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Abstract: The determination of plant nitrogen (N) content (%) in wheat via destructive lab analysis is
expensive and inadequate for precision farming applications. Vegetation indices (VI) based on spectral
reflectance can be used to predict plant N content indirectly. For these VI, reflectance from space-borne,
airborne, or ground-borne sensors is captured. Measurements are often taken at the canopy level for
practical reasons. Hence, translocation processes of nutrients that take place within the plant might
be ignored or measurements might be less accurate if nutrient deficiency symptoms occur on the
older leaves. This study investigated the impact of leaf number and measurement position on the leaf
itself on the determination of plant N content (%) via reflectance measurements. Two hydroponic
experiments were carried out. In the first experiment, the N fertilizer amount and growth stage for
the determination of N content was varied, while the second experiment focused on a secondary
induction of N deficiency due to drought stress. For each plant, reflectance measurements were
taken from three leaves (L1, L2, L3) and at three positions on the leaf (P1, P2, P3). In addition, the N
content (%) of the whole plant was determined by chemical lab analysis. Reflectance spectrometer
measurements (400–1650 nm) were used to calculate 16 VI for each combination of leaf and position.
N content (%) was predicted using each VI for each leaf and each position. Significant lower mean
residual error variance (MREV) was found for leaves L1 and L3 and for measurement position on P3
in the N trial, but the difference of MREV between the leaves was very low and therefore considered
as not relevant. The drought stress trial also led to no significant differences in MREV between leaves
and positions. Neither the position on the leaf nor the leaf number had an impact on the accuracy of
plant nitrogen determination via spectral reflectance measurements, wherefore measurements taken
at the canopy level seem to be a valid approach.

Keywords: wheat; spectrometer; nitrogen content; hydroponics; nitrogen treatments; growth stages;
vegetation index

1. Introduction

Nitrogen (N) is a key plant nutrient commonly applied to increase yield and crop quality in
agricultural systems [1]. However, the production of nitrogenous fertilizer creates large amounts of
greenhouse gases [2]. Environmental pollution can also occur after excessive nitrogen application
if the applied fertilizer amounts exceed plant demand [3]. Under unfavorable conditions, potential
greenhouse gases can escape from soils or are transported to groundwater through leaching [4].
These side effects strongly depend on the amount of N fertilizer applied [5]. In Europe, the Water
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Framework Directive [6] and Nitrates Directive [7] joined forces to lower the leaching potential. This is
accomplished by reducing the N amount applied and by maintaining the right amount of N under
different growing conditions (drought, or well-saturated soil, for example).

Over the last 30 years, concepts of precision farming (PF) [8] have been developed that help farmers
to understand yield variability within their fields in order to adjust N application. Generally, PF uses
different technologies like global positions systems, yield mapping, soil conductivity measurements [9]
or non-contact spectral sensors for monitoring and determination of e.g., N status of different field
crops [8]. These spectral sensors are based on the principle of reflectance and changes of electromagnetic
radiation between 300 and 2500 nm [10] and can be ground-borne, airborne, or space-borne [11].
Space-borne sensors are widely available [12], but data collection is affected by clouds, poor atmospheric
conditions, and has to cope with atmospheric perturbation [13]. In addition, they suffer from low
spectral and spatial resolution (10–60 m) [14–16]. The closer the sensor to the target, the higher the spatial
resolution [17]. This is one reason why an unmanned aerial vehicle (UAV)-based, or vehicle-mounted,
sensors are mainly used in agriculture (resolution 0.01 m or less) [17,18]. However, these devices
also still depend on environmental conditions like wind speed, rain, or changing cloud coverage [19].
Nevertheless, the advantage is an image acquisition where measurement date and resolution can be
more influenced by the user compared to satellite images. The applications range from the detection of
within-field variability for yield predictions to monitoring of water- or nitrogen stress [20–22]. Several
commercialized products like the Yara N-Sensor, Fritzmeier Isaria, GreenseekerTM RT 200, or Crop
Circle ACS-430 are available, which are measuring the reflectance at canopy level [23]. This leads to
two challenges:

