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Abstract: A machine learning approach was developed to improve the bad pixel maps that mask
damaged or unusable pixels in the imaging spectrometers of National Aeronautics and Space
Administration (NASA) Orbiting Carbon Observatory-2 (OCO-2) and Orbiting Carbon Observatory-3
(OCO-3). The OCO-2 and OCO-3 instruments use nearly 500,000 pixels to record high resolution
spectra in three infrared wavelength ranges. These spectra are analyzed to retrieve estimates of
the column-average carbon dioxide (XCO2) concentration in Earth’s atmosphere. To meet mission
requirements, these XCO2 estimates must have accuracies exceeding 0.25%, and small uncertainties
in the bias or gain of even one detector pixel can add significant error to the retrieved XCO2 estimates.
Thus, anomalous pixels are identified and removed from the data stream by applying a bad pixel
map prior to further processing. To develop these maps, we first characterize each pixel’s behavior
through a collection of interpretable and statistically well-defined metrics. These features and a
prior map are then used as inputs in a Random Forest classifier to assign a likelihood that a given
pixel is bad. Consequently, the likelihoods are analyzed and thresholds are chosen to produce a
new bad pixel map. The machine learning approach adopted here has improved data quality by
identifying hundreds of new bad pixels in each detector. Such an approach can be generalized to
other instruments that require independent calibration of many individual elements.

Keywords: bad pixel map; random forest; random telegraph signal; orbiting carbon observatory

1. Introduction

The identification of various undesirable artifacts in imaging spectrometer data plays an important
role in the quality and accuracy of the subsequent products. The declined quality can impact the
analysis and interpretation of the resulting images, for example, for target and event detection in
astronomy [1], anomaly, and change detection in terrestrial or planetary geologic studies [2], or the
evaluation of absorption features to retrieve the abundance of various atmospheric gases [3]. Such
artifacts are usually persistent features of the detector that can be due to manufacturing defects;
however, they can also develop during instrument operations. Bad pixels in the focal plane array
(FPA) are the smallest individual elements of the detector exhibiting anomalous or degraded behavior.
FPAs usually consist of hundreds of thousands or millions of pixels, so, even if a small fraction of the
detector is inoperable, it can have a considerable impact on the resulting images or measured spectra.
The large number of individual pixels also necessitates an algorithmic approach that can scale to the
size and cannot rely on manual analysis of each pixel.

The issues associated with bad pixels are well-known and the main types of such pixels have
been described [1,4,5]. For example, pixels can be considered bad if they record a high digital number
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(DN) or, on the other hand, do not respond to any amount of illumination. The most commonly used
bad pixel detection method is thresholding of pixel summary statistics obtained from dark calibration
or illuminated flat-field images. If some derived value for a pixel is greater than a certain threshold,
such as a certain number of standard deviations away from a mean or a median, then it is declared bad.
Examples of summary statistics include standard deviations [6], mean absolute second differences
and signal-to-noise ratios [5], and coefficients of variation [7]. A considerable sample of methods rely
on nearest neighbor comparisons and collect metrics that describe relationships in the spatial and/or
spectral dimensions, which in turn are thresholded to obtain bad pixels [2,4,8,9]. Principal Component
Analysis (PCA) on a set of detector images is also used for the identification of bad pixels that appear
different from the “background" or good pixel space [10,11]. Finally, another proposed technique [1]
uses a probabilistic approach. The authors first perform a Gaussian Mixture Model clustering of a
pairwise pixel distance measure and then rank pixels according to the probabilities of the clusters
with the highest distances that were obtained from multiple image datasets. Most of the cited work
performs both detection and interpolation of bad pixel values at the same time, where most of the
interpolations are based on median filters or nearest neighbors.

The imaging spectrometers carried by the NASA OCO-2 and OCO-3 missions record high
resolution spectra of reflected sunlight in three spectral ranges, and these spectra are combined
and analyzed with remote sensing retrieval algorithms to yield spatially resolved estimates of XCO2

with single sounding precisions near 0.125% and regional scale accuracies of ∼0.25% [12,13]. These
high precision and accuracy requirements place unprecedented demands on the radiometric and
spectroscopic calibration of these space-based sensors. Incorrect measurements from bad pixels can
propagate through the retrieval system into a biased or noisy XCO2 measurement. Another challenge
for bad pixel detection for these two instruments is that the FPAs used by OCO-2 are flight-spare
units from the original OCO mission and were manufactured in 2006, while those for OCO-3 were
manufactured using a new process but have been in warm storage for several years. As a result, there
has been more degradation, especially for OCO-2, with certain parts of the FPA having either clusters
or large amounts of random bad pixels such that even robust summary statistics, i.e., median, can
be skewed. Neighbor comparisons could also break down due to a large proportion of neighbors
being bad.

In addition, identifying bad pixels for OCO-2 and OCO-3 is challenging due to the large data
volume (both number of pixels and mission duration) along with the diversity of the undesirable
behaviors, e.g., instability or degradation due to radiation and thermal cycles. Moreover, since both
instruments are in the harsh environment of space, the events triggering the anomalous behavior of
pixels are much more common, and the bad pixel map that masks bad pixels in the flight software
needs to be updated. Both instruments, however, collect calibration and various telemetry data daily,
including dark and illuminated flat-field images of the FPAs. These routinely obtained images provide
a rich data source for bad pixel detection.

