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Abstract: The robustness of infrared small-faint target detection methods to noisy situations has been
a challenging and meaningful research spot. The targets are usually spatially small due to the far
observation distance. Considering the underlying assumption of noise distribution in the existing
methods is impractical; a state-of-the-art method has been developed to dig out valuable information
in the temporal domain and separate small-faint targets from background noise. However, there
are still two drawbacks: (1) The mixture of Gaussians (MoG) model assumes that noise of different
frames satisfies independent and identical distribution (i.i.d.); (2) the assumption of Markov random
field (MRF) would fail in more complex noise scenarios. In real scenarios, the noise is actually
more complicated than the MoG model. To address this problem, a method using the non-i.i.d.
mixture of Gaussians (NMoG) with modified flux density (MFD) is proposed in this paper. We firstly
construct a novel data structure containing spatial and temporal information with an infrared image
sequence. Then, we use an NMoG model to describe the noise, which can be separated with the
background via the variational Bayes algorithm. Finally, we can select the component containing true
targets through the obvious difference of target and noise in an MFD maple. Extensive experiments
demonstrate that the proposed method performs better in complicated noisy scenarios than the
competitive approaches.

Keywords: infrared small-faint target detection; non-independent and identical distribution
(non-i.i.d.) mixture of Gaussians; flux density; variational Bayesian

1. Introduction

Distant and faint target detection is of great importance to infrared systems, as anti-missile
techniques and early-warning systems. Due to the unique characteristic of these military tasks,
the targets need to be detected accurately as early as possible in the infrared search and track systems
to provide ample time for deployment and striking back. However, the target usually occupies only a
few pixels and lacks texture information due to the very far observation distance. The backgrounds are
very complex, including sky background and sea–sky background, which means the acquired infrared
images are usually contaminated by a clutter background and a varying noise. The contrast between
targets, background and the varying noise might be very poor. The low signal-to-clutter ratio (SCR)
and signal-to-noise ratio (SNR) make the infrared targets very faint. Therefore, robust infrared small
and faint target detection technique remains a valuable research hotspot [1–3].

To achieve a satisfying target detection performance, many approaches have been proposed
for different scenarios, including two types: Track-before-detection (TBD) approaches [4,5] and
detection-before-track (DBT) approaches [6–8]. TBD approaches have good detection performance for
targets with continuous track motion, such as 3D matched filters [9] and its improved versions [10,11].
DBT approaches focus on suppressing the clutter background while enhancing the target in single
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frame, and are more efficient than TBD approaches. TBD approaches are widely used in practical
engineering. At present, the common types of DBT methods are filtering, human visual system (HVS)
and multi-feature based approaches. Filtering methods analyze spatial continuity of an input image,
and the target is modeled as a break point, such as max-median filter [12], top-hat filter [13] and 2D
least mean square (TDLMS) filter [14]. HVS based methods [15–17] assume that there is a significant
contrast between background and target regions. Multi-feature based methods [18–20] represent the
target characteristics and background region with features used to train the classifiers.

Moreover, the low-rank and sparse component recovery based approach, as a subdiscipline of
the low-rank representation (LRR) [21], has become very popular in recent years. In this approach,
the background regions are assumed to change gradually, and a special low-rank data structure can
be constructed with the original images, such as a 2D matrix and a 3D tensor. With the recovery of
the low-rank background, the dim target can be separated from the original image. Gao proposed
an infrared image-patch (IPI) model [22], which constructs a low-rank matrix by sliding window.
The IPI model uses vanilla nuclear norm minimization (NNM) [23] and l1 [24] to regularize the
background and the target, respectively. The performance of NNM in a low-rank component estimation
problem would degrade in a noisy scenario. The solution for this problem is to replace NNM with
a more suitable regularizer. Thus, Dai proposed a weighted IPI approach [25] and a non-negative
IPI approach [26], and Guo proposed a reweighted WIPI model (ReWIPI) based on weighted nuclear
norm minimization (WNNM) [27]. In the view of the dimension of data, Dai proposed a reweighted
infrared patch-tensor (RIPT) method to generalize the low-rank matrix to low-rank tensor for mining
more spatial information [28]. However, the RIPT method unfolds the background patch tensor as
three matrices and regularizes it via the sum of nuclear norms (SNN) [29], which is suboptimal and
inefficient. To remedy this issue, Sun proposed a weighted tensor nuclear norm with IPT (WNRIPT)
method [30].

However, most of the existing low-rank component recovery based approaches [22,25–28,30] only
use the Frobenius loss term [31] to constrain the noise, which models the noise as an independent
and identically distributed (i.i.d.) Gaussian distribution. In practical applications, the infrared images
usually include complex instrumental noise that degrades the performance for target detection.
The complex noise degrades the performance of the target detection severely. A robust method,
capable of distinguishing different kinds of noise, is needed.

