on the
linear path because the rate of the Doppler frequency modulation (FM) κC

2 is greatly affected
by the motion parameter vectors ar. Thus, possible azimuth bandwidth widening should be
considered in this work [47,48].

â After multiplying Equation (6) with echoes, the rate of the Doppler FM becomes κC
2 + ζ, which

means that the azimuth bandwidth may display a big change. Thus, the possible spectral
distortion should be eliminated before the azimuth FT of the signal.

The spectral aliasing elimination method has been discussed in [48] in detail and one can use
it for efficient data processing. The processes include the deramping function H1, compensation
function H2, and quadratic function H3 [48]. The only difference is that the original Doppler FM
should be substituted by κC

2 + ζ so that the spectral distortion and aliasing partly introduced by the
perturbation function can be eliminated entirely. Particularly, the spectral aliasing elimination method
is an extension of the traditional two-step approach in [49,50], whose essence is the time-frequency
rotation. Thus, two azimuth FTs are used. The first one is used as a filter to change the sampling
interval and the second one is a normal transformation.

After distortion minimization, the 2-D spectrum of the echo signal is given by

S3

(
fr, f ′η

)
= exp

{
j2π·

4

∑
i=0

ξi(A) f ′η
(i)
[
( fr + fc)

c

](1−i)
}

(9)
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where f ′η is the new azimuth frequency corresponding to the new azimuth time η′ after distortion
minimization, i.e., f ′η = (κ2(C) + ζ)·η/λ and fη = (κ2(C) + ζ)·η′/λ, where fη is the azimuth
frequency before distortion minimization. ξi(A)(i = 0, 1, 2, 3, 4) represents Doppler parameters of the
range equation corresponding to A, all of which are spatially variant terms and their expressions can
be found in Appendix C. It is important to note that the expressions of the 2-D spectrum before and
after distortion minimization are the same, except for f ′η and fη .

3.3. 2-D Scaling in Range Frequency/Azimuth Frequency Domain

The coefficients ξ0(A) and ξ1(A) are the range and Doppler positions of A, respectively. To obtain
the well-focused image, the higher-order terms corresponding to ξ2(A), ξ3(A), and ξ4(A) should be
removed entirely. In this sub-section, another perturbation function, performed in the 2-D hybrid
domain (hybrid domain between range frequency fr and azimuth frequency f ′η), is presented, i.e.,

H2nd

(
fr, f ′η

)
= exp

{
−j2π·

4

∑
i=2

ωi f ′η
(i)
[
( fr + fc)

c

](1−i)
}

(10)

where ω2, ω3, and ω4 are all the scaling factors similar to those of ς2, ς3, and ς4 in Equation (6). After
the second perturbation processing by multiplying Equation (10) with Equation (9), the phase terms of
the echo signal are derived as

ϕs

(
fr, f ′η

)
= 2πξ0(A)

( fr + fc)

c
+ 2πξ1(A) f ′η + 2π·

4

∑
i=2

(ξi(A)−ωi) f ′η
(i)
[
( fr + fc)

c

](1−i)
(11)

Clearly, the range, azimuth, and cross-coupling spatial variations of A are all included in the third
term in Equation (11) and they should be eliminated to guarantee the image qualities. Setting the
terms involving the spatially variant coefficients ξi(A)(i = 2, 3, 4) to zero is a crucial operation for the

2-D scaling algorithm, i.e.,
[

ξ2(A)−ω2 ξ3(A)−ω3 ξ4(A)−ω4

]T
=
[

0 0 0
]T

. According
to the detailed expressions ξi(i = 2, 3, 4) in Appendix B, the following equations are obtained: ξ2(A)−ω2

ξ3(A)−ω3

ξ4(A)−ω4

 =

 3β4(A)/2 −3β3(A)/4 β2(A)/4
0 β4(A)/2 −β3(A)/8
0 0 β4(A)/16


 {κ1(A)}2

κ1(A)

1

−
 ω2

ω3

ω4

 =

 0
0
0

 (12)

Clearly, three equations with six unknown scaling factors make it difficult to derive the solutions
for Equation (12). To solve this problem, we firstly rewrite Equation 12 as

