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Abstract: The Google Earth Engine (GEE) has emerged as an essential cloud-based platform
for land-cover classification as it provides massive amounts of multi-source satellite data and
high-performance computation service. This paper proposed an automatic land-cover classification
method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution
Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International
Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training
samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy
(OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median
composited monthly features) generated from all available Landsat Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to
a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly
features outperformed the percentile features, giving an average OA of 80% against 77%. In addition,
the monthly features composited using the median outperformed those composited using the
maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%.
Therefore, the proposed method is able to generate accurate land-cover mapping automatically based
on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.
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1. Introduction

Land-cover mapping and monitoring is one of the main applications of Earth observation satellite
data [1], and is essential for the development and management of natural resource [2], modelling of
environmental variables [3] and understanding of habitat distribution [4]. Due to the availability of a
long-term data record going back to 1972 and the spatial resolution which can capture fine-grained
land-cover patterns [5], images from the Landsat satellite series are an important data source for
studying land-cover types and changes [6].

Recently, 30 m global land-cover products have been generated using training data which were
interpreted visually from Landsat TM imagery together with a supervised classification method [7,8].
However, the manual selection of training data is labor-intensive and time-consuming, especially when
mapping a large area. Therefore, much effort has focused on using training samples extracted from
existing land cover maps to generate a Landsat-based land-cover product. For example, the National
Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) dataset [9] was incorporated into the
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training pool of the 2011 National Land Cover Database (NLCD) product [10]; the global Web-enabled
Landsat Data (GWELD) were classified automatically using the training data derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS) land-cover product [11]; and The European Space
Agency (ESA) Climate Change Initiative Global Land Cover (CCI_LC) product, combined with the
MODIS Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance (NBAR) product
(MCD43A4), was used to extract the spatial–temporal spectral signature of each land-cover type in order
to classify Landsat Operational Land Imager (OLI) imagery [12]. These studies have demonstrated that
the use of existing land-cover maps as a source of training data can automatically generate accurate
Landsat-based 30 m land-cover maps at the national and continental scale.

Due to the large volume of Landsat data involved, large data storage capacity, high computing
power, and the ability to distribute algorithms were required to derive the 30 m land cover maps
over large areas. Such requirements were available easily and free for everyone since the Google
Earth Engine (GEE) has emerged. GEE is a cloud-based platform which consists of multi-source
massive amounts of satellite data and high-performance computation service, making satellite imagery
computing a relatively fast and flexible process [13]. Landsat-based classification in the cloud-based
platform has been a widely used way of land cover mapping [14–19]. However, automatic land cover
classification using satellite imagery and training samples extracted from existing land cover products
based on GEE cloud-based platform were rarely investigated.

The availability of Landsat observations is affected by cloud cover and also by a sensor failure
issue. Currently, two multi-temporal Landsat classification methods are widely used to eliminate the
effects of missing observations caused by cloud cover or sensor failure. One is extracting metrics (such
as the minimum, maximum, percentiles, etc.) of time-series of Landsat annual reflectance/vegetation
index observations at the 30 m pixel level and classifying the metrics [11,20–23]. Another is making
time-series of cloud-free composites of the Landsat images and then classifying the composites [24–27].
The two compositing methods are physically different. In the case of the metric composites, the pixel
values of the same feature image have different acquisition times during the year and information on
how the reflectance observations change with time is missing between metric features. For time-series
of cloud-free composites, the change in reflectance with time is retained between temporal composites.
However, comparative analysis of the classification performance and the effect of feature combinations
on classification accuracy for these two methods have not been fully exploited.

The objective of this study was to develop a method for automatic 30 m land cover classification
using MODIS land-cover products and Landsat data based on the GEE cloud-based platform.
Multi-source and multi-temporal satellite imagery can be easily processed using this platform without
the need to pay too much attention to the basic work of mosaicking, registration, projection conversion
and resampling. The advantages of this platform make it convenient and flexible for use in land-cover
classification, especially when a large number of features are used as input data. A novel method
of sample collection using the MODIS land-cover product (MCD12Q1.006) based on a previous
approach [11] was used. The proposed method resolved the issue of insufficient sample size and
sample confusion for local-area mapping and was applied to three test areas in northern China.
The automatically extracted samples were validated against historical high-resolution imagery in
Google Earth. The Landsat TM/ETM+ surface reflectance products were consistently pre-processed
using nadir Bidirectional Reflectance Distribution Function (BRDF) correction and illumination
correction. Two type of spectral–temporal features (percentile composited features and median
composited monthly features) were extracted from all available pre-processed TM/ETM+ data from
the year 2010 ± 1 and used as input features to the RF classifier for land-cover classification in the three
test areas. We investigated the difference in classification performance between percentile features
and monthly features. In addition, we compared monthly features composited by median with that
composited by maximum Normalized Difference Vegetation Index (NDVI), in terms of their land-cover
characterization. Finally, the effect of feature combination and training-sample size on the classification
accuracy were discussed for both the percentile features and the monthly features.
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2. Study Area and Data