We present a new approach to detect and identify anomalous pixels in the FPAs of OCO-2 and
OCO-3 using a traditional machine learning algorithm [14,15]. We define the detection of bad pixels as
a binary classification problem. Instead of examining and thresholding individual summary statistics
or distance measures, we compute a set of features and use them collectively in a model that is trained
to assign a likelihood to each pixel of being bad. The features are computed on a time series spanning
the whole mission. The corresponding input for training the model is the previously developed
bad pixel map. Finally, we seek to maintain interpretability of the results and provide insights into
the model and pixel behavior. Thus, we develop a statistically rigorous approach that improves the
accuracy of the existing mask and largely automates the development of any future mask. Our work
does not focus on bad pixel interpolation or de-noising and filtering of the images since the algorithms
to apply the bad pixel map are already implemented in flight software.

The remainder of the paper is organized in three sections. In Section 2, we briefly introduce OCO-2
and OCO-3 instruments, and describe the features and the classification model. Section 3 reports the
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results and the approach for selecting bad pixels based on the likelihoods obtained from classification.
Section 4 offers a a discussion of future directions, and the final section provides the conclusions.

2. Data and Methods

The OCO-2 and OCO-3 spectrometers use nearly 500,000 pixels to measure three near-infrared
bands with high resolution. The three channels measure the O2 ABO2 band at 0.765 µm, the “weak”
CO2 (WCO2) band at 1.61 µm, and the “strong” CO2 (SCO2) band at 2.06 µm. At the focus of
each spectrometer is a Teledyne Hawaii-1RG (Teledyne Imaging Sensors, Camarillo, CA, USA) FPA
consisting of 1024 × 1024 pixels that measure 18 µm by 18 µm each. The O2 detector is Si, while the
CO2 detectors are HgCdTe. The OCO-2 detectors were procured as spares for the OCO mission, while
the OCO-3 detectors used a newer process. The columns of the detector record different wavelengths,
while rows record different field angles. Due to the narrow spectrometer slit, only 220 rows near
the middle are read out. Of these, roughly 180 rows are illuminated, and the middle 160 of those
rows form the science area and are used to retrieve CO2. While the field of view across the slit is
spatially-resolved across 160 of its science rows, the spectrum is dispersed across 1024 of the FPA
columns. To reduce data volume, the rows are averaged into eight spatial footprints; thus, an array
of 8 × 1024 is returned for science. Because this summation is performed on board, prior to bias and
gain corrections, individual pixels that are dead or respond anomalously to light or the instrument
environment must be identified and eliminated from the sum. Figure 1 shows images of the three full
FPAs in the dark. For more information on the FPA, related components and the OCO-2 and OCO-3
instruments themselves please refer to [16–18].

(a) ABO2, OCO-2 (b) WCO2, OCO-2 (c) SCO2, OCO-2

(d) ABO2, OCO-3 (e) WCO2, OCO-3 (f) SCO2, OCO-3

Figure 1. Examples of dark images of the three full lFPAs for OCO-2 (top) and OCO-3 (bottom).
The image displays 1024 × 1024 arrays of pixels for the non-illuminated FPAs. The y-axis corresponds
to the spatial dimension and the x-axis to the spectral dimension. Several detector artifacts are clearly
visible as brighter pixels. In addition, 220 rows near the middle of each detector are read out, and only
those are used in this work.
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A bad pixel map is a binary array, where 0 indicates a good pixel and 1 indicates a bad pixel. This
map is uploaded to the flight computer to prevent the data from these pixels being included in the
downlinked “summed” science data, called “samples”. If one or two pixels are bad, they are replaced
by the average of the two adjacent good pixels in the spatial dimension to obtain the final sum of
the 20 pixels; however, if three or more continuous pixels are bad, those values are excluded from
the sum and the weights of the remaining pixels are renormalized. This operation is performed by
the flight software on-board the instruments and was implemented in an early stage of the original
OCO mission. It is clear that, if a bad pixel remains in the sum downlinked to Earth, it can greatly
contaminate the corresponding measurement. It is also important to note that, because the individual
pixel data are not returned to the ground, the masking of bad pixels cannot be reversed or improved.
There does exist a diagnostic “pixel mode” where all 220 rows are returned at a greatly reduced frame
rate. This is essential for calibration but is not practical for science data collection. In this work, we
use the calibration “pixel mode" data that contains the full array of pixel measurements before the
summation is performed.

Bad pixel identification begins before launch during thermal-vacuum (TVAC) testing and
continues in-flight. In TVAC, single pixel data are collected every few hours at the beginning of
each procedure. During flight, the data are taken over a dozen times per day when the spacecraft is
over the dark side of the Earth. In both cases, the instrument views the onboard calibrator in the dark
and also obtains “flat-field” lamp images by illuminating a diffuser with a tungsten halogen lamp.

