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Abstract: Extracting buildings from very high resolution (VHR) images has attracted much attention
but is still challenging due to their large varieties in appearance and scale. Convolutional neural
networks (CNNs) have shown effective and superior performance in automatically learning high-level
and discriminative features in extracting buildings. However, the fixed receptive fields make
conventional CNNs insufficient to tolerate large scale changes. Multiscale CNN (MCNN) is a
promising structure to meet this challenge. Unfortunately, the multiscale features extracted by
MCNN are always stacked and fed into one classifier, which make it difficult to recognize objects
with different scales. Besides, the repeated sub-sampling processes lead to a blurred boundary of the
extracted features. In this study, we proposed a novel parallel support vector mechanism (SVM)-based
fusion strategy to take full use of deep features at different scales as extracted by the MCNN structure.
We firstly designed a MCNN structure with different sizes of input patches and kernels, to learn
multiscale deep features. After that, features at different scales were individually fed into different
support vector machine (SVM) classifiers to produce rule images for pre-classification. A decision
fusion strategy is then applied on the pre-classification results based on another SVM classifier. Finally,
superpixels are applied to refine the boundary of the fused results using region-based maximum
voting. For performance evaluation, the well-known International Society for Photogrammetry
and Remote Sensing (ISPRS) Potsdam dataset was used in comparison with several state-of-the-art
algorithms. Experimental results have demonstrated the superior performance of the proposed
methodology in extracting complex buildings in urban districts.
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1. Introduction

With the acceleration of urbanization, building extraction becomes increasingly essential for
urban planning, change monitoring, population estimation, and disaster assessment [1,2]. As remote
sensed techniques improved, high resolution images even very high resolution (VHR) images provided
by satellites, spaceborne, and airborne are more and more popular [3–5]. The availability of these
images makes it possible to distinguish buildings from background objects [6]. However, completely
extracting buildings from VHR images with high accuracy is still a challenge. For one thing, the shape
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and scale of buildings are various, which makes it difficult to detect buildings with all scales using
a uniform scale model. For another, due to the increasing spatial resolution and different roofing
materials, structures and designs, the buildings will have a large-variety in appearance. Therefore, it is
challenge to extract robust and discriminative representations of buildings in VHR images.

Over the last two decades, many related research has been conducted on building extraction [7–11].
Based on the remotely used sensed data, the building extraction can be divided into two categories:
One is just based on optical satellite data [12–14], and the other one is based on multi-sensor data
such as Light Detection and Ranging (LIDAR), light data and Synthetic Aperture Radar (SAR) [15–18].
In the first category, buildings are often extracted based on some low-level spectral and spatial features,
such as shape index [14], texture features [13], canny edge detection [19], scale invariant feature
transform [20], and nearby shadows [12]. As for the second sort of method, the auxiliary data can give
detailed features such as height information and is reported to obtain more reliable results. However,
these data are more difficult and expensive to acquire [1]. Although these methods have been reported
effectively in building extraction, they are all based on hand-crafted features, which significantly
requires the experience and knowledge of end-users [21]. Besides, due to the strong inter-class variety
of buildings in VHR images, these traditional features still show much mixture. To this end, in order to
accurately extract complex buildings in urban areas, it is urgent to develop more effective and efficient
feature extraction methods in VHR images.

Instead of conventional hand-crafted feature design, deep learning recently has shown great
potential in designing discriminative features [22–24]. The use of deep learning in remotely sensed
images processing is also rapidly growing, mainly because of its superiority in extracting high-level
features without any data preprocessing and the end-to-end feature learning ability [25,26]. Unlike
low-level features, the features generated by deep learning are more robust and representative [27,28].
There are sorts of deep learning-based networks have been developed, such as Deep Belief
Neural Network (DBN) [29], Convolutional Neural Network (CNN) [30], Long Short-term Memory
(LSTM) [31], and Generative Adversarial Network (GAN) [32]. Among these deep learning-based
networks, CNN is the most popular one in the remote sensing field [33,34]. This network generates
the promising performance relying on its national ability to extract hierarchical and discriminative
features automatically, ranging from low-level features such as corners and edges, to high-level
features such as whole objects [26]. Besides, CNN can effectively combine spectral and spatial
information simultaneously just rely on original data itself, which also contribute its capability in
image processing [35].