2.1. Study Area

The study area (Figure 1), which encompasses the Landsat footprint WRS-2 path/row 123/032,
125/034 and 125/033, was located in the north of China. The reasons for choosing these three scenes
were (i) the Landsat TM/ETM+ imagery acquired in these areas has little cloud cover and so was
expected to contain enough clear pixels to composite the cloud-free monthly imagery and accurate
percentile imagery that we used in this study and (ii) the land-cover types in these areas are diverse,
making it possible to test the effectiveness and robustness of the proposed method for areas with
various land-cover types.
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Figure 1. The location of the study areas which were shown in Landsat TM true color composites.
The numeric labels correspond to path/row designations. Noted that the three path/rows were referred
to as “scene_123032”, “scene_125033” and “scene_125034”, respectively, for the reminder of the article.

2.2. Landsat TM/ETM+ Data

The Landsat-5 and 7 satellites have the same sun-synchronous orbits and pass over the same
location on the Earth’s surface every 16 days. Therefore, images acquired by the two different satellites
are offset from each other by 8 days [28]. The Landsat-5 TM and Landsat-7 ETM+ sensors have a 15◦

field of view and 30 m spatial resolution, and their data are available as approximately 185 km × 180 km
scenes which are defined in a Worldwide Reference System (WRS) of path and row coordinates [29].
The two sensors have similar reflectance bands and all TM/ETM+ band pairs also have similar spectral
response functions [30]. Therefore, composites of Landsat TM and ETM+ images have been widely
used to increase the temporal frequency of Landsat observations. All Landsat TM/ETM+ surface
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reflectance data from the year 2010 ± 1 available in GEE (a total of 92 images from path 123 and row 32,
89 images from path 125 and row 34 and 94 images from path 125 and row 33) were used in this study.

2.3. MODIS Land Cover Product

The MODIS Land Cover Type Product (MCD12Q1.006), which can be accessed in GEE, provides
global land-cover maps at yearly intervals and 500 m spatial resolution from 2001 to present. As one
of the layers in Collection 6 MCD12Q1 [31], the layers from the International Geosphere–Biosphere
Program (IGBP) classification scheme are used to provide training class labels for Landsat-based
land-cover classification. The IGBP classification scheme classifies each 500 m pixel into one of 17
classes—10 out of these 17 classes were used in this study. The class names, abbreviations and
descriptions are summarized in Table 1. In addition, the IGBP “cropland/natural vegetation mosaic”
class was discarded because we assumed that the mosaic of cropland and natural vegetation at a scale
of 500 m scale can be separated at a scale of 30 m.

Table 1. Class names, abbreviations and descriptions of the 10 IGBP classes [32] used in this study.

Name Abbreviation Description

Evergreen needleleaf forest ENF Dominated by evergreen conifer trees (canopy
>2 m). Tree cover >60%

Deciduous broadleaf forest DBF Dominated by deciduous broadleaf trees (canopy
>2 m). Tree cover >60%

Mixed forest MF
Dominated by neither deciduous nor evergreen
(40–60% of each) tree type (canopy > 2 m). Tree

cover >60%

Closed shrublands CSL Dominated by woody perennials (1–2 m height)
>60% cover

Woody savannas WS Tree cover 30–60% (canopy > 2 m)
Savannas SVN Tree cover 10–30% (canopy > 2 m)

Grasslands GRL Dominated by herbaceous annuals (<2 m)
Croplands CRL At least 60% of area is cultivated cropland

Urban and built-up UB At least 30% impervious surface area including
building materials, asphalt, and vehicles

Water WTR At least 60% of area is covered by permanent
water bodies

2.4. MODIS Nadir BRDF-Adjusted Reflectance Product

The nadir BRDF-adjusted reflectance (NBAR) product (MCD43A4) [33], which can also be accessed
in GEE, provides daily 500 meter reflectance data for MODIS bands 1 through 7. These are adjusted
using the BRDF model to remove the view-angle effects from the directional reflectances, resulting in a
stable and consistent NBAR product. Bands 1–4, 6 and 7 of this product are used to determine the
homogeneous 500 m pixels during the process of pixel filtering for MODIS land-cover products.

3. Method

The method (Figure 2) used in this study consisted of three parts. Firstly, the samples for each
scene were extracted automatically using the MODIS land-cover products (MCD12Q1.006). A novel
method of sample collection based on a previous approach [11] was used. Secondly, two typical
feature-extraction methods were used for land-cover characterization. One involved extracting the
percentiles from the annual Landsat reflectance time-series; the other method consisted of making
monthly cloud-free images using median composites. In addition, the median composited monthly
features were compared with the maximum NDVI composited monthly features, which are widely used
in land-cover classification. Finally, based on the extracted samples and Landsat features, the land-cover
types were classified using the random forest algorithm. All of these steps were performed on the GEE
cloud-based platform.
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GEE cloud-based platform provides massive amounts of multi-source satellite data and
high-performance computation service, making the computation between different satellite imagery a
relatively fast and flexible process. The MODIS and Landsat images can be easily resampled to the same
spatial resolution (e.g., 30 meters) and transformed to the same map projection, e.g., Geographic Lat/Lon
(EPSG:4326) using JavaScript codes on GEE cloud computing platform. Therefore, multi-source and
multi-temporal satellite imagery can be easily processed using this platform without the need to pay
too much attention to the basic work of mosaicking, registration, projection conversion and resampling.