The collected dark and “flat-field” lamp images, both measuring 220× 1024 pixels, in uncalibrated
DN, are the two data sources used for bad pixel identification. These images are obtained from
uncalibrated Level 1A instrument data products [17]. In this work, the DN values from these images
are transformed into a collection of interpretable and statistically well-defined features that are then
input into a machine learning model that is trained to differentiate between bad and good pixels.
The computed features are summary statistics that capture a variety of pixel characteristics including
similarity to neighbors, temporal trends, and instability.

2.1. Data Normalization

While dark images can be readily used to derive model features, the “flat-field” lamp images
require normalization to allow comparison of pixels from different regions of the detector. The overall
lamp intensity varies with time, but more importantly there are spectral and spatial gradients in the
illumination that reaches the FPA. The first step is to subtract the dark signal from the lamp images
using the dark image acquired closest in time, usually within a few minutes. This correction ensures
that the lamp signal is not confounded with the dark signal. The dark-corrected lamp images are
then normalized by iterative row-wise robust scaling, i.e., subtraction of median and division by the
interquartile range, IQR = Q3−Q1, where Q1 and Q3 are the 25th and 75th percentiles of a distribution
of all pixel values in that row. Median and IQR are robust to large outliers, which is important when
the dataset includes many bad pixels. An example of the normalized and dark-corrected “flat-field"
lamp images is shown in Figure 2.
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Figure 2. An example of the OCO-2 WCO2 dark-corrected flat-field lamp image of the science area (left)
and the corresponding normalized image (right). The normalized image is displayed in normalized
DN, i.e., with robust scaling applied, with high values (red) indicating “hot" pixels and low values
(blue) indicating unresponsive pixels. Most of the anomalous features, such as two small red spots
around spatial row 125 and spectral column 600, are more clearly visible in the normalized image on
the right.

From a set of dark and normalized lamp images, we obtain time series data for each pixel i,
i = 1, . . . , N, where N is the number of pixels, representing the time-varying DN dark or lamp signal,
zi = (zi,1, . . . zi,T), with t = 1, . . . , T, and where T is the total number of images. These time series
are contaminated by outlier frames, including several very large outliers due to cosmic ray hits. We
assume that these are isolated, mostly random events that produce big spikes in the data; thus, we
compute an outlier threshold for each pixel i based on the IQR of the pixel DN signal:

ci = Q3,i + a · (Q3,i −Q1,i),

where Q1 and Q3 are defined as the 25th and the 75th percentile of the time-varying distribution for
a pixel i and a is a scaling constant. The outliers are removed if |zi,t| > ci, with dark and lamp time
series screened individually. After these two pre-processing steps, normalization of lamp images and
removal of signal outliers, the data are ready to be used for feature extraction.

2.2. Characterizing Pixel Behavior and Feature Extraction

Generally, good pixels are stable with time and similar to their neighbors. The mean signal and
noise level of good pixels vary across the detector due to manufacturing and instrument properties.
Examples of such properties are the “W-pattern” in the ABO2 band, shown as regularly-spaced vertical
lines in Figure 1 and “hot” rows in the WCO2 and SCO2 bands, represented by white horizontal
lines in Figure 1. Bad pixels’ responses, on the other hand, are diverse, which creates challenges in
their identification. In order to capture bad pixel behavior, we compute several metrics and summary
statistics that could describe the range of possible abnormal behavior. We use these collectively in a
machine learning model, which makes it possible to capture interactions and nonlinear relationships.

All pixels, even good ones, exhibit some level of signal-independent background noise as well
as a photon noise component that is roughly proportional to the square root of incident radiance.
To mitigate the impact of noise on the features and in order to quantify the information about the
variability in each signal, we pre-process the time series with a wavelet transform [15]. The raw signal
is first deconstructed by fitting a set of orthonormal basis functions to the data, then the coefficients of
the basis functions are either sub-selected or their magnitude is reduced [19]. The sparse or reduced
coefficients are consequently applied to reconstruct a smoothed version of the raw signal. A variety
of such basis function families exist; however, we use the Haar basis [20] for their simplicity and
because they produce piecewise-constant signal representations. Since they are not continuous, they
have the advantage of being able to capture abrupt transitions. Once a DN time series zi without
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outliers is constructed, we apply the Haar wavelet transform and keep 50% of the largest coefficients,
corresponding to the coarsest decomposition levels, thus obtaining a smoothed reconstructed DN
signal z̃i. See an example of such a reconstructed signal in Figure 3 as a black line through the raw
signal displayed in red.

(a) Good pixel, dark signal (b) Bad pixel, dark signal (c) difference, dark signal

Figure 3. Wavelet-smoothed DN signal z̃i (OCO-2) for (a) a good pixel in spatial row 38 (out of 220),
spectral column 980 (out of 1024) and (b) a bad pixel in spatial row 36 (out of 220), spectral column
231 (out of 1024), and (c) the derivative of the smoothed signal for both pixels. The wavelet-smoothed
signal is represented by the solid black line and the raw signal by the red colored points. The derivative
of the smoothed signal in (c) is a black dotted line for the corresponding good pixel and gray solid line
for the bad pixel. The derivative of the bad pixel’s smoothed signal tends to be much larger than that
of a good pixel, with the highest values corresponding to the discontinuities in the signal as seen in (b).