β2(A) = G0 + G1·{κ1(A)− κ1(C)}+ G2·{κ1(A)− κ1(C)}2

βA
3 = Y0 + Y1·{κ1(A)− κ1(C)}

βA
4 = M0

(13)

where G0 = 4ω2 − 24κ1(C)ω3 + 6β4(A){κ1(A)}2, G1 = 12(β4(A)κ1(C)− 2ω3), G2 = 6β4(A), Y0 =

4β4(A)κ1(C)− 8ω3, Y1 = 4β4(A), and M0 = 16ω4. Then, β2(A), β3(A), and β4(A) are respectively
expanded in the power series with respect to κ1(A), i.e.,

β2(A) = β2(C) +
.
β2(C)·{κ1(A)− κ1(C)}+

..
β2(C)·{κ1(A)− κ1(C)}2

β3(A) = β3(C) +
.
β3(C)1·{κ1(A)− κ1(C)}

β4(A) = β4(C)
(14)

where β2(C),
.
β2(C), and

..
β2(C) are expansion coefficients of β2(A), β3(C) and

.
β3(C) are the

expansion coefficients of β3(A), and β4(C) is the expansion coefficient of β4(A), i.e.,
.
βn(C) =
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dβn(A)/dκ1(A)|κ1(A)=κ1(C) and
.
βn(C) = (1/2)d2βn(A)/ d{κ1(A)}2

∣∣∣
κ1(A)=κ1(C)

. Note that both

Equations (13) and (14) are used for the expressions of β2(A), β3(A), and β4(A), but with different
formulae. Making use of the similarities and differences between Equations (13) and (14), we can
obtain the following six equations with six unknowns ξi, ωi(i = 2, 3, 4), i.e.,

G0 = β2(C), G1 =
.
β2(C), G2 =

..
β2(C)

Y0 = β3(C), Y1 =
.
β3(C), M0 = β4(C)

(15)

Solving this equation set in Equation (15), we can derive its solutions as
ς2 =

(
−P2

1 − P3
)
/P2 − κ2(C)

ς3 =
(
−P3

1 − P3P1
)
/P2 − κ3(C)

ς4 =
(

P2
3 − P2

1 P3
)
/P2 − κ4(C)

(16)


ω2 = 24ς4{κ1(C)}2 + 6ς3κ1(C)− P2/

(
8
(

P2
1 + P3

))
ω3 = 8ς4κ1(C)− P1P2

2 /
(

48
(

P2
1 + P3

)2
)

ω4 = −
(
3P2

1 + P3
)

P3
2 /
(

384
(

P2
1 + P3

)3
) (17)

where P1 = dκ2(A)/dκ1(A)|κ1(A)=κ1(C), P2 = (1/2)d2κ2(A)/d{κ1(A)}2
∣∣∣
κ1(A)=κ1(C)

, and P3 =

dκ3(A)/dκ1(A)|κ1(A)=κ1(C). After the 2-D scaling processing in the hybrid domain by using Equations
(16) and (17), the echo signal can be expressed as

S4

(
fr, f ′η

)
= exp

[
j2π

(
ξ0(A)· ( fr + fc)

c
+ ξ1(A)· f ′η

)]
(18)

Clearly, the phase in Equation 18 is a 2-D linear one with respect to the range frequency fr and
azimuth frequency f ′η . By performing a 2-D inverse FT (IFT) on Equation (18), one can obtain a focused
image for ST/MR SAR data. Particularly, without introducing any extra operations, the range, azimuth,
and cross-coupling spatially variant terms in Equation (5) can be removed simultaneously and entirely
by using the 2-D scaling algorithm, which indicates that the proposed approach could be easy and
efficient to implement for the ST/MR SAR data. Next, some discussions are given to facilitate a better
understanding of the proposed method.

4. Simulation Results

In this section, some simulation results from the two experiments are shown to validate the
proposed method and analysis.

4.1. Case I

In this experiment, the effectiveness of the mathematical model presented in Equation (4) is
analyzed and verified. The traditional ‘Stop-Go’ and the non-‘Stop-Go’ models in [20] are compared
with the proposed 2-D scaling algorithm. The simulation parameters are listed in Table 2. The ST/MR
SAR data are simulated with one reference target PT0 being arranged on the ground scene.