The first challenge is to distinguish between soil and plant reflectance signatures [24].
Soil reflectance is affected by soil moisture, organic matter, clay minerals, or iron oxides [25].
The differentiation between soil and plants is mainly realized by using indices that adjust for soil
effects [26]. The difficulty of applying such indices is the compensation for different soil albedos,
which change between soil types [27]. When using remote sensing instruments, leaf reflectance is
always affected by the lower leaves and the soil background, which leads to interferences. Therefore,
measured reflectance in an open field is always a mixture of different diffuse reflected light and never
an isolated reflectance signal, which may lead to a reduction in overall accuracy.

However, the application of these spectral indices requires a certain ground coverage of the
plant to overlay soil reflectance. Hence, the application of these indices is limited to certain growing
periods [12,28]. In early growing stages, when the plant has low ground cover, no sensors can be used
as the soil reflectance dominates the image [29]. Later in the growing season, a saturation of indices
and reflectance values makes the prediction of N status difficult [30].

The second challenge is to distinguish between different parts of the plant. Most studies focused
on chlorophyll and N content of the leaves or canopy [31] and therefore did not consider the actual
crop’s N content, which would be more desirable for decision support systems in PF [32]. The N
content within a plant is assumed to be higher in younger leaves [23,24], while a higher sensitivity to N
deficiency in older leaves was reported due to translocation processes [33,34]. Wang et al. [35] showed
that ignoring vertical N distribution will lead to lower accuracy and limited practical value of crop N
for remote sensing. To overcome the issue of vertical N distribution, remote sensing approaches have
been adopted by several researchers [34–36]. Zhao et al. [36] generated spectral information with a
spectroradiometer in winter wheat by changing view zenith angles from 0◦ to 60◦. Angles of 20 to 30◦

gave information about the middle leaf layers, while angels of 0 to 20◦ and 30–60◦ measured mainly
the upper leaves. However, a major drawback of this approach is that each measurement contains
some mixed information of all the different layers [36].
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This raised the question, on which leaf layer, and at which location on the leaf itself remote sensing
measurements have to be carried out to determine the N content of a plant. Measurement at canopy
level has to be considered as satisfying so far if different leaves, varying leaf ages, and stress levels lead
to a similar reflectance. To the best of our knowledge, there is no publication investigating the influence
of the leaf layer and position of the measurement on the leaf for cereal plants. Gara et al. [37] tested
spectral reflectance on different short shrubs and showed the need to account for vertical heterogeneity.

Thus, the aim of this study was to investigate a) on which leaf layer and b) at what position on the
leaf itself reflectance measurements should be taken from. These measurements were then used to
determine the N content (%) of the wheat plant via a range of published VI while validating the data
with chemically determined N content (%).

2. Materials and Methods

2.1. Plant Growth Conditions and Experimental Design

Two hydroponic greenhouse experiments were carried out to predict N content from wheat plants
(Triticum aestivum L.) of the cultivar “Zenon” based on spectral measurements. To achieve this goal,
direct destructive lab measurements of nitrogen content (%) of whole plants and indirect spectral
reflectance measurements from three positions on three leaves of the same plant were taken. In both
experiments, growing conditions in the greenhouse were set at 16/8 h day/night cycle with 400–500 µmol
m-2 s-1 and 20/18 ◦C day/night temperature. Plants were seeded in the sand and grown for two weeks.
Afterward, plants were transferred to a modified Hoagland solution [38], which was continuously
aerated and replaced twice a week and contained the following macro- and micronutrients in both
trials: 10.0 mM CL, 7.5 mM Ca, 2.0 mM N, 1.2 mM K, 1.1 mM S, 0.6 mM Mg, 0.2 mM P, and 0.4 mM Fe
(EDTA), 1.0 µM B, 0.5 µM Zn, 2.0 µM Mn, 0.3 µM Cu, 0.04 µM Mo. The concentration of the nutrient
solution was gradually increased from 20% to 100% over seven days. The two experiments varied in
the additional treatment factors added. In the nitrogen trial, different levels of nitrogen nutrition status
were used. In the drought stress trial, different levels of water stress were induced.