3.1. Automatic Collection of Samples from MODIS Land Cover Products

MCD12Q1 products were used to select accurate training samples automatically; the selected
samples were then used to extract Landsat spectral–temporal features which were used to train the
classifier. This process aimed to automatically generate land-cover mapping at 30 m using Landsat
data. The preliminary filtering criteria for MCD12Q1 products that were used are described below.
These criteria were designed to help select only high-quality training class labels in which confidence
was high:

(i) the MCD12Q1 pixel values from 2009 to 2011 were identical;
(ii) the MCD12Q1 pixels that had the same values in the 8 surrounding pixels for 2010;
(iii) the 500 m MODIS pixels were homogeneous;
(iv) the 30 m Landsat pixels within the 500 m MODIS pixel were homogenous.

Rule (i) selected the MCD12Q1 pixels that were consistently classified as belonging to the same
land-cover class from 2009 to 2011. Rule (ii) helped to reduce 500 m pixel edge effects in situations
where there were possible changes in the underlying land cover. Rule (iii) was introduced because the
homogeneous pixels had a higher classification accuracy [34]. Rule (iv) helped to reduce the spectral
variation within the 30 m pixels caused by heterogeneous pixels. The thresholds in Table 2 were used
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to identify homogeneous regions in the MODIS and Landsat imagery: within the 3 × 3 window, if the
range of values was less than a predefined threshold then it was considered to be a homogeneous pixel.

Table 2. Thresholds of value ranges used to determine homogeneous regions at the resolution of
Landsat and MODIS imagery [35].

MODIS band Landsat Band Threshold

3 1 0.03
4 2 0.03
1 3 0.03
2 4 0.06
6 5 0.03
7 7 0.03

In the previous approach [11], only one 30 m Landsat pixel within a filtered 500 m MODIS pixel
was selected in order to reduce the data volume for mapping land cover at a continental scale. However,
for the area covered by a Landsat scene (185 km × 180 km), a few 500 m MODIS pixels of land-cover
type occupying a small area were left after preliminary filtering based on rules i, ii and iii. Therefore,
using only one Landsat pixel per MODIS pixel may not be enough for the classifier to classify the land
cover of local areas accurately. Due to the difference in spatial resolution, there are 17 × 17 (i.e., 289)
Landsat pixels within one MODIS pixel. Consequently, all homogeneous Landsat pixels corresponding
to the filtered MODIS pixel were selected and further steps were then taken to reduce the spectral
variability of the 30 m pixels within the 500 m pixels. The details of this refinement (Rule v) are
described below.

(a) Calculate the spectral centroid of the sample set:

ρc = median(
{
ρi

∣∣∣i = 1, 2, . . . , n
})

, (1)

ρi =
[
ρTM/ETM+1

i ,ρTM/ETM+2
i ,ρTM/ETM+3

i ,ρTM/ETM+4
i ,ρTM/ETM+5

i ,ρTM/ETM+7
i

]
, (2)

where ρi is a vector which consists of the reflectance values of the Landsat TM/ETM+ bands
1–5 and band 7; ρc is the spectral centroid (a vector consisting of six Landsat TM/ETM+ surface
reflectance values) and is the median value of a sample set in the spectral dimension.

(b) Calculate the Euclidean distance from an individual sample to the spectral centroid of the
sample set:

∆i =

√∑6

j=1

(
ρ

j
i –ρ

j
c

)2
, (3)

where ∆i is the Euclidean distance from sample i to the spectral centroid of the sample set.
(c) Sort the calculated Euclidean distance from small to large and retain the top 50% of the samples.

A minority of heterogeneous 30 m pixels, which may have had land-cover types that were
inconsistent with the 500 m MCD12Q1 pixels, were removed by the above refinement process.
For samples with the same land-cover type, the spectral variability caused by the issue of mixed pixels
was reduced and the spectral purity was improved significantly.

Therefore, the quality controls for MCD12Q1 pixels are Rule i, Rule ii and Rule iii; the quality
controls for Landsat pixels within MCD12Q1 pixel are Rule iv and Rule v. That is to say, the MCD12Q1
pixels filtered by Rule i, ii and iii were used as polygons for Landsat data extraction. Therefore, not all
those Landsat pixels belong to the correct class, only the Landsat pixels meet the requirement of Rule
iv and Rule v are further considered to be the potential correct class.
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3.2. Landsat TM/ETM+ Data Pre-Processing

The Landsat TM/ETM+ Surface Reflectance data in GEE were atmospherically corrected using the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS), using a radiative transfer
code with the aerosol characterization derived independently for each Landsat scene and external
water vapor and ozone characterizations [36]. Using these data and the cloud-based platform, nadir
BRDF correction was performed using a c-factor BRDF normalization method together with a fixed set
of MODIS BRDF spectral model parameters [37] to normalize the forward and backward scattering
difference in the area of overlap between the Landsat TM and ETM+ images. Topographic illumination
correction was also carried using an empirical rotation model [38] to compensate for the solar irradiance,
thus minimizing the variation in the reflectance of similar targets due to topography. For example,
vegetation in the shadow of mountains may be confused with water in land-cover classification
results. Compared with the cosine and C models, this model performs consistently well for both
top-of-atmosphere and top-of-canopy Landsat reflectance data [39].