To this end, a state-of-the-art method [32] digs out valuable information in time domain and uses
a mixture of Gaussian (MoG) noise models [33] to model the target component and noise component
together. The MoG model characterizes each pixel in the image and updates the mixed Gaussian
model after the new image is acquired. It matches each pixel in the current image with the MoG model,
and the matched pixels are classified into background regions [34,35]. Finally, the Markov random
field (MRF) method [34] is used to detect the target. However, the noise distribution in different
frames is modeled as i.i.d. MoG distributions substantially in [32], which is not suitable for complex
noisy scenarios. In addition, the MRF model does not provide a robust noise estimate in complex
scenarios, since its performance is based on the assumption that the noise component does not arise
in the neighborhood region of the targets. However, the noise permeates through the whole image,
including the target.

We propose a small and faint target detection approach based on a non-i.i.d. MoG (NMoG)
model [36] and modified flux density (MFD) maple [37]. The noise distributions in different frames
(sequences of images) is assumed to follow non-i.i.d. for improving the robustness in real scenarios.
The target is considered as a kind of noise extracted from the background via an NMoG low-rank
matrix factorization (NMoG-LRMF) model, solved by a variational Bayes (VB) algorithm. In a second
step, the MFD maple [37] method is used to distinguish the true target from the noise, accounting for
the fact that target flux density differs from the noise in infrared gradient vector field.
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This paper is organized as follows. The proposed method is described in Section 2. Section 3
provides the experimental results to validate the effectiveness of the proposed method. Finally, we
conclude our work in Section 4.

2. The Proposed Model

2.1. Spatio-Temporal Patch Model

Given an infrared image sequence, we can get a 3D cube patch tensor by storing each frame into
its slice. We vectorize each slice and get a 2D matrix. The procedure is given in Figure 1. Note that
it is possible to reconstruct the image sequence from the processed 2D matrix via inverse operation.
Assume an infrared image sequence f1, f2, · · · , fP ∈ Rm×n transformed into a matrix F with size
of N × P, where N=m × n and P denote the spatial and temporal dimensions. We divide F into
background component B and noise E, described as:

F = B + E, (1)

and the small-faint target component T is considered as a sparse noise component in E [32].

NMoG LRMF Model

+

1Noise Component  E

Background Component B

+

Noise Component  
K
E

Reconstruction

Target Image 

Selection

Target Image Sequence

MFD Map 

Construction

Segmented Results 
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Final Result
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Sequence
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Input Image Sequence

Figure 1. The framework of the proposed method.
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2.2. Background Component

In low-rank recovery based methods, background regions are assumed to vary slowly, and there
are a lot of repeated regions. The low-rank matrix B [32] is modeled as follows:

B = UV T =
R

∑
l=1

u·lv
T
·l , (2)

where U ∈ RN×R and V ∈ RP×R, and their l-th columns are represented as u·l and v·l . R is the
initial rank of B. The intrinsic low-rank nature of B is guaranteed by assuming u·l and v·l generated
according to a Gaussian distribution:

u·l ∼ N
(

u·l
∣∣∣0, γ−1

l IN

)
, v·l ∼ N

(
v·l
∣∣∣0, γ−1

l IP

)
, (3)

where IN (IP) is the N × N (P× P) identity matrix. γl denotes the precision of u·l and v·l that satisfies:

γl ∼ Gam (γl |ξ0, δ0 ) , (4)

where Gam (γl |ξ0, δ0 ) represents a gamma distribution, and ξ0, δ0 are scales. The low-rank component
can be estimated accurately by this model [38].

2.3. Noise Component

In [32], the noise of different frames are assumed to be i.i.d., which is not practical in real and
complex scenarios. Thus, we use the NMoG model [36] to model the noise distributions in different
frames, namely noise distribution of images in different frames are nonidentical. The ij-th element of
the noise E can be divided into K components as below:

eij ∼
K

∑
k=1

πjk N
(

eij

∣∣∣µjk, τ−1
jk

)
, (5)

where πjk denotes the mixing proportion that is non-negative, and ∑K
k=1 πjk = 1. µjk and τjk denote

mean and precision, respectively. Instead of setting the MoG parameters, i.e., πjk, µjk and τjk,
as unchanging value for k-th Gaussian component, we vary them in different frames. Equation (5) can
be equivalently expressed as a two-level generative model by introducing the indicator variables zij.
zij is the hidden variable generated from Multinomial distribution with parameter πj:

eij ∼
K

∏
k=1

N
(

eij

∣∣∣µjk, τ−1
jk

)zijk

zij ∼ Multinominal
(
zij
∣∣πj
) (6)

where zij =
(
zij1, . . . , zijK

)
∈ {0, 1}K, ∑K

k=1 zijk = 1. Multinomial( ) represents the multinomial
Dirichlet distribution. The conjugate priors of µjk, τjk and the mixing proportions πj = [πj1, . . . , πjK]

are also defined for completing the Bayesian model:

µjk, τjk ∼ N
(

µjk

∣∣∣∣m0,
(

β0τjk

)−1
)

Gam
(

τjk |c0, d
)

d ∼ Gam (d |η0, λ0 )

πj ∼ Dir
(
πj |α0

) (7)



Remote Sens. 2019, 11, 2831 5 of 20

where β0, m0, c0, d are the hyper-parameters, and d satisfies Gam distribution with hyper-parameters
η0, λ0. Dir(.) is a Dirichlet distribution parameterized by α0 = (α01, . . . , α0K). Then, the noise
component can be modeled by Equations (6) and (7).