Inspired by the success of CNN in remote sensing, more and more studies take use of CNN
to extract buildings especially in VHR images [19,33,35–39]. And based on CNN architecture,
many novel networks have also been constructed for building extraction, such as the deep CNN
(DCNN) [40], the deep deconvolutional neural network (DeCNN) [41], the deep convolutional
encoder-decoder (DECD) network [42], the fully convolutional network (FCN) [35] and the object-based
CNN (OCNN) [39]. These methods have been reported the effectiveness of CNN in building extraction.
However, it is still need to be argued to use CNN model directly for building extraction of VHR
images. The first problem lies in the fixed receptive fields of CNN, which will result in its poor ability
to recognize objects with varied scales [43]. Unfortunately, buildings in VHR images are often appear
at various observation scales. Using multiscale CNN models is considered as a promising technique
to address this issue. Several studies have developed multiscale CNN models to extract multiscale
features in building extraction [44–46]. Generally, these models are always conducted by multiscale
inputs and different kernel sizes in CNN architecture to extract multiscale deep features. However,
these features are always stacked together and then fed into one classifier. In this way, features at each
source are treated equally, and it is difficult for single classifier to match different features together,
which lead to the poor performance in recognizing objects at different scales simultaneously. Besides,
CNN is insensitive to the object boundary, leading to its poor ability to localize objects [47,48]. This is
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mainly caused by the down-sampling pooling processes in CNN, which make CNN extract more
abstract features but at the cost of reduced feature resolution.

To meet these challenges, in this paper, support vector machine (SVM)-based fusion strategy
of the multiscale CNN features is proposed for building extraction in VHR images. The multiscale
deep features are firstly produced by multiscale CNN models with inputs and kernels at three scales.
These features are then separately fed into different SVMs to derive rule images at different scales.
Rule images are referred to the primary images of SVM, which contain the distance of each pixel to
the hyperplane of the binary classification problem [49]. After that, these rule images are fused with
another SVM to derive a building classification result. Finally, a region-based max voting scheme is
conducted using superpixels generated by a mean-shift (MS) algorithm. The main contributions of
this study lie in the following two aspects: (1) Extended deep features at single scale to multiscale for
extracting of buildings; (2) proposed a parallel SVM-based strategy to fuse multiscale CNN results at
decision level. The experimental results conducted in the three study areas indicate that the proposed
algorithm is outperformed to other popular algorithms.

The remainder of this paper is organized as follows. Section 2 presents the detailed structure of
the proposed method for building extraction in VHR images. Section 3 describes the experimental
results and the comparisons with other machine learning algorithms. Discussions and conclusions are
given in Sections 4 and 5, respectively.

2. Methodology

In this study, an effective building extraction from VHR images framework is proposed, which
combines the discriminative features of objects provided by MCNN and the decision fusion strategy
based on SVMs. The overall workflow of the proposed method is illustrated in Figure 1. As we
can see, there are three major steps with the proposed algorithm: (A) Multiscale deep features
extraction: By learning multiscale features using MCNN models with different inputs and kernel sizes;
(B) SVM-based fusion of MCNN: Generating rule images based on different SVM models and fused
them using another SVM classifier at decision level; (C) boundary refinement: Using superpixels to
provide building boundary by region-based max voting to produce the ultimate building maps.

2.1. Basic Theory of CNN

Compared with traditional building extraction algorithms, CNN is a more effective one since
it can extract hierarchical representative features of buildings [25]. Traditionally, a classic CNN is a
fed-back multilayer network which contains two sorts of typical layers, named convolutional layers
and pooling layers [30]. The convolutional layers can generate various convoluted features by different
filters, and the pooling layers are used to make the feature maps extracted by convolutional layers
more abstract and robust via sub-sampling operation.