3.3. Landsat TM/ETM+ Composites

Due to the low temporal frequency, many of the images acquired by Landsat sensors are covered
by cloud, which heavily limits actual data availability. In addition, the Landsat-7 ETM+ scan line
corrector failed in May 2003, causing a 22% loss in data in each Landsat ETM+ image [40]. To improve
data availability, pixel-based compositing of Landsat data has increased in popularity since the opening
of the USGS Landsat archive in 2008 [41]. In this study, two types of spectral features—annual percentile
composites [11,14,21] and monthly cloud-free composites [21,42]—were selected to characterize the
land cover. Because cloud cover significantly limits the availability of Landsat images, all Landsat
TM/ETM+ data from the year 2010 ± 1 that were available in the GEE were used to derive the metrics
and monthly composites, irrespective of the acquisition year, in order to ensure that more cloud-free
observations were available.

Based on the Landsat surface reflectance that was corrected using the GEE (Section 3.2), the 10th,
20th, 25th, 50th, 75th, 80th and 90th percentiles of annual time series observations of the TM/ETM+

reflectance bands and NDVI [43] were generated for use as the first type of spectral input; monthly
cloud-free composites of the TM/ETM+ reflectance bands and NDVI from April to October were
generated for use as the second type of spectral inputs. The composites for other months were discarded
because of persistent cloud and snow [44]. Median composite technology was used to reduce each
monthly group of images into a single composite on a per-pixel, per-band basis. The two types of
Landsat-based compositing algorithms can be implemented easily and quickly on the GEE cloud-based
platform. Before the compositing process was performed, areas of cloud, cloud shadow and snow
in each Landsat image were masked using the CFMASK band of the Landsat SR product. Therefore,
the percentile metric is extracted based on Landsat time-series “clear” (not contaminated by cloud,
cloud shadow and snow) observations within the year; and monthly feature was derived based on
Landsat multiple “clear” observations within the month.

In addition to the reflectance bands and NDVI, the 30 m digital elevation model (DEM), slope,
and aspect bands derived from the Shuttle Radar Topography Mission (SRTM) data [45], were added
to the feature inputs used for land-cover classification. The DEM, slope, and aspect features were
involved because these variables were capacity of explaining the apparent variance caused by terrain
factors within each class. Therefore, both compositing methods had a total of 52 band features; these
are listed in Table 3.
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Table 3. Features inputs used for the land-cover characterization.

Type I Feature Inputs Type II Features Inputs

10th percentile (TM/ETM+ band1-5, 7, NDVI) Apr. (TM/ETM+ band1-5, 7, NDVI)
20th percentile (TM/ETM+ band1-5, 7, NDVI) May (TM/ETM+ band1-5, 7, NDVI)
25th percentile (TM/ETM+ band1-5, 7, NDVI) Jun. (TM/ETM+ band1-5, 7, NDVI)
50th percentile (TM/ETM+ band1-5, 7, NDVI) Jul. (TM/ETM+ band1-5, 7, NDVI)
75th percentile (TM/ETM+ band1-5, 7, NDVI) Aug. (TM/ETM+ band1-5, 7, NDVI)
80th percentile (TM/ETM+ band1-5, 7, NDVI) Sep. (TM/ETM+ band1-5, 7, NDVI)
90th percentile (TM/ETM+ band1-5, 7, NDVI) Oct. (TM/ETM+ band1-5, 7, NDVI)

DEM DEM
Slope Slope

Aspect Aspect

3.4. Land-Cover Classification

The samples automatically selected from MCD12Q1.006 (Section 3.1) were used as training
samples for land cover classification. The per-band pixel values of the stacked composited images
were extracted from training samples and the resulting data were used to train Random Forest (RF)
classifiers, which is the internal algorithm used in the GEE. The RF classifier is an ensemble machine
learning algorithm which uses a set of CART decision trees to make predictions [46]. Each tree is
created by randomly selected training samples and randomly selected features. New, unlabeled data is
classified by all decision trees and the class with the maximum votes is the one that is finally selected.
Two parameters need to be set to produce the forest trees: in this study, the number of decision trees
(Ntree) was set to 100 and the user-defined number of features (Mtry) was kept at the default value
(the square root of the number of input variables). The RF algorithm was chosen in this study given
its superior ability to process features with a large number of dimensions, robustness to outliers and
noise, and the higher classification accuracy obtained using the ensemble technique [47]. A land-cover
map was generated for each test area using both compositing methods and the classification accuracy
of each map was computed using the corresponding validation data sets.