2.1.1. Nitrogen Trial

In the nitrogen trial, the nitrogen fertilizer amount, and the growth stage in which the final spectral
measurements took place were varied. For the former, seven different levels of N fertilizer amounts
were used (with 0 mM, 0.25 mM N, 0.50 mM N, 0.75 mM N, 1 mM N, 1.5 mM N, 2.00 mM N) and
applied in four replicates according to a randomized complete block design (Figure 1). This factor
corresponded to the main plot factor. In total, 28 pots were used. Within each pot, five planting
positions existed. At each position, a single plant was planted. A total of 140 plants were planted and
harvested later (Figure 1). As plants were harvested at different growth stages, the growth stage factor
corresponded to the sub-plot factor, as the randomization of the growth stage occurs within the pot.
At harvest, the N content was measured by chemical lab analysis. Additionally, three spectrometer
measurements from each of the last three fully developed leaves were taken directly before the harvest
of each plant. This resulted in a total of 1260 reflectance measurements.

As in trials with different growth stages, the growth stage effect is confounded with either the
planting date or the harvest date, a more complex design using planting dates and harvest dates as
blocking factors were used. More details, a complete field plan, and a detailed description can be
found in the Appendix A.
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Figure 1. Experimental design of the nitrogen fertilizer trial. I–VII represents the pots of the
corresponding nitrogen levels (0 mM N–2.0 mM N).

2.1.2. Drought Stress Trial

To apply drought stress to the hydroponic trials, four levels of polyethylene glycol (PEG 6000)
were applied according to a randomized complete block design with three replicates. One replicate
consisted of four pots with four plants per pot. Plants here correspond to repeated measures. All plants
were transferred to the hydroponic solution at the same time. After one week of growing under the
same conditions, the given polyethylene glycol levels (0 g l-1; 36 g l-1; 72 g l-1; 144 g l-1) were applied.
The N concentration was kept constant at 2.00 mM N in all pots. After 23 days, spectrometer reflectance
measurements for each combination of plant, leaf, and position (resulting in 434 measurements) were
taken and harvesting was performed. Plants were then bulked per pot, and N content was determined
for each pot resulting in twelve N content values. This experiment was used to test the effect of drought
stress on spectral reflectance combined with an assumed N deficit due to drought stress. At the highest
drought level, it was not possible to measure the L3 of each plant due to strong leaf rolling. Therefore,
L3 was excluded from the evaluation in this experiment.

2.2. Spectral Reflectance Measurements

Leaf reflectance measurements were conducted using a halogen light source (HL-2000-HP-FHSA,
Ocean Optics, Germany) and connected to an integrating sphere (ISP-30-6-R, Ocean Optics, Germany)
to keep the measurement conditions constant. The integrating sphere was connected via bifurcated fiber
(QBIF400-MIXED, Ocean Optics, Germany) to allow simultaneous measurements of two spectrometers
for the wavelength range 200–1025 nm (FLAME-S-XR1-ES, Ocean Optics, Germany) and for the
wavelength range 900–1700 nm (NQ512-1.7, Ocean Optics, Germany) (Figure 2).

Due to a low signal to noise ratio at both ends of the spectrum, there was an effective range of
400–950 nm at a spectral resolution of 0.4 nm for the FLAME-spectrometer and an effective range
of 950–1650 nm at a spectral resolution of 1.5 nm for the NQ512-1.7 spectrometer. The integration
time was adjusted at the white standard (Spectralon WS-1-SL, Ocean Optics, Germany) to ensure
that enough light reached the sensor. It was set to 80%–95% of light saturation and adjusted for both
spectrometers separately and gave the highest signal to noise ratio.
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2.3. Crop Measurements and Harvesting 

Figure 2. Setup scheme for leaf reflectance measurements under controlled conditions. The numbers
indicate the order of leaves 1–3.