Generally, at lth convolutional layer, the feature maps of (l − 1)th layer are firstly convolved
with learnable filters k, and then the output feature maps of lth will be produced through a nonlinear
activation function g(·). The activation function g(·) here is commonly specified to be the sigmoid
function, or the hyperbolic tangent function and rectified linear units [50]. Therefore, the lth

convolutional layer Cl can be summarized as

Cl = g(klhl−1 + bl) (1)

where hl−1 refers to the hidden layer in which h0 is the raw input. bl is the bias term of the lth layer
feature map. When the convolutional layer works, each filter k will slide over the entire image and
produces feature maps. One superiority of the convolutional layer in CNN is that it can learn and
choose the best filter for the entire network [43].
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The pooling layers are always followed by convolutional layers, which offers to generalize the
features produced by convolutional layers more robust and further can reduce the computational
complexity by using a sub-sampling operation. Pooling layers Pl are defined as

Pl = g(down(hl−1) + bl) (2)

where down(·) represents a sub-sampling function. Typically, it will sum over each distinct n-by-n
block in the input map thus that the output feature maps are n-times smaller than previous ones.
Each output map is given its own additive bias parameter bl , which is similar to convolutional layers.

2.2. Multiscale Deep Features Extraction

To extract deep features at different scales to describe complex buildings, we constructed a
multiscale CNN structure in this paper. We used image patches at three different sizes as inputs to
feed into three corresponding CNN models with three different kernel sizes, respectively. Specifically,
the small scale will contain the inner spatial information, and the medium scale will contain the edges
and corners, while the large scale will contain the neighboring and context information, therefore we
can get more complete features to extract buildings.

The architecture of the MCNN in this paper is illustrated in Figure 2. As we can see, in order to
extract multiscale features of buildings, we used three input patches centered on one pixel at sizes
of 14 × 14, 24 × 24 and 34 × 34, respectively. The corresponding CNN models are named CNN14,
CNN24, and CNN34. Two convolution and sub-sampling layers are set in CNN models at each scale.
Besides, to increase the performance of extracting multiscale features, the kernel sizes of different
CNN models are also different. The specific parameters of CNN models at different scales are listed in
Table 1. Using different CNN models, there are 192, 108, and 42 feature maps produced, respectively.
To this end, the patch at small scale with small convolutional kernel size is focusing on the inner
information of buildings, and the patch at medium scale with medium convolutional kernel size
may contain the corners and edges information of buildings, while the patch at large scale with large
convolutional kernel size will contain the neighboring objects and context information of buildings.
Accordingly, this MCNN model can learn and extract multiscale spatial features of buildings.
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Table 1. CNN architecture at each scale.

Layer Kernel Parameters CNN14 CNN24 CNN34

Convolution 1
Kernel size 3 × 3 5 × 5 7 × 7

Kernel number 6 6 6

Pooling 1 Kernel size 2 × 2 2 × 2 2 × 2
Kernel number 6 6 6

Convolution 1
Kernel size 3 × 3 5 × 5 7 × 7

Kernel number 12 12 12

Pooling 2 Kernel size 2 × 2 2 × 2 2 × 2
Kernel number 12 12 12

2.3. SVM-Based Fusion of MCNN

In some existing studies, deep features from different sources are always stacked together and fed
into one classifier for further classification. However, in this way, features at each source are treated
equally, and it is difficult for a single classifier to match different features together, which lead to the
poor performance in recognizing complex objects. Therefore, in this paper, deep features at three scales
were fed into three support vector machines (SVM) individually. SVM is a successfully introduced
machine learning algorithm in the remote sensing context and reported effective in classification [51–54].
Considering the land covers in experimental datasets, we set four land-cover classes: Buildings, road,
vegetation, and shadow. Five hundred samples of each class were selected randomly, and again using
a random sampling strategy, 800 hundred samples of each class were generated as an independent
validation set.