3.5. Accuracy Assessment

The accuracy assessments of classification results were performed using a new independent
stratified validation samples which were visually interpreted from very high resolution time series
images of Google Earth. We have also used the System for Terrestrial Ecosystem Parameterization
(STEP) sites which were drawn on Google Earth and used by the MCD12Q1 product, as well as the
field photos from the Global Field Photo Library (eomf.ou.edu) for reference and understanding the
spatial pattern of each land cover type. A total of 1375 samples from scene_123032, 1489 samples from
scene_125034 and 1451 samples from scene_125033 were selected.

The traditional metrics, including user accuracy (UA), producer accuracy (PA) and overall accuracy
(OA), were used to quantitatively evaluate the accuracy of classification. Kappa coefficient, a commonly
used measure, was not used in this study, because it is highly correlated with overall accuracy [48].
Additionally, all the accuracy measures are adjusted with the area of each stratum (class) and presented
with a 95% confidence interval [48].

4. Results and Discussion

4.1. Samples Automatically Extracted from MCD12Q1.006

The MCD12Q1.006 Land Cover (MLC) product was used to select samples for classifying the
land cover in each selected Landsat scene. The MLC pixels which covered the same area as the
corresponding Landsat scene were preliminarily filtered using rules (i), (ii), (iii) and (iv). The cloud-free
images used for the selection of homogeneous MODIS and Landsat pixels for each scene are listed
in Table 4. Figure 3 illustrates the process of preliminary filtration for MCD12Q1.006 from 2010
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(Figure 3a), the 500 m pixels with consistent and reliable land cover types (Figure 3b), and the selected
homogeneous 30 m pixels within each of the filtered 500 m pixels (Figure 3c).

Table 4. Acquisition dates of cloud-free images used to select homogeneous 500 m and 30 m pixels.

Satellite Scene_123032 Scene_125034 Scene_125033

MODIS
(NBAR: MCD43A4.006) 20 May 2010 31 May 2009 31 May 2009

Landsat
(Landsat-5 TM SR) 20 May 2010 31 May 2009 31 May 2009
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Figure 3. Illustration of preliminary selection of colocated 500 m and 30 m pixels. (a) Sample
MCD12Q1.006 500 m Land Cover Product (a sub-region of scene_125034, covering approximately
102 × 96 km) for the year 2010; (b) filtered 500 m MODIS pixels based on rules (i), (ii) and (iii); and
(c) filtered 30 m Landsat pixels based on Rule (iv).

Because the spatial resolution of MODIS is coarser than that of Landsat, the Landsat pixels
within a given MODIS pixel may have outliers with different land-cover types. Generally, samples
corresponding to the same land-cover type have similar spectral characteristics and form a band in
a band–reflectance plot. The noisy samples have abnormal spectral curve shapes which should be
removed to further refine the purity of the samples. Figure 4 illustrates the spectral features of a set of
deciduous broadleaf forest samples before and after these were further refined using Rule v. It can be
seen that, compared with beforehand, the homogeneity of the samples was improved significantly.
In particular, the “Urban and built-up” samples with an annual maximum NDVI greater than 0.25
(experimentally obtained) were removed before further refinement based on Rule v because for small
villages surrounded by cropland, the boundaries were indistinct at a scale of 500 m and the “Urban
and built-up” samples were mixed with the “Croplands” type across the boundaries at the 30 m scale.
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The sampling strategy used was stratified random sampling; i.e., random sampling was performed
independently for each land-cover type according to the proportion of the MCD12Q1 area covered
by the type. A total of 2749 samples from scene_123032, 3183 samples from scene_125034 and 2903
samples from scene_125033 were extracted. The number of training and validation samples for each
land-cover type is shown in Tables 5–7 for each scene.

Table 5. The number of training and testing samples, and the classification accuracy assessment for
scene_123032. Accuracy measures are adjusted with the area of each class and presented with a 95%
confidence interval.

Class Tra. Val.
Per. Max. Med.

UA PA UA PA UA PA

DBF 391 209 0.82 ± 0.05 0.84 ± 0.04 0.81 ± 0.05 0.83 ± 0.04 0.84 ± 0.05 0.89 ± 0.04
CSL 333 167 0.64 ± 0.07 0.56 ± 0.07 0.68 ± 0.07 0.55 ± 0.07 0.73 ± 0.07 0.59 ± 0.07
WS 274 126 0.80 ± 0.07 0.85 ± 0.06 0.76 ± 0.07 0.84 ± 0.06 0.85 ± 0.06 0.92 ± 0.04