The minimum and maximum of this reconstructed DN signal, max(z̃i) and min(z̃i), are used
directly as features to capture pixels that are unresponsive to light or pixels that exhibit abnormally
high dark current or sensitivity. Additional features that use the wavelet reconstructed signal are the
standard deviation, which captures noise, and the jumping score to register sudden transitions:

xjump
i = max

t
({|z̃i,t − z̃i,t−1| : t = 2, · · · T}) , (1)

which is the maximum value of the absolute differences of the reconstructed signal. Bad pixels have
larger transitions and/or transition more frequently, which is particularly problematic for both science
measurements and in-flight calibration updates that combine several days of data. Over time, thermal
cycles, power cycles, and exposure to cosmic rays may have introduced sudden changes for what
were previously good pixels. An example of such discontinuities can be seen in Figure 3b and a
corresponding differenced wavelet-smoothed signal is presented in Figure 3c.

Since the input illumination is continuous, a good pixel should not differ much from the adjacent
good pixels. In addition, the good pixels in the special areas of the FPA, e.g., “W-pattern”, would be
different from the rest, but similar to each other. Therefore, the final feature that is computed based on
the DN time series is a comparison with its neighbors. We use Dynamic Time Warping (DTW) [21,22]
to measure the dissimilarity between each pair of pixels. Given two time series zi and zi′ , DTW first
populates a matrix of pairwise distances between each point in zi and to each point in zi′ . This matrix
contains all possible “warp" paths P = (p1, . . . , ps, . . . , pk), where ps = (js, j′s) is a pair of indices in zi
and zi′ that connect the bottom left of the matrix to the top right. Each point ps of a “warp" path P has a
corresponding distance between the two respective elements of the time series, d(js, j′s). Then, a “warp"
path P with the minimum overall distance is found using dynamic programming. The overall distance
for this optimal path is the final DTW distance measure between the two time series. For example,
if the two time series zi and zi′ are identical, the optimal “warp" path P would be along the diagonal of
the pairwise distance matrix, i.e., P = ((1, 1), (2, 2), . . . , (Ti, Ti′)), where Ti and Ti′ are the sizes of zi and
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zi′ , respectively; however, a “warp” path for non-identical time series would most probably contain
pairs of indices that are located off the diagonal of the distance matrix. We chose an approximate but
fast implementation of DTW [23] since the standard DTW algorithm has quadratic time and space
complexity and is computationally expensive. The DTW metric is computed for the nearest neighbors
of each pixel and the minimum of these values are taken as a feature:

xdtw
i = min

i′∈Ni
(dtw(zi, zi′)) , dtw(zi, zi′) =

1
Ti + Ti′

min
P

(
k

∑
s=1

d(js, j′s)

)
, (2)

where Ti and Ti′ are again the sizes of zi and zi′ , Ni are the indices of the nearest neighbors of zi and
|Ni| = 8. The distance d(·) is Euclidean. DTW is able to ignore when the time series are shifted or
not aligned globally or locally since it does not compare each point in time t in one time series with
the matched time t in another time series. The pixel time series are usually not well aligned due
to the outlier removal. Moreover, good pixel signals can slightly vary around the same time step t
due to measurement noise, as mentioned previously, which makes DTW more robust than simply
computing a pairwise Euclidean distance. Examples of DTW for bad and a good pixels and how they
can compress the information about a pixel’s nearest neighbors are shown in Figure 4.

(a) (b) (c)

Figure 4. (a) an example of an OCO-2 bad pixel smoothed signal (orange) compared with its nearest
neighbors, and (b) an example of a good pixel (blue) with the corresponding nearest neighbors, and (c)
histograms of DTW values for the bad (orange) and the good (blue) pixels computed for all the
displayed nearest neighbors. DTW values for the good pixel are mostly near zero, with two values,
representing the two bad pixel neighbors from (a) having higher DTW distance. In (c), the bad pixel is
associated with much higher DTW distances, with the minimum corresponding to the highest DTW
value for the good pixel.

Lamp and dark signal have been found to be coupled to various instrument temperatures,
including those of the FPA, optical bench assembly (OBA), remote electronics module, and, for OCO-3,
the telescope [24]. One set of features used is the Pearson correlation coefficient between DN and select
temperatures for both dark and lamp data:

xcorr
i =

∑t(zi,t − z̄i)(hi,t − h̄i)√
∑t(zi,t − z̄i)2

√
∑t(hi,t − h̄i)2

, (3)

where hi = (h1, . . . , hT) is a vector of temperature values, obtained for each image t and h̄i and z̄i are
means of hi and zi, respectively.

We summarize the computed features in Table 1. All of the features, except DTW and temperature
correlations, use the wavelet-smoothed signal. DTW is more robust to noise in the time series, while
temperature correlations use the raw time series zi to preserve the thermal sensitivity. The extracted
features represent the majority of aberrant pixel behavior and can capture the main differences between
good and bad pixels. Pixels could thus be differentiated not only by one feature, but by several jointly,
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which can vary for each individual pixel. Figure 5 shows examples of the computed dark residual
standard deviation and lamp maximum DN values for OCO-2 SCO2 band, displayed as histograms
that are separated by good and bad classes of pixels. Figure 5 shows that dark residual standard
deviation is more effective in separating the bad pixels for this band; however, not all of them will be
separated by this feature, as the existence of a small mode on the left shows. The bad pixels in this
mode are captured by other features. Lamp DN maximum, on the other hand, does not explain most
of the bad pixels in this band; however, it can identify various individual outliers.