Figure 7a–c show the focused results of the ground scene by the proposed model, the traditional
non-‘Stop-Go’ model, and the traditional ‘Stop-Go’ model, respectively. Clearly, considering the
negative impacts brought about by the missile’s accelerations, the focused result of the reference target
PT0 in Figure 7a is visually well-focused, with the position being the scene center. However, using the
traditional non-‘Stop-Go’ and ‘Stop-Go’ models, the imaging results exhibit great deterioration in the
azimuth directions with wrong target positions marked on the ground scenes, as shown in Figure 7b,c.
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Table 2. Parameter settings for Case I.

Parameter Platform Transmitter Receiver

Radar Position at ACM (0, 0, 754) km (132, 0, 15) km
Velocity Vector (0, 7600, 0) m/s (300, 1200, −200) m/s

Acceleration Vector / (30, 54, −26) m/s2

Elevation Angle 74.1◦ 44.6◦

Carrier Frequency 9.65 GHz
Pulse Width 20 µs

Pulse Bandwidth 200 MHz
Sampling Frequency 300 MHz
Azimuth Resolution 0.823 m
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‘Stop-Go’ model.

Figure 8 shows the comparative results of the reference targets which are extracted from the
simulated results in Figure 7. Clearly, the 2-D impulse response by the proposed model is well-focused
with relative clear separations of the main lobe and first and subsequential sidelobes, whereas the ones
from the traditional non-‘Stop-Go’ and ‘Stop-Go’ models are defocused completely, which indicates
that the impacts of the accelerations on the ‘Stop-Go’ model must be taken into consideration when
design the focusing algorithm.
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4.2. Case II

In order to verify the effectiveness of the proposed approach, some simulated results are given
in this case. The simulated parameters are listed in Table 3. A 3 × 3 dot-matrix is arranged on the
simulated ground scene, with center target PT2 being the reference target. The geometry of the scene
is presented in Figure 9, with the scene size being 2 km × 2 km.
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Table 3. Parameter settings for Case II.

Parameter Platform Transmitter Receiver

Radar Position at ACM (0, 0, 510) km (112, −78, 25) km
Velocity Vector (0, 7600, 0) m/s (−170, 800, −640) m/s

Acceleration Vector / (13, −34, −68) m/s2

Elevation Angle 81.3◦ 27.7◦

Carrier Frequency 9.65 GHz
Pulse Width 20 µs

Pulse Bandwidth 240 MHz
Sampling Frequency 360 MHz
Azimuth Resolution 0.716
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By performing the proposed algorithm, simulated results of targets PT1, PT2, and PT3 are shown
in Figure 10a. It can be seen that the main lobe and the side lobes are generally separated, and the
center point PT2 and the edge points PT1 and PT3 are all well-focused. For comparisons, the 2-D
impulse responses of these three targets obtained by the NCSA [32] and the GPFA [16] are respectively
shown in Figure 10b,c. Experimental results indicate that the center points on the ground scene are
focused well, whereas the ones on the edges remain highly defocused in the azimuth direction. For the
NCSA, the range and cross-coupling spatial variations are not considered and they would lead to
great deterioration in the final image. Moreover, the residual phases after NCSA, eliminated by the
deramping function, would also introduce errors in the imaging result. The GPFA can be used for the
ST/MR SAR; however, its depth of field is greatly affected by the wavefront curvature.

The profiles of azimuth spread functions of targets PT1 and PT3 are presented in Figure 11.
To quantify the precision of the proposed approach, the impulse-response width (IRW), peak sidelobe
ratio (PSLR), and integrated sidelobe ratio (ISLR) are also used as criteria. The results are listed
in Table 4. The proposed method is noted to be generally acceptable. Moreover, to further elevate
the performance of the 2-D scaling algorithm, the position errors are computed in this part. The
deviations of point targets PT1, PT2, and PT3 from their ideal values are 0.912 m, 0.475 m, and 1.016 m,
respectively. Clearly, the deviations were generally within or around one IRW. Consequently, with the
incorporation of 2-D perturbations and distortion minimization, promising results are obtained for the
ST/MR SAR.