SVN 326 174 0.66 ± 0.07 0.55 ± 0.06 0.73 ± 0.07 0.56 ± 0.06 0.82 ± 0.06 0.62 ± 0.06
GRL 529 271 0.72 ± 0.05 0.85 ± 0.04 0.75 ± 0.05 0.90 ± 0.03 0.76 ± 0.05 0.88 ± 0.04
CRL 468 232 0.79 ± 0.05 0.83 ± 0.04 0.81 ± 0.05 0.83 ± 0.03 0.81 ± 0.05 0.85 ± 0.03
UB 225 99 0.73 ± 0.10 0.55 ± 0.08 0.66 ± 0.10 0.56 ± 0.08 0.68 ± 0.10 0.57 ± 0.08

WTR 203 97 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Total 2749 1375 0.75 ± 0.03 0.77 ± 0.03 0.79 ± 0.03

Note: “Tra.” represents the number of training samples for each class; “Val.” represents the number of validation
samples for each class; “Per.” represents the classification result obtained using percentile features; “Max” represents
the classification result obtained using maximum NDVI composited monthly features; and “Med.” represents the
classification result obtained using median composited monthly features. The same for Tables 6 and 7.
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Table 6. The number of training and testing samples, and the classification accuracy assessment for
scene_125034. Accuracy measures are adjusted with the area of each class and presented with a 95%
confidence interval.

Class Tra. Val.
Per. Max. Med.

UA PA UA PA UA PA

ENF 85 42 0.97 ± 0.05 0.54 ± 0.20 1.00 ± 0.00 0.59 ± 0.18 0.97 ± 0.05 0.47 ± 0.24
DBF 254 130 0.95 ± 0.04 0.94 ± 0.04 0.99 ± 0.02 0.94 ± 0.04 0.98 ± 0.03 0.96 ± 0.03
MF 396 189 0.91 ± 0.04 0.79 ± 0.06 0.89 ± 0.05 0.82 ± 0.06 0.91 ± 0.04 0.83 ± 0.05
CSL 264 126 0.93 ± 0.04 0.87 ± 0.11 0.97 ± 0.03 0.86 ± 0.09 0.94 ± 0.04 0.82 ± 0.13
WS 342 138 0.80 ± 0.07 0.82 ± 0.08 0.82 ± 0.06 0.82 ± 0.08 0.85 ± 0.06 0.91 ± 0.05

SVN 474 211 0.76 ± 0.06 0.72 ± 0.09 0.77 ± 0.05 0.74 ± 0.09 0.82 ± 0.05 0.82 ± 0.08
GRL 543 237 0.66 ± 0.05 0.98 ± 0.01 0.66 ± 0.05 0.98 ± 0.01 0.68 ± 0.05 0.98 ± 0.01
CRL 512 288 0.92 ± 0.04 0.68 ± 0.04 0.89 ± 0.04 0.71 ± 0.04 0.89 ± 0.04 0.70 ± 0.04
UB 173 72 0.78 ± 0.11 0.51 ± 0.10 0.84 ± 0.10 0.44 ± 0.09 0.79 ± 0.11 0.47 ± 0.09

WTR 140 56 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Total 3183 1489 0.78 ± 0.03 0.79 ± 0.03 0.80 ± 0.03

Table 7. The number of training and testing samples, and the classification accuracy assessment for
scene_125033. Accuracy measures are adjusted with the area of each class and presented with a 95%
confidence interval.

Class Tra. Val.
Per. Max. Med.

UA PA UA PA UA PA

DBF 325 175 0.91 ± 0.04 0.92 ± 0.05 0.95 ± 0.03 0.88 ± 0.07 0.95 ± 0.03 0.94 ± 0.04
MF 239 116 0.93 ± 0.05 0.88 ± 0.08 0.92 ± 0.05 0.88 ± 0.09 0.93 ± 0.05 0.91 ± 0.09
CSL 351 149 0.80 ± 0.06 0.74 ± 0.09 0.79 ± 0.06 0.69 ± 0.09 0.86 ± 0.05 0.82 ± 0.11
WS 56 43 0.97 ± 0.06 0.17 ± 0.09 0.97 ± 0.05 0.35 ± 0.21 0.97 ± 0.05 0.50 ± 0.22

SVN 416 184 0.77 ± 0.06 0.67 ± 0.08 0.76 ± 0.06 0.78 ± 0.07 0.84 ± 0.05 0.80 ± 0.07
GRL 511 289 0.73 ± 0.05 0.97 ± 0.01 0.76 ± 0.04 0.97 ± 0.01 0.75 ± 0.04 0.97 ± 0.01
CRL 452 248 0.82 ± 0.05 0.71 ± 0.05 0.82 ± 0.05 0.74 ± 0.05 0.84 ± 0.05 0.73 ± 0.05
UB 334 166 0.98 ± 0.03 0.28 ± 0.05 0.91 ± 0.05 0.35 ± 0.06 0.92 ± 0.05 0.34 ± 0.06

WTR 219 81 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Total 2903 1451 0.77 ± 0.03 0.79 ± 0.03 0.80 ± 0.03