Combining Equations (2)–(7) together, Bayes’ theorem is used to estimate from F the values of
all parameters:

p (U, V ,Z , µ, τ, π, γ, d |F ) (8)

where Z =
{

zij
}

N×P, µ =
{

µjk

}
B×K

, τ =
{

τjk

}
B×K

, π = (π1, . . . , πP) and γ = (γ1, . . . , γR).

2.4. Variational Inference

In this section, the posterior of parametric model Equation (8) is inferred by the VB approach [39].
VB obtains the objective parameters x finding the minimum Kullback–Leibler (KL) divergence between
the approximated distribution q (x) and the actual distribution p (x |D ) with the known observation
D, which can be formulated as below:

q∗ (x) = min
q∈Ω

KL (q (x) ‖p (x |D ) ) , (9)

where Ω is the constrained probability densities for obtaining the feasible solution. We can factorize
q (θ) as q (θ) = ∏i qi (θi) by mean field theory, and the posterior distribution Equation (8) can be
approximated with the following form:

p (U, V ,Z , µ, π, τ, γ, d) = ∏
i

q (ui·)∏
j

q
(
uj·
)

∏
ij

q
(
zij
)
×∏

j
q
(
µj, τj

)
q
(
πj
)
∏

l
q (γl) q (d) .

(10)

2.4.1. Estimation of Noise Component

For the noise component in the j-th frame, we need to estimate four parameters, µj, τj, Z and πj.
Firstly we update µj and τj in the following way:

q∗
(
µj, τj

)
= ∏

k
N

(
µjk

∣∣∣∣∣mjk,
1

β jkτjk

)
Gam

(
τjk

∣∣∣cjk, djk

)
, (11)

where

mjk =
1

β jk

{
m0β0 + ∑

i

〈
zijk

〉 (
fij − 〈ui·〉

〈
vj·
〉T
)}

,

β jk = β0 + ∑
i

〈
zijk

〉
, cjk = c0 +

1
2 ∑

i

〈
zijk

〉
,

djk = 〈d〉+
1
2

{
∑

i

〈
zijk

〉〈(
fij − ui·vj·

T
)2
〉
+ β0m0

2

− 1
β jk

(
∑

i

〈
zijk

〉 (
fij − 〈ui·〉

〈
vj·
〉T
)
+ β0m0

)2
 ,

(12)

where fij denotes the ij-th element of the F. The variables zij can be derived in closed form as below:

q
(
zij
)
= ∏k r

zijk
ijk (13)

where
rijk =

ρijk

∑k ρijk
, (14)
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lnρijk =
〈

lnπjk

〉
− 1

2
ln2π +

1
2

〈
lnτjk

〉
− 1

2

〈
τjk

(
fij − µjk − µi·vT

j·

)2
〉

.
(15)

Finally, we update πj by:

q
(
πj
)
= ∏k π

αjk−1
jk , (16)

where αjk = α0 + ∑i

〈
zijk

〉
, and the hyper-parameter d is updated by the following equation:

q (d) = Gam (d |η, λ ) , (17)

where η = η0 + c0KP and λ = λ0 + ∑j,k

〈
τjk

〉
.

2.4.2. Estimation of Background Component

For the background component, we need to estimate three parameters, including U, V and γ.
ui· (i = 1, . . . , N) can be estimated as follows:

q (ui·) = N (ui· |µui· , Σui· ) , (18)

where

µui· =

{
∑
j,k

〈
zijk

〉 〈
τjk

〉 (
fij −

〈
µjk

〉) 〈
vj·
〉}

Σui· ,

Σui· =

{
∑
j,k

〈
zijk

〉 〈
τjk

〉 〈
vT

j·vj·
〉
+ 〈Γ〉

}−1

.

Similarly, vj· (j = 1, . . . , P) is estimated by:

q
(
vj·
)
= N

(
vj·
∣∣∣µvj· , Σvj·

)
, (19)

where

µvj· =

{
∑
j,k

〈
zijk

〉 〈
τjk

〉 (
fij −

〈
µjk

〉) 〈
uj·
〉}

Σvj· ,

Σvj· =

{
∑
j,k

〈
zijk

〉 〈
τjk

〉 〈
uT

j·uj·
〉
+ 〈Γ〉

}−1

.

Γ = diag (〈γ〉), γl is a decisive factor for guaranteeing low-rank property of B by removing the
corresponding rows when its value is very large [38], which can be estimated by:

q (γl) = Gam (γr |ξl , δl ) , (20)

where
ξl = ξ0 +

1
2 (m + n) ,

δl = δ0 +
1
2 ∑

i

〈
u2

il
〉
+ 1

2 ∑
j

〈
v2

jl

〉
.