Remote Sens. 2019, 11, 346 13 of 18

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 20 

 

In order to verify the effectiveness of the proposed approach, some simulated results are given 
in this case. The simulated parameters are listed in Table 3. A 3 × 3 dot-matrix is arranged on the 
simulated ground scene, with center target PT2 being the reference target. The geometry of the 
scene is presented in Figure 9, with the scene size being 2km × 2km.  

Z

X

Y

M

S

PT3

PT2

Azimuth

PT1

 

Figure 9. Ground scene for simulation. 

 

(a) 

 

(b) 

 

(c) 

Figure 10. Comparative results of targets PT1, PT2, and PT3. (a) Proposed. (b) NCSA. (c) GPFA. Figure 10. Comparative results of targets PT1, PT2, and PT3. (a) Proposed. (b) NCSA. (c) GPFA.

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 20 

 

(c) 

Figure 10. Comparative results of targets PT1, PT2, and PT3. (a) Proposed. (b) NCSA. (c) GPFA. 

By performing the proposed algorithm, simulated results of targets PT1, PT2, and PT3 are 
shown in Figure 10a. It can be seen that the main lobe and the side lobes are generally separated, 
and the center point PT2 and the edge points PT1 and PT3 are all well-focused. For comparisons, 
the 2-D impulse responses of these three targets obtained by the NCSA [32] and the GPFA [16] are 
respectively shown in Figure 10b,c. Experimental results indicate that the center points on the 
ground scene are focused well, whereas the ones on the edges remain highly defocused in the 
azimuth direction. For the NCSA, the range and cross-coupling spatial variations are not 
considered and they would lead to great deterioration in the final image. Moreover, the residual 
phases after NCSA, eliminated by the deramping function, would also introduce errors in the 
imaging result. The GPFA can be used for the ST/MR SAR; however, its depth of field is greatly 
affected by the wavefront curvature. 

The profiles of azimuth spread functions of targets PT1 and PT3 are presented in Figure 11. To 
quantify the precision of the proposed approach, the impulse-response width (IRW), peak sidelobe 
ratio (PSLR), and integrated sidelobe ratio (ISLR) are also used as criteria. The results are listed in 
Table 4. The proposed method is noted to be generally acceptable. Moreover, to further elevate the 
performance of the 2-D scaling algorithm, the position errors are computed in this part. The 
deviations of point targets PT1, PT2, and PT3 from their ideal values are 0.912 m, 0.475 m, and 1.016 
m, respectively. Clearly, the deviations were generally within or around one IRW. Consequently, 
with the incorporation of 2-D perturbations and distortion minimization, promising results are 
obtained for the ST/MR SAR. 

            
(a)                                           (b) 

Figure 11. Azimuth profiles by the proposed method, NCSA, and GPFA. (a) Target PT1. (b) Target 
PT3. 

Table 4. Image quality parameters. 

 Range Azimuth 

Method Target 
IRW 
(m) 

PSLR 
(dB) 

ISLR 
(dB) 

IRW 
(m) 

PSLR 
(dB) 

ISLR 
(dB) 

Proposed 
PT1 0.626 −13.21 −9.97 0.723 −13.09 −9.91 
PT3 0.625 −13.19 −10.01 0.712 −13.04 −9.84 

NCSA 
PT1 0.625 −13.20 −9.99 0.983 −7.04 −7.36 
PT3 0.627 −13.18 −9.98 0.965 −6.83 −7.28 

GPFA 
PT1 0.626 −13.20 −10.02 1.124 −10.12 −8.07 
PT3 0.628 −13.19 −9.99 1.059 −12.25 −6.63 

5. Discussion 

Commented [微软用户1]: The bold has been deleted in this 

version. 

 

Figure 11. Azimuth profiles by the proposed method, NCSA, and GPFA. (a) Target PT1. (b) Target PT3.

Table 4. Image quality parameters.