4.2. Validation of the Automatically Extracted Samples

To investigate the reliability of the samples extracted by the proposed method, the extracted
samples were validated using an image interpretation method based on the historical high-resolution
imagery in Google Earth, which is widely used to select samples used for land-cover classification.
We randomly selected one thousand samples (one hundred for each land-cover types) from the
automatically generated sample database to validate the accuracy of the samples. The error rate and
accuracy for each sample type and the whole set of samples are shown in Figure 5. The confusion
matrix is shown in Table S1. The sample accuracy for grasslands, croplands, and urban and built-up
were 98%, 99% and 95%, respectively. The sample accuracy for the remaining land-cover types was
100%. The overall accuracy of all the samples was 99.2%. These validation results demonstrate that the
samples extracted by the proposed method were reliable for use in land-cover classification because
the RF classifier used in this study was insensitive to noise as long as the noise threshold of 20% was
not exceeded [1].
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Figure 5. The error rate and accuracy for the samples automatically extracted by the proposed method
(Abbreviations on the x-axis correspond to different land-cover classes: see Table 1).

4.3. The Landsat-based Classification Results

Using the samples automatically selected by the proposed method, classification of land cover
using the Landsat imagery was performed. The classification results for each scene obtained using
percentile features and median composited monthly features are shown in Figure 6b,d, respectively.
From a visual comparison, the spatial patterns of the land-cover types are similar for the two sets
of results. The number of training and validation samples, the classification accuracy assessment
(including UA, PA and OA) for each scene are given in Tables 5–7. Accuracy measures are adjusted
by the area of each stratum (class) and presented with a 95% confidence interval. All the confusion
matrixes are shown in Tables S2–S10. As can be clearly seen, the OA of the classification results based
on median composited monthly features are 79%, 80% and 80% for scene_123032, scene_125034 and
scene_125033, respectively; and those based on the percentile features are 75%, 78% and 77% for
scene_123032, scene_125034 and scene_125033, respectively. The average OA of the former (80%) is
higher than that of the latter (77%). In the case of the single-type results, for most land-cover types,
the producer accuracy was higher for the results obtained using the median composited monthly
features than for the results obtained using the percentile features. A comparison of the results thus
demonstrates that, in terms of multitemporal Landsat classification, the performance of the monthly
composited features was superior to that of the percentile composited features. The time-series monthly
features retain phenological information about the land cover and so perform better at land-cover
characterization. The percentile features were affected by the number of valid observations: even
though as many Landsat data as possible were used to derive the percentile features, the number of
valid observations still varied from pixel to pixel.
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Figure 6. The three sets of classification results for the three test Landsat scenes: (a) the original Landsat
imagery displayed as TM bands 4-3-2 for R-G-B; (b) the classification results based on percentile
features; (c) the classification results based on maximum NDVI composited monthly features; and
(d) the classification results based on median composited monthly features.

In addition, the median composite method was compared to the maximum NDVI composite
method, which is a method commonly applied to monthly cloud-free composited images [21].
The particular observation—not cloud-contaminated or missing—corresponding to the maximum
NDVI in the specific temporal range (i.e., one month) was used for compositing. The classification
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results obtained using the maximum NDVI composited monthly features for each scene are shown in
Figure 6c. As shown in Tables 5–7, the OA of the classification results that were based on the maximum
NDVI composited monthly features were 77%, 79% and 79% for scene_123032, scene_125034 and
scene_125033, respectively. The average OA of this compositing method (78%) was lower than that
based on the median composited monthly features (80%). A comparison of these results thus also
shows that the median composite method was superior to the maximum NDVI composite method for
constructing cloud-free time-series of spectral features. Therefore, it can be concluded that land-cover
types can be more accurately characterized by monthly median composited features.

As can be seen in Tables 5–7, the accuracies of the same land cover type were not identical in
different regions. Based on the classification results obtained by median composited monthly features,
CSL, WS, SVN and UB have greater difference in producer accuracy (more than 20%) between different
regions while DBF, GRL, CRL and WTR have smaller difference in producer accuracy (less than 15%).
Region-specific climate and environmental condition usually lead to the variation of spatial pattern
and spectral features of the same land cover type. This also highlighted the importance of independent
classification of geographic strata.

Based on the results obtained by median composited monthly features, the average producer
accuracy was used to compare the differences between single class accuracies. The single classes,
sorted by PA in descending order are WTR, GRL, DBF, WS, CRL, SVN, CSL and UB. Therefore, water,
grasslands and deciduous broadleaf forest classes have the top three highest producer accuracy while
closed shrublands and urban classes have the two lowest accuracies. For classification results obtained
by monthly features, the average OA with the median method is slightly higher than that with the
maximum NDVI method. However, GRL have higher producer accuracy with the maximum NDVI
method, while DBF, CSL, WS, SVN and UB have better producer accuracy with the median method.
CRL and WTR have the same accuracy with either maximum NDVI or median method. Furthermore,
no significantly better result was obtained with the two methods combined.