Corresponding to input features at three different scales, we used three SVM models. The SVM
was trained individually at each scale to estimate the kernel parameter γ and the regularization
parameter C. In order to solve the multiclass problems, two main strategies have been proposed
to extend original SVM, which is developed as binary classifiers. One is a one-against-one (OAO)
strategy and the other is a one-against-all (OAA) strategy [55]. The rule images derived from the OAO
strategy has been demonstrated better suited in a multiple classifier system than those from the OAA
strategy [49]. Therefore, in this paper, we used the OAO strategy to produce rule images.

In the configuration of SVM, due to the superiority in handling complex nonlinear class
distributions and comparatively simple computational complexity, a Gaussian kernel was selected [56].
The training of SVM with the Gaussian kernel and the generation of the rule images were performed
using image SVM [57], which is freely available in Enmap-Box and using the LIBSVM approach for
training. The best combinations for kernel parameters of γ and C are determined by a grid search
using a tenfold cross validation. As shown in Figure 1, after the first three SVM classifiers, there are
18 rule images produced (six rule images of each individual SVM), given the four land-cover classes.

The rule images were then used for the decision fusion to decide the final label of each pixel.
In traditional SVM classifications, the decision fusion is conducted using a simple majority voting
based on these rule images. In this paper, we used a second SVM for the decision fusion process to
take full use of feature information. Specifically, all the rule images derived from the first SVM is
firstly combined into one data set. An additional SVM is then applied to these data set consisting
of rule images focused on different scales to determine the building classification result, which is
demonstrated to outperform the simple majority voting strategy in studies [49,58]. It is noted that the
training and validation samples of both the first SVM and the second SVM are sharing.

2.4. Boundary Refinement

By using the SVM-based fusion strategy, the proposed algorithm can predict the position of
buildings with different scales. However, due to that the classification and decision fusion processes
are based on deep features extracted by CNN, the repeated sub-sampling operations in CNN will
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make the boundary of buildings blurred, which tends to amplify the building mapping uncertainty.
Therefore, further refinement of the extracted results is needed. Combining superpixels is considered
as a promising process to address this issue. Superpixels are defined as patches of pixels in which the
texture, color, brightness, etc. are similar [59]. The boundary offered by superpixels are clear and the
pixels in superpixels are homogeneous, which can be utilized to optimize the MCNN classification
maps by a simple voting algorithm.

Over the past years, over 30 sorts of superpixel were developed to the public [60]. These
algorithms can be generally divided into two categories: One is based on gradient ascent and the
other one is based on graph theory [61]. Gradient ascent methods mainly cover the mean-shift
(MS) algorithm [62], the simple linear iterative clustering (SLIC) algorithm [63] and the watershed
transform algorithm [64]; while graph theory based methods mainly cover efficient graph-based
image segmentation (EGB) [65] and the normalized cuts algorithm [66]. Among these algorithms,
the MS algorithm has a good performance in segmenting VHR images with the advantage of a simple
parameter and no need for prior knowledge. In addition, the MS algorithm is able to maintain the
saliency and edge information, which contributed its wide applications in complex images [62,67,68].
Therefore, the MS algorithm is applied in this paper to generate superpixels.

To integrate the SVM-based classification maps with superpixels into final buildings maps, a
simple max voting scheme is employed in this paper. The max voting scheme contains three steps.
Firstly, the MCNN classification result is mapped to each superpixel to assign classification labels for
all pixels. Then, the classification unit is defined as a superpixel instead of individual pixels in the
post-processing. Finally, in the voting process, the mostly frequently appeared label in a superpixel is
considered as the final label of this superpixel. For a superpixel r, the label SPr is defined as

SPr = argmaxN
n=1∑ sign( fr(i,j) = n) (3)

where (i,j) is the coordinate of the pixel r(i,j), and f r(i,j) is the label of the pixel r(i,j) in superpixel r from
the initial MCNN classification result. N is the total number of the expected classes. For all superpixels,
the same voting scheme is applied and the ultimate result is obtained.