Table 1. List of features used in the classifier.

Feature (Dark and Lamp) Description

Minimum responsiveness xmin
i = min(z̃i)

Maximum sensitivity xmax
i = max(z̃i)

Jumping Score change with time xjump
i (1)

Noise instability xstd
i = std(zi − z̃i)

Dynamic Time Warping similarity to neighbors xdtw
i (2)

Temperature Correlations FPA, OBA and other: 6 (OCO-2) and 4 (OCO-3) xcorr
i (3)

(a) (b)
Figure 5. Histograms of (a) dark noise and (b) lamp maximum features for OCO-2 spanning one
decontamination cycle from July 2016 to February 2017. The bad class in orange includes new bad
pixels and a subsample of the good pixel class is in blue. The dark residual standard deviation can
differentiate good and bad pixels very well, with only a small amount of bad pixels having the same
values as the good pixels. The lamp DN maximum values help separating some large outliers and
might be generally slightly lower than those for the good pixels. Inspecting these features indicates
that OCO-2 SCO2 band is dominated by noisy pixels, and only a few pixels have abnormal response
to light.

2.3. Random Forest Classification

The features described in the section above are computed for each pixel and are combined into
vectors, which in turn form a matrix of features of size N × p, where p is the number of features,
used as a direct input into a multivariate classification model. We selected Random Forest [14] for its
simplicity, computational speed, superior performance in a great variety of settings, and the ability to
capture nonlinear relationships without explicitly specifying the model. Random Forests are extremely
well-known and hugely popular. They are based on randomized ensembles of decision trees that are
averaged to greatly reduce the variability inherent in such models.

While the input variables into the Random Forest are the features extracted from each pixel’s
time series zi, the output variable for the model is a vector yi ∈ [0, 1] of size N of binary responses
indicating whether a pixel is good or bad. The labels yi are obtained from a previously developed
bad pixel mask and serve as the “prior” information. The “a priori” mask was developed with the
previous bad pixel identification methodology that analyzed dark signal magnitude and lamp noise
individually. The “a priori” mask represents the best expert knowledge as to what pixels might be
currently bad and will be used in training the machine learning to differentiate pixel behavior. With a
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machine learning classification model, we therefore seek to improve on this mask by identifying new
bad pixels and re-labeling bad pixels that were previously marked good. While it would be possible to
also change bad pixels to good, we choose not to do so for reasons explained in Section 3.

In classification where the output is a binary variable, one of the criteria for the performance of a
trained model is a confusion matrix computed using the “true” input labels and the model predicted
labels. This specifies the counts of false positives, i.e., good pixels that were erroneously identified as
bad, false negatives, i.e., bad pixels that were classified as good, and true positive and true negatives,
i.e., bad or good pixels correctly identified. Customarily, lower false positive and false negative rates
are desirable and are used to tune and evaluate the model. However, for this particular problem the
false positives, and to a lesser degree false negatives, are of interest since they represent the potential
new bad (or good) pixels we aim to identify.

We perform training and testing with stratified 3-fold cross-validation, where about 67% of the
pixels are used to train the model and about 33% are used to test the model, with equal proportions
of bad and good pixels guaranteed in each test set. We iterate the cross-validation process 50 times.
A likelihood that each pixel is bad is collected for each iteration and for each cross-validation fold
based on the withheld test data. The likelihoods are then averaged across all iterations to obtain one
final likelihood estimate.

3. Results and Discussion

The likelihoods produced by the classifier model compress the available information about pixel
behavior and provide a simple unified metric for the detection of bad pixels. After the likelihoods are
obtained from the classifier, a threshold needs to be determined to update the final bad pixel map.
Traditionally, likelihood cutoffs for binary classification are based on either controlling the rate of
false positives or false negatives, depending on the application. Then, for any prediction with the
trained model on a new data point, the likelihood is first computed based on the model and the chosen
threshold is applied to determine class membership. In this work, the thresholds are determined based
on the distribution of the likelihoods and such that there is an acceptable number of false positives,
i.e., new bad pixels. OCO-2 and OCO-3 had slightly different approaches since the former had been in
flight for over three years and the latter was still undergoing TVAC testing.

3.1. Joint Distributions of Likelihood Statistics

In order to choose the bad pixel thresholds, we obtain likelihoods from several classification
models, trained on different time periods. We then calculate summary statistics of these likelihoods
for each pixel and combine these statistics as joint distributions, where each point in the distribution
represents a pixel. The joint distributions of the likelihood summary statistics are visualized to
determine approximate thresholds and further fine-tuned by adjusting the number of false positives.
OCO-2 and the recently launched OCO-3 instruments undergo regular decontaminations, when heaters
are used to drive out water ice that has accumulated with time. These decontamination events are
potential triggers for some pixels to change behavior, so they are natural places to break the data record
to train separate models.