Range Azimuth

Method Target IRW (m) PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB)

Proposed PT1 0.626 −13.21 −9.97 0.723 −13.09 −9.91

PT3 0.625 −13.19 −10.01 0.712 −13.04 −9.84

NCSA
PT1 0.625 −13.20 −9.99 0.983 −7.04 −7.36

PT3 0.627 −13.18 −9.98 0.965 −6.83 −7.28

GPFA
PT1 0.626 −13.20 −10.02 1.124 −10.12 −8.07

PT3 0.628 −13.19 −9.99 1.059 −12.25 −6.63



Remote Sens. 2019, 11, 346 14 of 18

5. Discussion

5.1. 2-D Range Compression

Antenna motion during the transmission and reception of a pulse causes pulse distortion and is
analogous to the familiar Doppler frequency shift associated with sound waves [1]. Typically, the phase
effect of motion during a pulse is small, but this effect can be become significant as pulse lengths
increase and motion becomes faster. Employing the simulation parameters in Table 2, the phase error
brought about by the motion during transmission and reception of a pulse is about 3.73π and the extra
phase error brought about by the acceleration term is about 0.007π, which indicates that the effect
of the motion during transmission and reception should be considered, whereas the impact by the
acceleration can be ignored. Actually, the effect has been already discussed in [18–20]. Based on the
analytical derivations in [19,20], the effect can be compensated by

HC
(

fr, fη

)
= exp

(
j2π

fr fη

γ
+ jπ

f 2
η

γ

)
(19)

Multiplying Equation (19) by the range compression function in the range frequency domain,
the range compression together with the effect compensation (in this work, we call it the 2-D range
compression operation) can be expressed as

H2D−rc
(

fr, fη

)
= exp

{
jπ

(
fr + fη

)2

γ

}
(20)

5.2. Computational Load

The computational load is analyzed in this section. In the 2-D scaling algorithm, two range FTs,
three azimuth FTs, and four multiplications are utilized. The computational load can be derived as
MN log2 N + 3NM log2 M/2+ 4NM, where N and M are the numbers of range and azimuth samples,
respectively. In comparison, for the BPA (e.g., [35]), for each pixel in the final image, a signal vector with
a length M is extracted from range compressed data, multiplied with a phase function, and summed;
thus, the total computational load can be expressed as OB = M2N. In a standard CSA (e.g., [51]), two
range FTs, one azimuth FT, and three multiplications are used. Therefore, the computational load can
be expressed as MN log2 N + NM log2 M + 3NM.

Clearly, the BPA has the highest computational load. The load of the 2-D scaling algorithm
is slightly heavier than that of the CSA. Ratios at five sample sizes of both range and azimuth are
computed to quantify the comparison (Table 5).

Table 5. Computational load analysis.

Data Size in Samples (×103) 1 2 4 8 16

CSA/Proposed 0.793 0.794 0.794 0.795 0.795
BPA/Proposed 35.59 91.25 194.81 387.78 750.61

6. Conclusions

In this paper, a new BiSAR imaging configuration is presented, with the satellite being the
transmitter and missile being the receiver. This system could provide many advantages, including
wide coverage, unrestricted geography, low detection probability of the missile, and forward-looking
imaging. A geometric model for the ST/MR SAR is first established by using motion parameter vectors
and the flight-path constraint is derived, and the corresponding focusing approach is then proposed.
In this approach, two perturbation functions are designed in the 2-D hybrid domain to eliminate
the range, azimuth, and cross-coupling spatially variant terms in the ST/MR data and distortion
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minimization is applied to avoid the possible spectral distortion and aliasing in the 2-D spectrum.
Furthermore, discussions including the 2-D range compression and the computational load are studied.
Validity and applicability are studied through theoretical analysis and numerical experiments.
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Appendix A

In this Appendix, the coefficients of the Taylor series are listed as

Table A1. Coefficients of Taylor series expansion.

Coefficient Transmitter Coefficients Receiver

σ0
√
〈rt(0, A), rt(0, A)〉 ν0

√
〈rr(0, A), rr(0, A)〉

σ1 σ−1
0 ·[−〈rt(0, A), vt〉] ν1 ν−1

0 ·[−〈rr(0, A), vr〉]
σ2 σ−1

0 ·
[
〈vt, vt〉 − σ1

2] ν2 ν−1
0 ·
[
(−〈rr(0, A), ar〉+ 〈vr, vr〉)− ν1

2]
σ3 σ−1

0 ·[−3σ1σ2] ν3 ν−1
0 ·[(3〈vr, ar〉)− 3ν1ν2]

σ4 σ−1
0 ·
[
−3σ2

2 − 4σ1σ3
]

ν4 ν−1
0 ·
[
(3〈ar, ar〉)− 3ν2

2 − 4ν1ν3
]

where σi(i = 0, 1, 2, 3, 4) and νi(i = 0, 1, 2, 3, 4) in Table A1 are the Taylor series expansion coefficients
of the range histories corresponding to the transmitter and the receiver, respectively. 〈, 〉 is the inner
operator. Thus, the coefficients µi(i = 0, 1, 2, 3, 4) are derived as µi = σi + νi.