3. Experimental Results

3.1. Introduction of Datasets

The VHR images used in our experiments consists of three orthophotos from a well-known
dataset, named the ISPRS Potsdam 2D semantic VHR remote sensing (Germany) datasets, which are
open datasets provided online at http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-
potsdam.html. They contain two sorts of optical images, including near-inferred, red, green bands
(NIR-RG) and red, green, blue bands (RGB), respectively. Besides, the Potsdam dataset also contains a
digital surface models (DSM) map and a manually annotated ground truth image. In our experiment,
we just used the Potsdam NIR-RG image. In order to test the effectiveness of the proposed algorithm
under different building environments, we used three images from Potsdam, which contain dense
and complex buildings, and the original images and corresponding reference images are illustrated
in Figure 3. Experimental images in three study areas are named as Image 1, Image 2, and Image 3,
respectively. Additionally, the spatial resolution of images from Potsdam is approximately 0.09 m.

http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
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3.2. Experimental Setups

There are several parameters in the experiment that need to be set. Firstly, when using MCNN to
extract multiscale features, the input patches centered on a pixel are set to 14 × 14, 24 × 24, 34 × 34,
respectively. The kernel sizes of two convolutional layers of the corresponding CNN models are set to
3 × 3, 5 × 5, 7 × 7, respectively. Secondly, when using the MS algorithm to produce superpixels, each
image needs to set three scale parameters, named the window widths of color, spatial domain, and the
minimum area size. Focusing on different environments of images, the three parameters of image (a),
(b), and (c) are all set to 30/12.5/150, and 30/12.5/150 pixels.

To verify the superiority of the proposed algorithm, three algorithms are adopted as the compared
algorithms. The compared algorithms and the reasons to configure these compared algorithms are as
follows. Firstly, in order to demonstrate the superiority of deep features, we used the original spectral
bands instead of deep features as inputs, and the rest processes remains the same, hereafter named
comparison 1 algorithm (C1). Secondly, in order to demonstrate the superiority of multiscale deep
features, we used the single scale deep features instead of multiscale deep features, and the rest of
the processes remain the same, hereafter named comparison 2 algorithm (C2). Thirdly, to verity the
effectiveness of separately using the deep features at each scale, the deep features were stacked as one
feature set and then fed into one SVM classifier, while the rest of the processes are the same, hereafter
named comparison 3 algorithm (C3).

3.3. Precision Evaluation Criteria

In this paper, we used three popular criteria, named Recall, Precision, and F-measure to evaluate
the performance of the proposed algorithm [38,69,70]. They are defined as follows.

Recall =
TP

TP + FP
(4)

Precision =
TP

TP + FN
(5)

F − measure =
2 × Precision × Recall

Precision + Recall
(6)
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where TP (true positive) represents the total number of building pixels correctly classified in the
reference maps; FP (false positive) represents the number of background pixels misclassified as
buildings; FN (false negative) represents the number of true building pixels misclassified as background
pixels. Overall, Recall and Precision can draw the building extraction accuracy, and F-measure is a
synthetic measurement of Recall and Precision.