For OCO-2, 11 decontamination cycles were used spanning the period from the beginning of the
mission in September 2014 to August 2018. We then computed the minimum and standard deviation
of the resulting 11 likelihoods for each pixel, and visualized the joint distributions of these statistics in
Figure 6. The overwhelming majority of the pixels, roughly 98%, are good and have the corresponding
likelihood statistics near (0, 0). The thresholds are chosen for both minimum and standard deviation
of the likelihoods, and are placed such that most of the pixels in the long tails of the distribution are
declared bad. The upper left quadrant of each plot in Figure 6 shows pixels with a minimum close to
zero but with relatively high standard deviation, indicating that these pixels are unstable and may
have been impacted by the decontamination cycles. In the bottom right quadrant, the pixels have been
consistently bad throughout the mission. Most of such pixels, especially at the end of the long tail,
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where the minimum is 1 and standard deviation is about 0, have been marked as bad with previous
methodology and are very clear cases of anomalous behavior. Then, in the upper right quadrant,
the pixels exhibit both instability across decontamination cycles and relatively high likelihoods.

(a) ABO2 (b) WCO2 (c) SCO2

(d) ABO2 (e) WCO2 (f) SCO2
Figure 6. Joint distributions of the likelihood summary statistics for OCO-2: (a) ABO2, (b) WCO2,
(c) SCO2, with the blue dashed line indicating the chosen threshold, and (d–f) the respective cumulative
distributions of false positives, where the threshold indicates the corresponding number of false
positives on the y-axis, i.e., new bad pixels.

Fine-tuning the final thresholds is based on the desired number of false positives, where the
expected number is based on instrument knowledge. Figure 6d–f demonstrate how the thresholds
can be adjusted using cumulative distribution functions of false positives. In Figure 6b, for example,
the approximate threshold for the WCO2 band could be somewhere between 15–30% for the likelihood
minimum, corresponding to 99.9% of the distribution, but the number of false positives obtained closer
to 15% would give a more reasonable and conservative estimate, or around 500 instead of 100 new bad
pixels, as shown in Figure 6e. The threshold of 10% is too tight and would have doubled the number
of new bad pixels to around 1000, with most of them representing “borderline” cases.

The resulting false positives are important since they represent potential new bad pixels, while the
false negatives, on the other hand, are much less important for the creation of the bad pixel map. Once
a pixel is declared bad, it will stay masked, and any false negatives will be ignored. The reason for this
is that an erroneous inclusion of a bad pixel as good is disproportionately worse than declaring a good
pixel bad. The impact of a false negative, replacing a good pixel with the average of its neighbors, is
negligible because the good pixel and its neighbors are very similar.

For OCO-3, the bad pixel map was initially developed using one TVAC time period, with the
thresholds determined by directly examining the univariate distribution of likelihoods. Once in-orbit,
the bad pixel map was updated based on the data from a subsequent TVAC and also during two periods
of the in-orbit checkout (IOC), the first one spanning the first week of the instrument taking data in
space and the second IOC period spanning the third week. The thresholds were then determined by
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using the joint distribution of the likelihood maximum from the new TVAC and the first IOC and of
the likelihoods obtained from the second IOC. The likelihood comparisons and the cutoff thresholds
for the OCO-3 bad pixel map are shown in Figure 7. The joint distributions are similar to those for
OCO-2, but the minimum and the standard deviations of the likelihoods are replaced by the second
IOC likelihood value and the maximum of TVAC and first IOC, respectively. The lower right quadrant
of the distributions in Figure 7 is sparse, indicating that most of the clear bad pixel cases were detected
in the previous TVAC. The populated upper left quadrant, however, shows that some currently good
or “borderline” pixels exhibited anomalous behavior previously, more specifically in the latest TVAC.
The final thresholds were chosen such that the pixels that displayed anomalous behavior either in
TVAC or on-orbit were declared bad.

(a) ABO2 (b) WCO2 (c) SCO2
Figure 7. Joint distributions of the likelihood summary statistics for OCO-3: (a) ABO2, (b) WCO2,
(c) SCO2, with the blue dashed line indicating the chosen threshold. The likelihoods from the second
IOC period are displayed on the x-axis labeled IOC3 and the maximum likelihood of TVAC and the
first IOC period, labeled IOC2B, are on the y-axis.

3.2. Tree Interpreter

Another diagnostic tool we use is the tree interpreter [25]. The tree interpreter is a tool that
determines which features contributed to the increase or decrease of the likelihood for each pixel.
The tree interpreter considers the overall ratio of bad to good pixels as an a priori estimate of the
likelihood. Then, it evaluates the reduction or increase in likelihood for each split in a decision tree.
Since each split is based on one feature, its contribution to the final likelihood value for a pixel is easy
to estimate. This is helpful for the insight into the type of changes the FPA has experienced as well as
for guiding the selection of features in future work.