Considering the high-order accelerations, the range history of A can be expressed as∣∣∣rhigh(η, A)
∣∣∣ = |rt(η, A)|+ |rr(η, A)|

=
∣∣rt(0, A)− vtη − atη

2/2− btη
3/6− ctη

4/24
∣∣

+
∣∣rr(0, A)− vrη − arη2/2− brη3/6− crη4/24

∣∣ , (A1)

where at, bt, and ct are the second-, third-, and fourth- order accelerations of the transmitter,
respectively. br and cr are the third- and fourth-order accelerations of the receiver, respectively.
Employing the simulated parameters in Table 2 and Equation (A1), Figure A1 shows the residual
errors brought about by the high-order motion parameters. The unit of the contour maps is π. Clearly,
the bulk phase errors are all larger than π/4, whereas the spatially variant ones are all far less than π/4,
which indicates that the high-order motion parameters can be compensated by

∣∣∣rhigh(η, C)
∣∣∣− |r(η, C)|

without considering the spatial variations and they have no impact on the focusing algorithm design.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 20 
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Appendix B

By using the Taylor series expansion in Equation (2), the time delay τ can be expressed as

τ = ∑
0

1
n!

µn(A)ηn/c = ∑
0

1
n!
(µn(A)/c)ηn = ∑

0

1
n!

lnηn, (B1)

where ln = µn(A)/c, (n = 0, 1, 2, · · ·). For the slant range history |rr(η, A)| of the receiver, it can be
rewritten as:

|rr(η, A)| =
∣∣∣rr(0, A)− vr(η + τ)− ar(η + τ)2/2

∣∣∣
≈
∣∣∣req − veqη − 1

2 aeqη2 − 1
6 beqη3

∣∣∣ , (B2)

where req, veq, aeq, and beq are the equivalent slant range, velocity, acceleration, and rate of acceleration
vectors, respectively, and they are given by req = rr

A − l0vr − 0.5·l2
0ar, veq = (1 + l1)(vr + l0ar), aeq =

(1 + l1)
2ar + 2l0l2ar + 2l2vr, aeq = 6(1 + l1)l2ar, and beq = 12l2

2ar.
According to the previous derivations in Equations (B1) and (B2), the slant range history of the

ST/MR SAR can be expressed as

|rnew(η, A)| = |rt(0, A)− vtη|+
∣∣∣rr(0, A)− vr(η + τ)− ar(η + τ)2/2

∣∣∣
≈ ∑

0

1
n! σnηn + ∑

0

1
n! ϑnηn

≈ ∑
0

1
n! κn(A)ηn

, (B3)

where κn = σn + ϑn in Equation (B3) and ϑn are the expansion coefficients of |rr(η, A)|.

Appendix C

By using the POSP and the MSR [24,25], the coefficients of the 2-D spectrum in Equation (9) are
derived as

ξ0(A)

ξ1(A)

ξ2(A)

ξ3(A)

ξ4(A)

 =


β4(A) −β3(A) β2(A) β1(A) β0(A)

0 2β4(A) −3β3(A)/2 β2(A) β1(A)

0 0 3β4(A)/2 −3β3(A)/4 β2(A)/4
0 0 0 β4(A)/2 −β3(A)/8
0 0 0 0 β4(A)/16

·

{κ1(A)}4

{κ1(A)}3

{κ1(A)}2

κ1(A)

1

, (C1)

where β0(A) = −κ0(A), β1(A) = 0, β2(A) = (κ2(A) + ς2)
−1/2, β3(A) =

−{κ2(A) + ς2}−3{κ3(A) + ς3}/6, and β4(A) = {κ2(A) + ς2}−5{κ3(A) + ς3}2/8
−{κ2(A) + ς2}−4{κ4(A) + ς4}/24 in the Equation (C1).
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