In addition, the differences of class area between MODIS classification and the resulting
classification of this study were compared and analyzed. The area statistics of land cover class for
MODIS land cover product and the resulting Landsat-based classification were illustrated in Figure 7.
As can be clearly seen, except for grassland and cropland, most land cover types have no significant area
difference among the four classification results. In scene_123032 and scene_125033, the area of grassland
type derived from MODIS classification is substantially larger than that derived from Landsat-based
results. Additionally, the area of cropland type derived from MODIS classification is obviously smaller
in scene_123032 and scene_125033, and slightly larger in scene_125034. The comparison results
demonstrated that the scale effect of satellite imagery has great influence on the area of grassland and
cropland cover type.

4.4. Effect of Feature Combinations and Training-Sample Size

Multitemporal satellite images are widely used in land-cover classification [49]. Because using
single-date imagery to identity land-cover types with similar spectral features can be challenging [50,51],
multitemporal images have been employed to make use of the phenological variation which is a
valuable information source for improving the accuracy of land-cover classification [52]. However, in
terms of land-cover classification, the usefulness of information does not always increase in proportion
to the number of multitemporal images [53]. For example, the separability between land cover types
was found to be highest using images from December and January, and lowest using images from July
and August [54]; the classification accuracy achieved by using Landsat images from all four seasons
was higher than that achieved by using single-season imagery for land-cover classification in urban
areas [55].
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In this section, the effect of feature combination on classification accuracy is fully explored for the
two types of feature input based on the RF classifier. Features were randomly combined based on the
mathematical principles of permutation and combination (i.e., Cm

n equals the number of combinations
when m features are taken from n features). The OA measurement, which was derived based on
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validation samples, was used to quantitatively evaluate the performance for each feature combination.
Figures 8a and 9a illustrate the classification accuracy of each feature combination for the specific
number of selected percentile/monthly features (from 1 to 7). The results demonstrate that different
combinations of the same number of features produced different classification accuracies and that the
range of variation for the percentile features was smaller than that for the monthly features. However,
RF gave a higher overall accuracy with an increased number of percentile or monthly features, which
was more evident in the case of the monthly features than for the percentile features.
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accuracy for monthly features.

In addition, the effect of the training-sample size on the classification accuracy was assessed for
the two types of feature input based on the RF classifier and for the validation samples. The effect of the
training-sample size was evaluated using the OA by altering the size of the training sets in increments
of 5%, from 5% to 95%. Figures 8b and 9b illustrate the relationship between the size of the training
sample and classification accuracy. It can be seen that both the percentile and monthly features had a
low sensitivity to the training-sample size. For an increase in sample size from 5% to 95%, the overall
accuracy changed from 68% to 76% (an 8% increase) for the percentile features and from 67% to 80%
(an 13% increase) for the monthly features. Thus, for the percentile features, the accuracy changed by
less as the number of training data increased than it did in the case of the monthly features. However,
the relative increase in OA as the training-sample size increased was similar for both percentile and
monthly features.
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5. Conclusions

The intention of this study was to develop a method for automatic land-cover mapping at a scale of
30 m based on the Google Earth Engine cloud-based platform. A novel method for automatic collection
of training samples was proposed based on previous approaches to resolve the issues of insufficient
sample size and sample confusion in local-area mapping. MCD12Q1.006 land-cover products were
used to provide reliable training class labels based on the rules of pixel filtering and spectral filtering.
All available Landsat TM/ETM+ data acquired in the study area from the year 2010 ± 1 were used for
the land-cover classification. Two types of spectral-temporal features (percentile composited features
and median composited monthly features) were used for characterizing the land cover. In addition,
the monthly features composited using the median were compared with those composited using the
maximum NDVI, the latter being a commonly used method for temporal compositing of images.
The following conclusions can be drawn.

(i) The samples automatically extracted by the proposed method were reliable and accurate with an
overall accuracy of 99.2%;

(ii) Both the percentile features and monthly features produced excellent land- cover classification
results; however, the classification produced using the median composited monthly features
was more accurate than that obtained using the percentile features – average overall accuracy
of 80% against 77%. In addition, the monthly features composited using the median values
outperformed those composited using the maximum NDVI values in terms of the classification
performance – average overall accuracy of 80% against 78%;

(iii) For single class accuracy, WTR, GRL and DBF have the top three highest producer accuracy while
CSL and UB have the two lowest accuracies, based on median composited monthly features.
Additionally, GRL have higher producer accuracy with the maximum NDVI method, while DBF,
CSL, WS, SVN and UB have better producer accuracy with the median method;

(iv) Higher overall accuracies were achieved with an increased number of percentile or monthly
features. Both the percentile and monthly features had a low sensitivity to the training-sample
size and the OA increased as the size of the training samples increased.

Therefore, the method proposed in this paper was able to achieve land-cover classification for Landsat
data automatically, quickly and accurately based on the Google Earth Engine cloud-based platform.
These results are of great significance to regional and global land-cover mapping.
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monthly features, Table S8: Confusion matrix for the classification result of scene_125033 based on percentile
features, Table S9: Confusion matrix for the classification result of scene_125033 based on maximum NDVI
composited monthly features, Table S10: Confusion matrix for the classification result of scene_125033 based on
median composited monthly features.
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