Leaf reflectance was calculated as a ratio between the reflected energy of the leaf and the incident
energy of the light source. This incident energy was determined by using the reference measurement
of the white standard.

The measurement was performed by placing the opening of the integrating sphere on the different
leaves and leaf positions (Figure 2). The last fully developed leaf of the main stem was considered as
the youngest leaf (L1) and was measured at three positions: leaf tip (P1), leaf center (P2), leaf base (P3)
(Figure 3). The same procedure was performed for leaf two (L2) and three (L3). Note, the counting of
the leaves always started at the youngest fully developed leaf downwards (Figure 3).
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Figure 3. Scheme of the spectral measurements on the plant. P1–P3 indicates the measurement on the
leaf and L1–L3 indicates the leaf number. Measurements on L2 and L3 were performed in the same
way as indicated for L1.

2.3. Crop Measurements and Harvesting

After the reflectance measurements, the growth stage rating was performed based on the Zadocks
scale [39] for each plant separately. Finally, plants were harvested by cutting off the stem from the
roots. The stem was weighed (3100 S-G, Sartorius AG, Göttingen, Germany ± 0.01 g) and immediately
dried for two days at 60 ◦C in a forced-air drier. After drying, the dry weight of the samples was
determined; samples were ground using a hammer mill (0.5 mm, MM200, Retsch GmbH, Haan,
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Germany). The chemical elementary analysis was performed, using a Vario Macro cube (Elementar
Analysesysteme GmbH, Hanau, Germany) based on the method of Dumas [40].

2.4. Vegetation Indices (VI)

Information on spectral reflection measurements was explored using different VI. From a literature
review, 16 VI (Table 1) with a significant correlation with plant N content or plant water content were
selected and calculated for each leaf and position on each leaf [12,41,42].

Table 1. Common vegetation indices used in this study.

Index Name Formula Reference

BNI Blue nitrogen index R434
(R496+R401) [43]

CropSpec
(

R808
R735 − 1

)
·100 [44]

GNDVI Green normalized difference vegetation index (R750−R550)
(R750+R550) [45]

HVI Hyperspectral vegetation index R750
R700 [29]

NDVI Normalized difference vegetation index (R900−R680)
(R900+R680) [46]

NDWI Normalized difference water index (R860−R1240)
(R860+R1240) [47]

NIRG Near-infrared green ratio R780
R550 [48]

NIRR Near-infrared red ratio R780
R700 [48]

NWI Normalized water index (R970−R900)
(R970+R900) [49]

PRI Photochemical reflectance index (R531−R570)
(R531+R570) [50]

PSRI Plant senescence reflectance index (R680−R500)
(R750) [51]

REIP Red-edge inflection point 700 + 40· (R670+R780)/ 2−R700
R740−R700

[52]

SIPI Structure insensitive pigment index (R800−R445)
(R800+R680) [50]

SR 680 Simple ratio 680 R800
R680 [50]

SR 705 Simple ratio 705 R750
R705 [41]

VARI Visible atmospherically resistant index (R550−R650)
(R550+R650−R470) [53]

2.5. Statistical Analysis (Mixed Model)

Data of the N trial were analyzed by a mixed model approach accounting for the two factors,
nitrogen fertilizer treatment and growth stage, as well as the two blocking factors, the sowing date and
harvest date (for more details of the experimental design see appendix).

The model can be described by:

yijklmn = µ+ τm +ϕn + (τϕ)mn + hi + sj + rk + tkl + eijklmn (1)

where yijklmn is the measured plant N content, µ is the intercept, τm is the fixed effect of the mth N
treatment,ϕn is the fixed effect of the nth growth stage, and (τϕ)mn the corresponding fixed interaction
effect. hi is the random block effect of the ith harvesting date, sj is the random block effect of the jth
sowing date, rk is the fixed effect of the kth replicate, and tkl is the random effect of the lth pot or main
plot within the kth replicate. eijklmn is the error of observation yijklmn.