In the following experiments, we set m0 = 0, and α0, β0, c0, d0, η0, λ0, ξ0, δ0 are initialized with
10−6 [36].

2.5. Target Extraction

In this section, we firstly select the noise component containing small-faint target. Then, the MFD
method [37] is used to extract the target from the noise.
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2.5.1. Selecting Noise Component Containing Target

We obtain the noise component E separating it from the background component, and we can
divide it into K components E1, . . . , EK according to the maximum probability criteria [32]:

em
ij =

 eij, if m= arg max
k=1,...,K

(
rijk

)
0, else

. (21)

The K components are restored to sequences Ē1, . . . , ĒK by the aforementioned method in
Section 2.1. Note that the intensity of the true target is quite different from the noise. Instead of using
variance guided method in [32], we calculate the difference between the minimum and maximum of
intensity and select the largest one Ēi as the component containing target, which can be described
as follows:

i = arg max
k=1,...,K

(
max

(
Ēk
)
−min

(
Ēk
))

(22)

The following experimental results demonstrate that this method is effective.

2.5.2. Extracting Target by MFD

Figure 2 gives the results of a representative infrared noisy image using NMoG method with
K = 3, and subfigure (c) is the slice containing the true target. It is observed from Figure 2c that
the restored slice containing true target is still contaminated by pixel noise. Thus, we use the MFD
method [37] to wipe out the noise and enhance the target.

(a) Original image (b) Background image (c) Slice 1 (d) Slice 2 (e) Slice 3

Figure 2. The results of NMoG method with K = 3.

The noise component E containing the target is firstly transformed into a gradient vector field by:

I (x, y) =

[
e′x (x, y)
e′y (x, y)

]

e′x (x, y) =
e (x + 1, y)− e (x− 1, y)

2

e′y (x, y) =
e (x, y + 1)− e (x, y− 1)

2

(23)

where e (x, y) denotes the value of E at location (x, y), e′x (x, y) and e′y (x, y) are the gradient value in
the x-direction and y-direction.

From Figure 3b,d, it can be observed that both the true target and bright noise residuals are a sink
in gradient vector field. But the gradient vectors of noise pixel focus on 4 directions, and MFD method
can compute the flux density of each pixel after removing its four largest gradient vectors, which is
defined as follows [37]:

MFDs (x, y) = ∑
(x′ ,y′)∈O′(x,y,s)

I (x′, y′) ·~no (x′ − x, y′ − y)
8s− 4 (24)
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where MFDs is s-scale MFD, s denotes the scale variable, O′ denotes the subset of O, which removes
four pixels containing the four largest gradient vectors. Note that the number of pixels on the curve is
8s− 4. O represents the neighborhood region as:

O (x, y, s) =
{(

x′, y′
) ∣∣max

(∣∣x′ − x
∣∣ ,
∣∣y′ − y

∣∣) = s
}

(25)

and the norm vector on the boundary point~no (x, y) is defined as follows:

~no (x, y) =

[
nox (x, y)
noy (x, y)

]

nox (x, y) =


−1, x = k
1, x = −k
0, else

noy (x, y) =


−1, y = k
1, y = −k
0, else

(26)

where nox (x, y) and noy (x, y) are the value in the x-direction and y-direction.

(a) Target image (b) MFD maple (c) Noise image (d) MFD maple

Figure 3. Modified flux density (MFD) maple. (a,c) Boundaries and norm vectors for flux density
calculation of the target and noise pixel. (b,d) The corresponding flux density of (a,c); the details are
(b) scale = 1, flux density = 24.38; (d) scale = 1, flux density = −0.29.

Figure 3 shows that noisy pixels are wiped out according to their MFD value. This is because the
MFD value of the noisy pixels is much smaller than that of the real target, which is usually a negative
element. Following this property, the corresponding noise pixels are wiped out in the target image.
Thus, we obtain an initial result by the following equation:

T (x, y) = Ēi (x, y) ∗MFDs(x, y)+ (27)

where T (x, y) denotes the initial target image, MFDs(x, y)+ is the result by setting the positive elements
and negative elements in the original MFD maple to 1 and 0, respectively. Finally, we use an adaptive
threshold to further separate the target [22], which is described as below:

T = µ + kσ (28)

where µ and σ are the mean value and standard deviation of the small target image. k is a empirical
value, and we set it as 0.05 in our experiment. The framework of our method is shown in Figure 1,
and the detection procedure is given in Algorithm 1.
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Algorithm 1