Figure 8 shows the contributions of features for all the new SCO2 bad pixels for both OCO-2 and
OCO-3. New bad pixels in the OCO-2 FPA shown in Figure 8a can be mostly attributed to the changes
in the dark signal, specifically instability in the dark signal as shown by large positive contributions
from the dark residual standard deviation and the dark jump features. The lamp signal, on the other
hand, has a small tendency to reduce the likelihood contributions, indicated by a very light blue
corresponding to these features on the bottom of the figure. The instrument temperatures for OCO-2
make very small individual positive contributions to the likelihoods; however, their additive effect is
generally impactful, with all six of the thermal contributions potentially adding up to 20%. OCO-3’s
new bad pixels in Figure 8b, on the other hand, show weak contributions from anomalous thermal
responses, and a larger number of bad pixels can be attributed to the lamp anomalies, specifically
to their lamp signal differences with the neighbors and the light sensitivity as suggested by lamp
minimum and maximum.
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(a) (b)
Figure 8. Feature contributions for each new bad pixel for SCO2 band for (a) OCO-2 and (b) OCO-3.
The respective OCO-2 and OCO-3 features are on the y-axis and the pixel index in on the x-axis.
The red color indicates positive contribution to the likelihood of being bad, and the blue color indicates
a decrease to the likelihood for that pixel. Please note that features used for OCO-2 and OCO-3 are
slightly different.

Finally, Table 2 summarizes all the feature contributions from the three bands for both OCO-2
and OCO-3. The table lists top features based on the percentage of new bad pixels that had
contributions from the corresponding feature greater than 10%. The ABO2 band is very consistent
for both instruments, with new bad pixels for this band driven primarily by instabilities in the
dark signal. The features impacting new bad pixels for the WCO2 and SCO2 bands, on the other
hand, vary between instruments. While both bands in OCO-2 have high contributions from the dark
signal and temperatures for the SCO2 band, in OCO-3, new bad pixels are largely characterized by
lamp-derived features.

Table 2. Top contributing features for new bad pixels based on percentage of pixels with contributions
greater than 10%.

ABO2 WCO2 SCO2
Feature % > 0.10 Feature % > 0.10 Feature % > 0.10

OCO-2
dark_std 59% dark_dtw 33% dark_std 67%
dark_dtw 28% dark_jump 33% dark_jump 51%
dark_jump 19% dark_std 28% all_temps 15%

OCO-3
dark_std 47% lamp_dtw 41% lamp_dtw 34%
dark_dtw 18% lamp_min 20% dark_dtw 25%
dark_jump 18% dark_std 18% lamp_min 15%

3.3. OCO-2 and OCO-3 Bad Pixel Summaries

Figure 9 shows three examples of the identified bad pixels from each FPA for OCO-2. The plots
show the signal DN time series plots for roughly four years of the OCO-2 mission. Figure 9a shows
one type of bad pixel behavior, Random Telegraph Noise [26], in the dark that is recognized by the
classifier. The signal in this case is stable; however, it appears to be trimodal, indicating that the pixel
can be operating in three different regimes. Moreover, this behavior appears to be triggered and reset
by decontamination cycles. Another example of bad pixel behavior is shown in Figure 9b, where the
pixel looks normal in the dark, however, it stops responding correctly to the light in the middle of the
mission. Finally, in Figure 9c, the pixel becomes increasingly “hot” in the dark and unstable with each
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decontamination cycle. As a result, it also starts showing insensitivity to light as shown in the middle
and right panels of Figure 9c.

(a)

(b)

(c)
Figure 9. Examples of new bad pixels for each OCO-2 band. The dark DN signal is shown on the left,
the raw lamp signal in the middle and normalized lamp on the right for (a) ABO2 band, (b) WCO2
band, and (c) SCO2 band.

Finally, the images of pixel likelihoods for OCO-2 and OCO-3 are displayed in Figure 10.
The resulting bad pixel maps closely follow these likelihood maps, which provide a general view of
the distribution and a degree to which some areas of the FPA are bad. The fraction of the bad pixels for
both instruments is very small, but the likelihood maps are different. While the ABO2 in Figure 10a
appears to be less affected by the presence of the bad pixels than OCO-3 ABO2 band in Figure 10b,
the OCO-2 FPAs for the WCO2 and SCO2 bands in Figure 10c,e exhibit twice as many bad pixels
than those for OCO-3 in Figure 10d,f. The WCO2 and SCO2 bands have large areas corresponding
to the longer wavelengths that are largely contaminated by bad pixels. WCO2 also has a prominent
anomalous region at around column 900 that propagates through the “hot” row. These areas as well as
large clusters of bad pixels throughout the FPAs can complicate the detection of bad pixels, as they can
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distort even the robust summary statistics, such as medians. On the other hand, the “W-pattern” and
other regular detector artifacts have correctly not been identified as bad pixels.

(a) OCO-2, ABO2 (b) OCO-3, ABO2

(c) OCO-2, WCO2 (d) OCO-3, WCO2

(e) OCO-2, SCO2 (f) OCO-3, SCO2
Figure 10. Side by side comparison of OCO-2 and OCO-3 bad pixel likelihoods. The lighter color
indicates higher likelihoods of pixel being bad, while the good pixels with likelihoods at 0 or close to 0
are displayed in black. The ABO2 band for both OCO-2 and OCO-3 in (a,b), respectively, have the least
amount of possibly bad pixels. The WCO2 and SCO2 bands have a greater number of bad pixels in
both instruments, however, OCO-3 in (d,f) has cleaner and less damaged FPAs than OCO-2, shown
in (c,e). Moreover, OCO-2 WCO2 and SCO2 bands have large clusters of likelihoods close to 1 on the
left-hand side of the FPA, corresponding to longer wavelengths.