The model for the drought trial is similar but does not include block effects. Furthermore, only
the drought stress was evaluated as an influencing variable. Thus, the model simplifies to

yklo = µ+ rk + tkl + ρo + eklo (2)

where ρo corresponds to the oth drought stress level. In both models, VI’s were added as a covariate
for each of the nine combinations of leaf and position. As 16 VI were used, a total of 144 models each
including different covariates were fitted. For all models, the error variance was estimated and used as
evaluation criteria. It was assumed that a covariable, which correlates well with plant N content will
reduce the error variance.
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Error variances were stored and further analyzed with a generalized linear mixed model approach
assuming a gamma distribution with a log link. The linear predictor was as follows:

µhpq = µ+ lp + pq + (lp)pq + ih (3)

where lp is the effect of the pth leaf, pq is the effect of the qth position, (lp)pq is the interaction effect
of the pth leaf at the qth position, and ih is the effect of the hth VI. The model allows accounting for
overdispersion. If significant Wald tests were found, means were calculated using the inverse link
function. For these means, a letter display was used to present the results of the Fishers LSD test
created on the linked scale. All statistical evaluations were performed in the software environment
SAS 9.4 by using the procedure PROC MIXED and PROC GLIMMIX.

3. Results

3.1. Nitrogen Trial

The chemically determined N content [%] showed significant differences (p < 0.001) and varied
between 0.75% and 4.88% according to the implemented N treatments and growth stages in the N
trial (Figure 4). The analysis of the residual error variance showed significant differences between
leaf numbers and positions on the leaf. No significant differences were observed for the effects of the
tested VI (Table 2; Figure 5). The interactions between leaf number and measurement position were
found to have non-significant differences. Across all VIs, statistically significant lowest residual error
variance was found at M3 and on leaf L1, and L3 (Figure 5). While the average residual error variances
across VI were significantly different, almost no difference in error variance between leaf number and
measurement position for the trait plant N content was observed (Figure 5).
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Table 2. Results of the fixed effects of the statistical analyses of the nitrogen and drought stress trial.
F values were rounded.

Nitrogen trial Drought stress trial

Effect DF F value Pr > F F value Pr > F

VI 15 0.49 0.9432 2.82 <0.0016
Leaf number 2 12.14 <0.0001 1.03 <0.3140

Position 2 4.34 <0.0152 1.84 <0.1657
Leaf number x Position 4 1.26 <0.2913 1.84 <0.1652

DF: degrees of freedom; Pr > F: probability level.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 18 
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Figure 5. Mean residual error variance across VI (vegetation indices) of the nitrogen trial. L1 is
considered the youngest fully developed leaf followed by the second L2 and third youngest leaf L3.
P1 is the spectral reflectance measured at the leaf tip, P2 measured in the middle part of the leaf, and P3
represents the measurement taken at the leaf base of the respective leaf. The bars with the same letters
within the leaves and within the positions show non-significant different residual error variances at
α = 0.05. The dotted line represents the residual error variance value without VI.

3.2. Drought Trial

Considering the drought trial (Table 2; Figure 6) where chemically determined N content varied
due to the drought stress between 2.55% and 4.46%, the error variances showed significant differences
(p < 0.05) only for VI and not for leaf number, position, and leaf number x position. Comparing the
significance of different VI in the drought trial (Figure 6), the difference between PSRI, CropSpec, and
BNI, indicated the highest mean residual error variance for PSRI, while BNI showed the lowest mean
residual error variance.
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Figure 6. Different residual error variance for all used VI in the drought stress trial. The letters
represent different significance groups. Indices with the same letters are not statistically different
at a significance level of 0.05. The dotted line represents the residual value without using spectral
reflectance measurements.