Input: Infrared image sequence f1, f2, · · · , fP ∈ Rm×n.
Initialize: Set parameters (m0, β0, c0, d0, η0, λ0) = 10−6 in noise prior. Low-rank background component
U0, V0 and α0 parameters in the model prior (ξ0, δ0), scale parameter s = 1 in MFD method, iteration number
t = 1.
Step 1: Construct the spatio-temporal patch image F with the input infrared image sequence using the method
in Section 2.1.
Step 2: Build NMoG noise model under the Bayesian framework by Equations (2) and (5).
Step 3: While not converged do:
1. Update approximate posterior of noise component Z t, πt by Equations (13)–(16), µt, τt by Equations (11)
and (12) and dt by Equation (17), respectively.
2. Update approximate posterior of background component U, V by by Equations (18) and (19).
3. Update approximate posterior of parameters in noise component γt by Equation (20).
4. Update t = t + 1.
end While
Step 4: Noise component E by E = F − UV t. Decompose E into K components by Equation (21),
and reconstruct noise components into the corresponding image sequences by method in Section 2.1.
Step 5: Select the true target images by Equation (22).
Step 6: Calculate the original MFD map of the target images by Equations (23) and (24).
Step 7: Obtain the separated target images by using both MFD maple and adaptive threshold, which can be
computed by Equation (27).
Output: Separated target image sequence.

3. Experiments

To validate the effectiveness of the proposed approach, extensive experiments are performed on
simulated and real infrared image sequences in this section.

3.1. Metrics and Comparative Methods

In this paper, we use the receiver operating characteristic (ROC) to show the relationship between
the detection probability Pd and false alarm rate Fa, and they are described as below [22,25–28,32]:

Pd =
number of true detections
number of actual targets

(29)

Fa =
number of false detections

number of images
(30)

In addition, the local signal-to-noise ratio gain (LSNRG), background suppression factor (BSF) ,
signal to clutter ratio gain (SCRG) and contrast gain (CG) metrics are also used in our work, and the
detailed definitions can be found in [28,32]. We also introduce a local background region for computing
the LSNRG and SCRG [22], which is displayed in Figure 4. The width of neighboring region d is set as
20 here.

Target

Region

Background

a

b
d

d

Figure 4. The neighboring background region.
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Nonetheless, the accuracy of the low-rank background estimation is also an important metric,
since less estimation error means better preservation of strong edges in the background component.
Thus, we use another metric, namely accuracy of background recovery (ABR), which is defined as:

ABR =
‖Bout‖F
‖Bin‖F

(31)

where Bin and Bout are the background before and after processing.
The five baseline methods for comparison including two classical filtering methods,

i.e., top-hat [13] and max-median filtering [12], and three low-rank matrix analysis methods IPI [22]
and RIPT [28] (using spatial information) and the MRF-MoG [32] (using spatio-temporal information
and assuming i.i.d. MoG noise) method. Table 1 gives the detailed parameter settings, where n1, n2, n3

denotes the dimensions of the infrared patch tensor [28].

Table 1. Parameter setting of methods.

Methods Acronyms Parameter Settings

max-median filter max-median Support size: 5× 5
top-hat method top-hat Structure shape: Square, structure size: 3× 3

Infrared Patch-Image Mode IPI
Patch size: 50× 50, sliding step: 10, λ = L√

min(n1,n2,n3)
,

L = 1, ε = 1e− 7

Reweighted Infrared
Patch-Tensor Model RIPT

Patch size: 50× 50, sliding step: 10, λ = L√
min(n1,n2,n3)

,

L = 1, h = 10, ε = 1e− 7
Mixture of Gaussians with
Markov random field MoG with MRF Noise component number: K = 3
Mixture of Non-i.i.d.
Gaussians with Modified
Flux Density NMoG with MFD Noise component number: K = 3

3.2. Simulated and Real Datasets

The noise of real infrared images usually includes five typical types: Gaussian noise, Poisson
noise, impulse noise, dead pixels or lines, and salt and pepper noise. To validate the effectiveness of
the proposed approach in complex noisy situations, five consecutive real infrared image sequences
are used as original images to add the mixture of the above five types of noises, and these original
images are approximately noise-free. Additive white Gaussian noise with two SNR value are added to
each frame of five sequences, and the SNR are in the range of [10, 15] dB and [15, 20] dB, respectively.
The location of pixels corrupted by different noises are chosen randomly. We choose forty frames of
Sequences 1–4 to add with various types of noise and different intensity. Finally, we add the mixture of
noise to each frame in sequence 5. The details are described in Table 2, and their representative frames
are displayed in the first column of Figure 9.
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Table 2. Characteristics of noisy infrared sequences.

Sequence Number
of Frames

Image
Resolution

(pixels)

Noise
Characteristics

Background
Characteristics SCR

______
SCR

1 135 220× 140 Gaussian +
Deadline Noise Sea-Sky Clutters 0.25∼10.11 3.49

2 108 280× 228 Gaussian + Salt
and Pepper Noise

Heavy cloud-sky
clutters 0.13∼8.24 2.71

3 114 250× 200 Gaussian +
Poisson Noise

Heavy cloud-sky
clutters 0.11∼3.30 1.33

4 123 281× 240 Gaussian +
Impulse Noise

Heavy cloud-sky
clutters 0.02∼4.32 1.90

5 102 200× 150 Mixture Noise Heavy cloud-sky
clutters 0.05∼10.24 3.09

SCR is defined as follows [40]:

SCR =
|µt − µb|

σb
(32)

where µt is the average pixel value of the target region, µb and σb denote the average pixel value and
the standard deviation of the neighborhood region. Based on definition of SCR, the average SCR value
of targets is used to characterize the noisy sequence, which is defined as follows [22]:

_____
SCR =

1
N

N

∑
i=1

SCRi (33)

where N denotes the number of targets and SCRi denotes ith target.
Then we also carry out comparison experiments with three real infrared image sequences

contaminated by heavy noise.