3.4. Qualitative Evaluation

Figures 4–6 show the building extraction results by the proposed algorithm and the three
compared algorithms. It is noted that the final sub-image of each figure is the ultimate building
result of our proposed algorithm which is refined by superpixels. Overall, the better performance of
our proposed algorithm is clearly perceivable in all three images. The proposed algorithm can extract
buildings with various scales and the extracted buildings are complete and continuous under complex
building environments (Figures 4–6). Especially, as illustrated in the red rectangles corresponding to
Figure 4a, the proposed algorithm can detect buildings completely, while the others performed poorly
in detecting buildings on the dark side, which indicates the superiority of our proposed algorithm
in extracting buildings with different appearances. Besides, thanks to the multiscale deep features,
the proposed algorithm can recognize buildings at both small and large scales, as shown in the labeled
yellow ellipses in Figure 5. Finally, as shown in Figures 4, 5 and 6f, the use of superpixels makes the
ultimate building maps with few speckles and noises. However, the buildings covered by shadows are
difficult to be extracted using the proposed algorithm. For example, as shown in the blue rectangles
in Figure 5, there are part of buildings that are covered in shadows, and all the algorithms cannot
effectively detect it. Shadows lead to the distortion of information, which makes the recognition of
objects a challenge.
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Compared with our proposed algorithm, the other three compared algorithms have unsatisfied
performance at different objects. Firstly, as shown in Figures 4, 5 and 6c, the buildings extracted
from C1 are not complete. For example, the extracted building labeled in the green rectangle in
Figure 5c has some small holes, while in Figure 5b,d,f, this building is comparatively more complete.
Besides, the overall building map extracted by C1 are with much noises, such as the labeled objects
in green rectangles corresponding to Figure 6. This is because that C1 is based only on spectral
features, which indicates the superiority of CNN model in extracting both spectral and spatial features.
Besides, comparing the proposed algorithm with C2, we can find that there are some misclassifications
of the latter algorithm, such as shown in the red squares in Figure 5d. This is mainly because the
features at a single scale cannot provide sufficient information for accurate recognition under a very
complex urban environment. Finally, by the comparison between the proposed algorithm and C3
algorithm, we can easily find that the feature stacking strategy generated poorer performance than
separate classification of different features. As illustrated in the Figures 4 and 5e, there are some
misclassifications, which mainly indicates that treating features at different scales has some limitations.

3.5. Quantitative Evaluation

Table 2 shows the quantitative evaluation results of buildings extracted by the proposed algorithm
and three other algorithms, respectively. By the comparisons of the F-measure values, we can
draw a conclusion that the proposed algorithm has the best performance in extracting complex
buildings. Overall, the F-measure is comparatively high for the proposed algorithm in three study
areas. Compared with the proposed algorithm, the F-measure of the other three compared algorithms
are much lower, which demonstrate the effectiveness of deep features, multiscale CNN strategy,
and separate fusion of features strategies adopted in our proposed algorithm.

Table 2. Accuracy measures of the three algorithms for the building extraction results using Recall,
Precision, and F-measure in the three study areas.

Approach Criteria Image 1 Image 2 Image 3

Proposed
Recall 0.92 0.88 0.92

Precision 0.91 0.93 0.96
F-measure 0.91 0.90 0.94

C1
Recall 0.80 0.80 0.83

Precision 0.81 0.93 0.94
F-measure 0.80 0.86 0.88

C2
Recall 0.89 0.74 0.86

Precision 0.76 0.95 0.96
F-measure 0.82 0.83 0.91

C3
Recall 0.87 0.77 0.86

Precision 0.71 0.94 0.96
F-measure 0.78 0.85 0.91

By analyzing the criteria of recall, we can find that the Recall values of C2 and C3 are lower than
the Precision values in Image 1, which is mainly because there were more buildings that were omitted,
as shown in Figure 4d,e. This can also demonstrate that there are some limitations of compared
algorithms in extracting buildings in some degree. Moreover, the Recall of C1 is generally lower in all
the three images, mainly due to some of the buildings extracted by C1 not being complete, and with
fine structures. Compared with them, the proposed algorithm has a good performance in both Recall
and Precision, which means that it can better extract buildings in VHR images.

4. Discussions

This paper proposed a novel algorithm to extract buildings in VHR images by fusion of multiscale
deep features at decision level. This algorithm can extract buildings with different spatial scales



Remote Sens. 2019, 11, 227 12 of 16

and with fine structures and few noises by using three strategies, including a multiscale CNN
structure to extract multiscale features, an SVM-based fusion strategy, and superpixels, respectively.
The contributions of these three strategies are discussed as follows.