4. Discussion

This study evaluated the effect of a total of nine (three-leaf layers and three positions on each leaf)
spectral reflection measurements on the prediction of N content (%) in wheat plants. To predict N
content, spectral reflection measurements were used to calculate a range of published VI. Note that
the aim of this study was not to optimize existing VIs, but rather to compare the nine input spectral
reflection datasets and thus the impact of the leaf layer and measurement position on the accuracy of
N prediction. Due to easy access and the common use of VIs in scientific and applied work [12,41,42],
a range of 16 VI already published were used here. Note that each VI only used a few wavelengths.
Thus, only a part of the information within the spectral reflection measurements was explored. More
information can be explored when using a stepwise multiple linear regression (SMLR) and other
full-spectral methods like partial least squares (PLS) [54]. These methods were tested in this study and
came up with similar results as the ones presented in this paper.

Furthermore, other approaches can be used, like ridge regression [55] and neural networks [56,57],
which can handle collinearity in regressions. Collinearity is common in spectral reflection data as
wavelengths are measured within a narrow grid. All these alternative approaches can increase the
predictability of absolute N content in plants. It was assumed that changes in absolute precision
will not affect the ranking of the nine spectral reflection input measurements. This assumption was
supported by results using a multiple regression approach and PLS on our data. Data are not shown
here to avoid redirecting the focus of the manuscript from comparing the nine spectral reflection
measurements to comparing approaches to convert wavelength measures into an N content prediction.
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4.1. Leaf Number and Leaf Position

Spectral reflectance is used to detect differences in N content in plants non-destructively and to
reveal the given heterogeneity in plant N supply within a field [58]. As the aim of this study was
to predict plant N content within a field [42], e.g., for applying the right amount of fertilizer, effects
of N level, growth stage, and drought were included in the statistical models. Thus, the statistical
models can predict different N contents in plants within similar treatments averaged across these
treatments. When dropping these treatment effects from the models, indices may explain well the
difference between a trait (e.g., drought stress levels) not causally correlated with plant N. Note that
VI explained more variance, if the treatment effect is excluded from the model. This was tested but
not shown.

Considering the mixed model for all measurements in the N trial, a statistically significant higher
mean residual error variance was given for L2 (Figure 5). Regarding the measurement position,
a statistically significant lower value was given for the leaf base in the N trial, but differences were small.
While differences were significant, they were not relevant, which was supported by the low differences
between the significance groups (Figure 5). This conclusion was also reinforced by the drought
stress trial, where no statistically significant difference between the leaf number and measurement
position was shown. Different drought stress levels led to significantly different plant N contents.
Gonzalez-Dugo et al. [59] also reported lower N contents for sunflower (Helianthus annuus. L) due to
drought stress, based on the results of Alvarez de Toro [60]. They also showed plant N content under
drought stress is dependent on the applied N. Low N application leads to a low change in plant N
content, while high N application leads to a stronger plant N content reduction under drought stress.
The wheat plants in this trial were cultivated under sufficient N supply, which can be seen as feasible
to have significant differences between drought stress treatments.

To predict N content in wheat plants based on spectral measurements, reflectance can be measured
at all positions on a leaf, at all leaves across different N treatments at different growth stages, as well as
under drought stress.

4.2. Vegetation Indices and Wavelength

Regarding the residual error variance for all VI, significant differences were only determined in
the drought trial for BNI (Figure 6). All other VI had no significant difference, especially the developed
VI for water stress NDWI and NWI. In this trial, there was a reduction in plant N content due to
drought stress observed, which was also reported by He and Dijkstra [61]. Therefore, these VI were
used for the estimation of plant N under water-limited conditions. However, originally they have been
developed for the estimation of water limitations in plants. In contrast, the BNI, which was developed
for the estimation of plant N content showed the lowest residual error variance and seemed to be
suitable for estimation of plant N content under water-limited conditions.