Selected bad pixel map history and the counts obtained from the likelihood maps are summarized
in Table 3. As mentioned previously, the fraction of the bad pixels for both instruments is very small,
from 0.7%–3.2% for OCO-2 and 0.7%–1.2% for OCO-3, but the impact of these few pixels can be large.
Figure 11a shows how a small fraction of bad pixels can impact the radiance spectrum that will greatly
skew the retrievals. Even though the bad pixels are limited in number, when the sample sums are
formed across various wavelengths, a large number of them become contaminated, as seen from the
high positive spikes as well as from low radiances that are more subtle to detect. For the spectrum
in Figure 11b, the identified bad pixels have been removed, thus the absorption lines can now be
recognized more clearly.
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Table 3. Selected bad pixel maps for OCO-2 and OCO-3.

Version Upload Date # ABO2
Pixels

# WCO2
Pixels

# SCO2
Pixels Description

(5, 10,10) 13-February-2014 853 4520 4414 OCO-2 Inflight Update
(11, 11, 11) 09-August-2018 1213 5262 5192 OCO-2 Inflight Update With Classifier

(100, 100, 100) 21-May-2013 748 599 636 OCO-3 Initial Map
(102, 102,102) 27-April-2018 916 1389 1451 OCO-3 Preflight Update With Classifier
(103,103, 103) 26-July-2019 1132 1936 1982 OCO-3 Inflight Update With Classifier

(a)

(b)
Figure 11. A derived spectrum for OCO-2 WCO2 band with wavelength on the x-axis and radiance on
the y-axis with (a) bad pixels not removed and (b) bad pixels removed.

4. Conclusions

In this paper, we introduced a new approach to bad pixel detection in imaging spectrometers
based on machine learning. This approach was developed specifically for the OCO-2 and OCO-3
instruments; however, it can be generalized to any FPA or to a task that requires the calibration of
many individual elements. We use several features representing various pixel signal behavior jointly
in a classification model that is trained to differentiate bad and good pixels and to assign them a
likelihood of being bad. The approach resulted in an improved bad pixel mask accuracy and a high
degree of automation for this task. The machine learning classifier can be retrained with any new data
and new bad pixels can be detected based on the updated likelihoods that involves minimal human
involvement. Therefore, this methodology allows for frequent checks of the health of the detector and
quicker response to any changes.

The likelihoods give us a compressed representation of a pixel’s behavior based on all the features
jointly. The likelihood is a single value that can then be analyzed, instead of several separate metrics.
It also represents the confidence and a degree to which a pixel might be bad. Clear cases of anomalous
pixels can be easily recognized by thresholding or nearest neighbor comparisons; however, borderline
examples are more challenging to identify. Determining which of the ambiguous cases are actually
bad will always remain difficult given real-world data; however, the likelihoods make it feasible to
separate the distribution of such pixels, where further analysis can be made by the use of prior or
expert knowledge.

Any number of additional features can be computed to be used by the classifier such as periodicity
of signal peaks, smoothness, or the number of signal jumps. These additional features can be fully



Remote Sens. 2019, 11, 2901 16 of 18

interpretable metrics or summary statistics, such as, for example, the number of signal jumps, or they
can be purely derived from the structure of the signal time series, as for example periodicity of peaks
in the time series or metrics defining its smoothness. Even the wavelet coefficients can be used directly
as features, perhaps at further cost of interpretability. Likewise, more work can be done to test different
types of signal decomposition for feature extraction. In addition, various correlation measures as
thermal response features can be studied, including measures robust to outliers. These and other
improvements and classification model fine-tuning can be done in the future.

The classification approach can be further extended to identify bad samples in OCO-2 and OCO-3.
As mentioned in Section 2, samples are the sums of good pixels that are used directly to retrieve
CO2. While single pixel calibration data are not processed beyond Level 1A, sample mode calibration
data are processed through Level 1B, and sample mode science data are used in the Level 2 retrieval.
Importantly, the flat field lamp images may not be sufficient to determine whether a sample is bad,
since these images describe sample responses to a single level of light, whereas abnormalities can exist
in higher or lower levels; however, such nonlinear response of the sample is hard to estimate. We have
done preliminary work in applying the machine learning approach to samples, but additional features
and predictors, likely exploiting different levels of processing, could be needed for the more complex
task of bad sample detection.

Finally, the signal processing and time series analysis that are used for extracting features can be
extended to identify the point of occurrence and frequency of anomalous pixel events and transitions.
It is also possible to find correlations of such events with different phenomena, such as cosmic ray hits
or certain temperature instabilities, and be used for further analysis of the detector performance.
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Abbreviations

The following abbreviations are used in this manuscript:

ABO2 O2 A-band
BPM Bad Pixel Map
DN Digital Number
DTW Dynamic Time Warping
FPA Focal Plane Array
IOC In-Orbit Checkout
IQR Interquartile Range
NASA National Aeronautic and Space Administration
OBA Optical Bench Assembly
OCO Orbiting Carbon Observatory
PCA Principal Component Analysis
SCO2 Strong CO2 band
TVAC Thermal Vacuum Testing
WCO2 Weak CO2 band
XCO2 Column-averaged CO2 mole fraction
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