3.3. Effect of Component Number

Here, we vary K from 2 to 7 for analyzing the influence of noise component parameter K on the
performance of the proposed model. For quantitative analysis, the experiments have fixed false-alarm
rates (Fa) by changing the segmentation thresholds on Sequences 1–5, which are given in Table 3. The
bold format number indicates the highest score. Besides, we also display the ROC curves in Figure 5.
We can observe from the result that there is no significant difference in performance when K is larger
than 2. From Figure 5a,d, it can be seen that Fa of K = 2 are higher than that of other K values, this
is because the target component might contain the sparse noise, which could not be wiped out by
the threshold. However, it is also improper to set K too large. From Figure 5a,c–e, the probability of
detection is decreasing as K becoming larger when K ≥ 4 due to the true targets might lose in the
separated target component. In addition, considering the computation complexity is increasing with
larger K, K is set as 3 in experiments.

Table 3. The detection performance of the proposed method with different K values.

Metric K Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5

Fa Fa = 0.01/image Fa = 0.1/image Fa = 0.5/image Fa = 2/image Fa = 0.25/image

Pd

2 0.98 0.90 0.90 0.90 0.85
3 1.00 0.90 0.94 0.93 0.87
4 0.96 0.90 0.87 0.85 0.86
5 0.96 0.90 0.86 0.84 0.80
6 0.96 0.89 0.84 0.84 0.81
7 0.96 0.89 0.85 0.82 0.80
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Figure 5. The receiver operating characteristic (ROC) curves of different values for the parameter K on
Sequences 1–5.

3.4. Effect of MFD

To demonstrate the superiority of the MFD method over other methods, we perform comparative
experiments on a representative image of simulated Sequence 5, including the MRF [32] and the
ablated version (NMoG without MFD). From Figure 6, we can observe that the MFD method can
effectively wipe out the bright noise, while the other two methods lose the true target and have many
residual noise pixels, and these residuals could cause a high false alarm ratio.
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(a) Original image (b) Noisy image (c) NMoG with MFD

(d) NMoG without MFD (e) MoG with MRF

Figure 6. The results of different methods on a representative image of Sequence 5. (a–e) are the
original image, the noisy image, the results of the NMoG (non-independent and identical distribution
(i.i.d.) mixture of Gaussians (MoG)) with MFD, NMoG without MFD and MoG with Markov random
field (MRF), respectively. The red rectangles denote the targets and the green ellipses are representative
examples of noise.

3.5. Performance of Multiple Targets Scene

Considering the number of targets may change in different scenes, such as antimissile systems, we
test the effectiveness of the proposed method in multi-target scenarios (the number of the targets is 3).
The method of embedding a synthetic target into the images can be found in [22]. The representative
images and the corresponding results are displayed in the first row and second row of Figure 7. All
the targets are detected successfully by the proposed method.

(a) (b) (c) (d) (e)

Figure 7. Multiple target scenes. The first and second row of (a–e) are five original images and
corresponding results processed by the proposed method, respectively.

3.6. Comparisons to Baseline Methods

3.6.1. Experiments on Simulated Data

In this experiment, we focus on analyzing and comparing the performance of different approaches
on real infrared images with synthetic noise. To illustrate the difference between the original
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images and noisy images, we display the gray histograms of five representative frames in Figure 8.
The representative images are chosen from one image of the corresponding 40 noisy images of
Sequences 1–4 and from one image of Sequence 5 randomly. It can be observed from Figure 8 that the
distributions of original and noisy images are quite different. Figure 9 shows the corresponding target
images of different approaches. We can observe that both max-median filter and top-hat filter can not
suppress the noise pixels clearly, and these residuals would increase Fa. Besides, top-hat filter loses the
target in Sequences 2 and 5. The performances of both max-median filter and top-hat filter are limited
by the filtering size required to be fixed as an input parameter without any knowledge of the target
size. Their performances degrade heavily when the filter size deviates from the target size.