The BNI was the only VI out of 16 VI that used wavelengths from the blue part of the spectra.
Tian et al., [43] successfully developed and tested this VI for estimation of leaf N canopy content in
rice (Oryza sativa L.) and showed a linear relationship with canopy N content. Schlemmer et al. [62]
tested different N levels in combination with drought stress in corn (Zea mays L.). They showed a weak
influence of the reflectance spectrum under drought stress between 400 and 500 nm, if the plants were
cultivated under sufficient N level. This could be the reason for the statistically lower residual error
variance in the drought stress trial for all leaves and positions for BNI.

It is also important to mention that the selection criteria for the 16 VI used were based on
literature, where VI were tested successfully for the determination of plant N content and drought
stress [12,41,42,63,64].
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This ensured that a broad range of different VI developed for N content and drought stress
were tested, conceding, however, that there is a long list of VI that were not tested in the current
study [32,49,65]. While we found no differences between VI in the N trial, we cannot preclude that
there are no differences between VI at all. The drought stress showed the only significance for BNI,
which means all VI except BNI performed in a similar way. The use of different VI sharing similar or
identical wavelength ranges can be considered as not statistically independent. This can lead to the
distortion of statistical results. Normally a broad range of VI focus on the red edge of the spectrum [66]
leading to multiple uses of these wavelengths for calculation of various VI.

Several researchers evaluated the whole spectrum instead of using VI e.g., for plant disease
detection [67] or canopy chlorophyll content [54]. These methods seem to be useful for further research
where launches of hyperspectral satellite sensors are planned (e.g., EnMap, PRISMA) providing
higher spectral resolution [68,69]. Other sensors like the Chinese HJ-1A [70] and the Indian Micro
Satellite-1 (IMS-1) [71] also provide hyperspectral data, however, there is limited access for international
scientists [69].

However current sensors including free available satellite images are normally limited to several
wavelengths [72,73] and do not collect the whole spectrum in a spectral resolution like a spectrometer.
This is mainly related to well tested and known VI’s for the determination of N as well as a cost issue
of the sensor and the necessary data processing to generate a final fertilizer recommendation. Using
a spectrometer with a high spectral resolution, calculating existing VI’s for nitrogen-based on the
wavelength ranges seems to be a straight forward procedure to address if the differentiation between
leaf and leaf positions based on existing VI’s would be required.

4.3. Further Measurement Technologies, Limitations, and Future Applications

Hoel and Solhaug [74] tested the change of SPAD chlorophyll readings under shaded and fully
illuminated conditions in wheat. Low changes were reported between shading and full illumination.
This supports our finding of low differences between the three measured leaf layers, where L2 and
L3 were shaded by L1. In comparison to spectrometer measurements, SPAD readings are limited to
two wavelengths at 640 nm and 940 nm and are based on the principle of transmission of light [12].
Spectrometer readings, in contrast, focus on the reflectance of light. Comparisons of reflectance and
SPAD values showed positive correlations for chlorophyll content, which also correlates very well
with N content depending on different growth stages [75]. SPAD readings are contact measurements
and not suitable for remote sensing applications [12].

Measuring leaf reflectance without separation of different leaves on canopy scale generally
includes information of LAI, chlorophyll content or changes in plant morphology [76,77]. These lead to
non-linear effects in the obtained sensor data and are not separated in commercialized products, which
results in an overall mean N content [77]. Measuring at the canopy scale includes mixed information
also from other parts of the plant like stem or leaf orientation [76], an aspect which was not considered
in this study. It is also feasible, that differentiation between leaf layers is necessary under other nutrition
deficiencies like sulfur, phosphorus, or potassium. Shaw and Royle [78] reported that early infection of
lower leaf layers with Septoria tritici blotch (Zymoseptoria tritici D.) can make it necessary to differentiate
between different leaves under leaf disease infections and has to be tested in further studies.