4.1. The Effectiveness of Deep Learning Strategy

To distinguish buildings from the background, a popular deep learning algorithm CNN was
applied to explore the features. Besides, considering that buildings in VHR images are large-variety
scales, a multiscale strategy was further utilized to improve the traditional CNN architecture.
Specifically, we used image patches at three different sizes to feed into three corresponding CNN
models with three different kernel sizes. In this way, we can get more complete features for extracted
buildings. In order to verify the superiority of multiscale deep features to original spectral bands,
we set C1 as the comparison algorithm, and the results are shown and compared in Figures 4, 5 and
6c. According to the comparison analysis, we can easily find that buildings extracted by MCNN are
more complete, while the roofs extracted by SVM often contain some holes. This is mainly because
that CNN algorithm can automatically extract high-level, abstract, as well as spatial-related features
from the original data directly. However, the classification of SVM is based on spectral characteristics,
which means it cannot detect some inhomogeneous pixels on buildings roofs. Accordingly, it is effective
to use deep learning algorithms to extract buildings especially under complex urban environments.

4.2. The Effectiveness of Seperately Using Deep Features at Each Scale

In most existing studies, features from multisource are always stacked together and then fed
into one classifier to produce the final classification maps. However, in this way, features at each
source are treated equally, and it is difficult for a single classifier to match different features together,
which lead to the poor performance in recognizing objects. Therefore, in this paper, we designed
a parallel SVM-based fusion strategy to separately use deep features at different scales. In order to
verify the effectiveness of this strategy, we set the C3 algorithms of each images. As we can see from
Figure 3b,e, Figure 4b,e and Figure 5b,e, the parallel usage of features at different scale outperformed
the traditional features stacking strategy. It is an interesting and meaningful finding for the application
of deep features.

4.3. The Effectiveness of Superpixels

Due to the repeated pooling operations in the CNN algorithm, the deep features extracted from
the CNN are always with blurred boundary. Therefore, we finally improved the classification results
by using the fine boundary information. Specifically, we used a simple region-based max voting for
classification based on superpixels instead of individual pixels. In order to verify the effectiveness of
combining superpixels, the classification results and the refinement building maps are both illustrated
in Figures 4–6. As illustrated in Figures 4–6, the buildings refined by superpixels contain better
structures and fewer speckles and noises. Therefore, it is effective to improve the blurred boundary of
the CNN results by the use of superpixels.

4.4. A Word on Data Quality

In our experiments, we repeatedly noticed the inaccurate ground truth maps in the Potsdam
dataset, as shown in Figure 7. As shown in the blue rectangles in Figure 7, the ground truth image
obviously missed a small building, while in Figure 7c, the proposed algorithm can extract this small
building accurately. On the other hand, we also found that there were some building boundaries
also missed in the provided ground truth data, which was also an indicator to make the quantitative
evaluations of the proposed algorithm lower. In future work, we will use more accurate datasets for
effective assessment.
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5. Conclusions

Buildings extraction from VHR images has been a popular topic in the last two decades. However,
the large varieties in scales and appearances of buildings make the task very challenging, especially
from VHR images. In this paper, we proposed a novel SVM-based fusion algorithm based on multiscale
deep features to extract buildings in VHR images. The experimental results have validated the
effectiveness of the proposed algorithm. Thanks to the multiscale deep features, SVM-based fusion
strategy and the superpixels refinement, the proposed approach has achieved: (1) Accurately buildings
extraction with different scales, and (2) the completeness and well-structured extraction of buildings
with fewer speckles and noise. Specifically, the deep features extracted by multiscale CNN instead of
traditional single-scale CNN contributed to the satisfied performance in recognizing different spatial
scales of buildings. Besides, instead of stacking features into one classifier, the proposed parallel
SVM-based fusion strategy takes deep features at each scale together. Meanwhile, the superpixels
also helped to improve the MCNN results, where region-based max voting had refined the boundary
and reduced the noise. However, extracting buildings covered by other objects such as umbrellas
and trees is still challenging. This is mainly due to the fact that the spectral characteristics of covered
buildings and uncovered buildings are totally different, and spectral bands of optical VHR images
cannot penetrate these coverings. To meet this challenge, in the future, we will consider fusing different
datasets such as SAR or design more effective classifiers by incorporating context and shape features
of buildings.
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