From the comparison between the results of filtering based approaches and low-rank based
approaches, we conclude that the latter can achieve better performance than the former ones. All the
targets can be detected by IPI method, but many noise pixels are also retained due to the deficiency
effects [28], especially for Sequences 2, 4 and 5. This phenomenon demonstrate that the IPI method is
quite sensitive to salt and pepper noise and impulse noise. The RIPT approach has better background
suppression ability than IPI approach, but we can find that it is also sensitive to salt and pepper noise
from the corresponding results of Sequences 2 and 5. Moreover, the RIPT method fails in Sequence 3.
MoG-MRF only detects the true targets of Sequence 1 and 4, the unsatisfying performance of MoG-MRF
is because the i.i.d. MoG assumption is not suitable to the case when the noise distribution between
different frames is nonidentical. Besides, the segmentation performance of MRF would degrade when
the noise pixel is adjacent to true targets in complex noisy cases. From the last column of Figure 9, it
can be observed that all targets are detected correctly by the proposed model while noise pixels and
clutters being suppressed completely.
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Figure 8. The histograms of the representative frames in original and noisy Sequences 1–5. The first
row of (a–e) are the histograms of five original infrared images for experiments. The second row of
(a–e) are corresponding histograms of noisy infrared images.
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(a) Noisy image (b) max-median (c) top-hat (d) IPI (e) RIPT (f) MoG-MRF (g) NMoG-MFD

Figure 9. Separated target images of the representative frames in Sequences 1–5 by different methods.
Row 1: 31-st frame of Sequence 1. Row 2: 3-rd frame of Sequence 2. Row 3: 41-st frame of Sequence 3.
Row 4: 4-th frame of Sequence 4.Row 5: 22-nd frame of Sequence 5. (a) columns are the noisy images,
respectively. (b–g) columns are the separated target images of (b) MaxMedian, (c) TopHat, (d) IPI,
(e) RIPT (f) MoG with MRF and (g) NMoG with MFD methods.

In addition, we also use five metrics to analyze the performance of different approaches
quantitatively. The LSNRG, BSF and SCRG values of different approaches for the representative images
are given in Tables 4 and 5. The Inf means that the standard deviation of neighboring background is
zero, and the high scores in the above three metrics only reflect the good suppression performance
in a local region. Note that the values of low-rank based methods in the above three metrics are
usually Inf, as the results of RIPT method, MoG-MRF method and the proposed method on Sequences
1 and 4. Considering the above phenomenon, the average CG and ABR values of all images are also
computed for further comparison [32], as listed in Table 6. For quantitative analysis, the experiments
have fixed false-alarm rates (Fa) by changing the segmentation thresholds on Sequences 1–5, which are
given in Table 7. In conclusion, the proposed approach achieves the best performance. In conclusion,
the proposed approach achieves the best performance.

Moreover, we show the ROC curves of different approaches in Figure 10. From the result, we can
see that the Fa of max-median on Sequences 2 and 5 are very high. The performance of the proposed
approach is superior to other approaches on Sequences 1–3 and 5, which achieves the highest Pd with
very low Fa, this is because the noise pixels and background residuals are suppressed thoroughly by
the proposed method. As for Sequence 4, IPI achieves higher Pd than that of the proposed method
when Fa ≤ 1.1. However, the proposed method can achieve higher probability of detection when
Fa > 1.1. The ROC curves of IPI and RIPT on Sequences 2 and 5 demonstrate that they are sensitive
to salt and pepper noise, and the performance of MoG with MRF method is not satisfying due to the
identical noise distribution assumption fails in complex noise case.
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Table 4. Quantitative evaluation of different methods for the representative images of Sequences 1–3.

31st Frame of Sequence 1 3rd Frame of Sequence 2 41st Frame of Sequence 3

Method LSNRG BSF SCRG LSNRG BSF SCRG LSNRG BSF SCRG

Max-Meidan 1.6209 14.8329 2.7474 0.4829 7.0193 3.6076 0.4640 14.4141 0.0792
top-hat Inf Inf Inf Miss Miss Miss 1.0311 2.3991 0.2823

IPI 4.1182 1.5731 6.207 0.976 1.5658 0.6981 0.9828 1.3869 0.2679
RIPT Inf Inf Inf 0.6207 6.4585 13.3034 0 6.0941 32.9413

MoG-MRF Inf Inf Inf Miss Miss Miss 0 6.8651 53.2848
NMoG-MFD Inf Inf Inf Inf Inf Inf Inf Inf Inf

Table 5. Quantitative evaluation of different methods for the representative images of Sequences 4 and 5.

4th Frame of Sequence 4 22nd Frame of Sequence 5

Method LSNRG BSF SCRG LSNRG BSF SCRG

Max-Meidan 1.2486 9.5636 3.2359 0.2618 2.4965 0.366
top-hat Inf Inf Inf Miss Miss Miss

IPI 2.1088 3.8868 4.8508 0.9329 1.3979 0.4839
RIPT Inf Inf Inf 0.6674 2.901 3.6575

MoG-MRF Inf Inf Inf Miss Miss Miss
NMoG-MFD Inf Inf Inf Inf Inf Inf

Table 6. The evaluation results of average contrast gain (CG) and accuracy of background recovery
(ABR) values of different methods for all image sequences.