Currently, developed sensors are working on the canopy level and are not considering individual
leaves or different positions on the leaf [79,80]. Nevertheless, we think, all these sensors require
a minimum of spatial resolution in order to delineate the given within-field variability of plant N
content on the farmer’s practical scale (e.g., the width of sprayer bow). Hence, sensors for N fertilizer
application in PF can only be useful if the spatial resolution of the sensor matches the N application size,
which is determined by the fertilizer application technique. This has to be considered especially for
satellite sensors, where spatial resolution ranges from 10–60 m [15]. Based on this study, differentiation
between different leaf layers for the determination of N content can be seen as less relevant, which
indicates valid measurements at the canopy scale.
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5. Conclusions

The results of the study indicated that neither leaf number nor the measurement position on the
leaf had an influence on the determination of plant N content, via spectral reflectance. Significant
lower mean residual error variance (MREV) was found for leaves L1 and L3 and for measurement
position on P3, but the difference of MREV between the leaves was very low and therefore considered
as not relevant. While a broad range of different VI developed for the assessment of N content and
drought stress was tested in this study, it cannot be excluded that there are no differences between VI
at all and differences might exist for VI that were not tested in this study. To transfer the results to
field measurements, it has to be considered that the measurements were taken under fully controlled
lab conditions. Field measurements will be influenced by different effects like the reflection from soil,
stem, or other plant parts, which can lead to weaker performance of spectral reflection measurements
compared to lab conditions. In addition, other stress factors (e.g., diseases, other nutrient deficiencies)
might occur in parallel in the field and interfere with spectral reflectance.
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Appendix A

In the nitrogen trial, 140 plants were planted and harvested (Figures A1 and A2). As seven N
fertilizer treatments were used, each N fertilizer treatment was applied to four pots; each pot contained
five plants. Thus, the fertilizer treatment corresponded to the main plot factor and was allocated to pot
according to the randomized complete block design. Within a pot, plants of different growth stages
were tested. To generate plants of different growth stages, plants can be planted at different times and
measured at a single harvest date or can be planted at the same time, but harvested at different time
points. In both cases, the growth stage effect is confounded with the planting or harvest day. To handle
this confounding, a more complex experimental design was used. The general idea behind this design
was that planting date and harvest date were used as block factors. Within a block, as many growth
stages as possible were measured. In our experiment, six planting dates and two harvest dates were
used. This resulted in measuring plants of the same planting date at two different growth stages and
measuring plants of five growth stages at the same harvest day (Figure A1).

With plants planted at six dates and harvested at two dates, five different growth stages can
be observed. Thus, the design is complete as all growth stages occur in each pot. The experiment
was performed as follows: wheat seeds were seeded at six different sowing dates (three weeks with
two staring dates per week) (Figure A2). Plants from the first sowing date were randomly planted
to one of the positions within each pot of replicate 1 and 2. Thus, 14 plants were planted at the first
planting date. Plants from the second sowing date were seeded randomly to one of the remaining
positions in each pot of replicate 1 + 2, and to one position in replicate 3 + 4. Plants from the third,
fourth, and fifth sowing dates were planted randomly to one of the remaining positions in each pot in
replicate 1–4. Finally, plants from the sixth sowing date were seeded in the remaining positions of
replicate 3 and 4. Note that plants of the first sowing date were 14 or 17 days older (two or two and a
half week), compared to plants of the fifths or sixth sowing date, respectively. Furthermore, replicate 1
and 2 were measured and harvested first (H1) followed by replicates 3 and 4 half a week later (H2).
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Thus, a plant sown at the third date measured at H1 has the same growth stage as a plant sown at the
fourth sowing date and measured at H2 (indicated by the length of arrows in Figure A2).
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Figure A1. Experimental design of the nitrogen fertilizer trial. I–VII represents the pots for the
corresponding nitrogen levels (0 mM N–2.0 mM N). Numbers 28–24 represents the growing days (from
seeding until harvest) of the respective plant.

As mentioned above, the fertilizer treatment corresponded to the main plot factor and was
allocated to pot according to the randomized complete block design. Growth stages were randomized
to plants within a pot and thus can be seen as sub-plot factor. The design can be seen as a kind of
split-plot design with two additional block factors (sowing date and harvest date). To model such type
of data, the effects for both treatment factors (N treatment and growth stage) should be separated from
the two blocking factors.
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