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5

Method CG ABR CG ABR CG ABR CG ABR CG ABR

Max-Meidan 2.3312 0.9221 1.2661 0.9457 2.4625 0.9519 1.7005 0.868 1.4464 0.8981
top-hat 3.8321 0.9066 5.0661 0.9286 5.6079 0.9398 4.1474 0.9289 3.1628 0.9192

IPI 2.6185 0.8601 1.5188 0.8374 1.7097 0.9067 2.5819 0.9447 1.8794 0.8861
RIPT 3.1073 0.9179 3.7042 0.9303 6.1015 0.9423 3.0008 0.9321 2.1123 0.8993

MoG-MRF 4.7533 0.9327 5.2441 0.9700 6.3158 0.9508 4.0663 0.9584 3.8108 0.9435
NMoG-MFD 4.7798 0.9801 5.6895 0.9841 8.1627 0.9837 5.1757 0.9849 3.8432 0.9825

Table 7. The detection performance of different methods on Sequences 1–5.

Metric Methods Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5

Fa Fa = 1/image Fa = 15/image Fa = 2.5/image Fa = 2/image Fa = 11/image

Pd

max-median 0.84 0 0.49 0.30 0
Top-hat 0.46 0.28 0.41 0.22 0.26

IPI 0.91 0.05 0.93 0.90 0.27
RIPT 0.91 0.17 0.93 0.91 0.54

MoG-MRF 0.90 0.52 0.88 0.74 0.75
NMoG-MFD 1.00 0.90 0.94 0.93 0.87
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Figure 10. The ROC curves of different methods on Sequences 1–5. (a) result of Sequence 1, (b) result
of Sequence 2, (c) result of Sequence 3, (d) result of Sequence 4, (e) result of Sequence 5.

3.6.2. Experiments on Real Data

We also carry out additional experiments on three real and noisy infrared image sequences, namely,
Sequences 6–8. Briefly, we use the most important metric, i.e., the ROC curves of 6 tested method on
real image sequences, to compare their performance, which are shown in Figure 11. In addition, Table 8
shows the quantitative analysis, and the proposed approach achieves the highest Pd with the same Fa.
The results demonstrate the superiority of the proposed approach on target detection, background
clutter and noise suppression ability over other competitive methods, because the NMoG model and
MFD maple improve the robustness of the proposed approach to different kinds of noise.

Table 8. The detection performance of different methods on Sequences 6–8.

Metric Methods Sequence 6 Sequence 7 Sequence 8

Fa Fa = 2/image Fa = 2/image Fa = 2/image

Pd

max-median 0 0 0
Top-hat 0.11 0.14 0.51

IPI 0.86 0.33 0.04
RIPT 0.34 0.28 0.32

MoG-MRF 0.63 0.14 0.85
NMoG-MFD 0.89 0.90 1.00
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Figure 11. ROC curves of different methods on real noisy Sequences 6–8. (a) result of Sequence 6, (b)
result of Sequence 7, (c) result of Sequence 8.

3.7. Complexity Analysis

Here, we analyze and compare the complexity of different approaches, which are listed in
Table 9. (m, n) and L denote the image size and the structure element, respectively. (n1, n2, n3)

represent the dimensions of the tensor in RIPT model, and the details can be found in [30]. As for
the proposed method, let F ∈ RN×P, we firstly need to infer the parameters in NMoG model, and its
complexity is O

(
(N+P) R3+KNPR

)
in each iteration. For computing MFD maple of an image

with size of m × n, the whole computational cost is O
(

mn(2s + 1)2
)

. For target segmentation,
the cost of this step is O (mn). Thus, the entire computation cost of the proposed method is
O
(

t
(
(N+P) R3+kNPR

)
+ mn(2s + 1)2 + mn

)
, where t is the iteration number. The MoG with MRF

method uses median operation to reconstruct image sequences, and its complexity is O (mnw), where
w denotes the number of overlapped pixels during the transformation from the spatio-temporal patch
image to the reconstruction image [32]. In addition, we compare the computational time of different
approaches on whole Sequence 6. It can be observed from the result that MOG with MRF method is
the slowest while the top-hat filter is the fastest. The processing time of the RIPT approach is shorter
than the IPI approach and max-median filter. The proposed approach is slower than RIPT method and
two filtering methods, but the superiority of its performance over other baseline methods can make up
for this deficiency.

Table 9. Algorithm complexity and computational time comparisons of different methods.

Method Complexity Times(s)

max-median O(mnL2) 392.997661
top-hat O(mnL2logL) 2.639046

IPI O(mn2) 682.764355
RIPT O (tn1n2n3 (n1n2 + n2n3 + n1n3)) 224.866089

MoG-MRF O
(
t
(
(N+P) R3+kNPR

)
+ mn(w + 1)

)
3002.7214

NMoG-MFD O
(

t
(
(N+P) R3+kNPR

)
+ mn(2s + 1)2 + mn

)
482.9220

4. Conclusions

In this paper, we propose a novel infrared small and faint target detection approach based on
NMoG and MFD models for complex and noisy scenarios. The proposed model can finely accord with
the noise characteristics embeded in real infrared image sequences by using the NMoG model. We
model the recovery of a low-rank background component and noise component as an LRMF model,
which can be solved by the VB algorithm. Finally, the target can be extracted correctly from the noise
by using MFD maple. Experimental results show that the proposed approach performs better than
other competitive approaches, since it is more robust to complex noisy scenarios in real application.
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