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Abstract: Images provided by the ESA Sentinel-2 mission are rapidly becoming the main source of
information for the entire remote sensing community, thanks to their unprecedented combination
of spatial, spectral and temporal resolution, as well as their associated open access policy. Due to a
sensor design trade-off, images are acquired (and delivered) at different spatial resolutions (10, 20 and
60 m) according to specific sets of wavelengths, with only the four visible and near infrared bands
provided at the highest resolution (10 m). Although this is not a limiting factor in general, many
applications seem to emerge in which the resolution enhancement of 20 m bands may be beneficial,
motivating the development of specific super-resolution methods. In this work, we propose to
leverage Convolutional Neural Networks (CNNs) to provide a fast, upscalable method for the
single-sensor fusion of Sentinel-2 (S2) data, whose aim is to provide a 10 m super-resolution of the
original 20 m bands. Experimental results demonstrate that the proposed solution can achieve better
performance with respect to most of the state-of-the-art methods, including other deep learning based
ones with a considerable saving of computational burden.

Keywords: pansharpening; data fusion; convolutional neural network; multi-resolution analysis;
landcover classification

1. Introduction

The twin Sentinel-2 satellites ensure a global World coverage with a revisit time of five days at
the equator, providing a multi-resolution stack composed of 13 spectral bands, between the visible
and short-wave infrared (SWIR), distributed over three resolution levels. Four bands lying between
visible and near-infrared (NIR) are given at the finer resolution of 10 m, while the remaining ones
are provided at 20 (six bands) and 60 (three bands) m, as a result of a trade-off between storage and
transmission bandwidth limitations. The 10 and 20 m bands are commonly employed for land-cover
or water mapping, agriculture or forestry, estimation of biophysical variables, and risk management
(floods, forest fires, subsidence, and landslide), while lower resolution 60 m bands can be used for
monitoring of water vapor, aerosol corrections, pollution monitoring, cirrus clouds estimation and
so forth [1,2]. Specifically, beyond land-cover classification, S2 images can be useful in such diverse
applications as the prediction of growing stock volume in forest ecosystems [3], the estimation of the
Leaf Area Index (LAI) [4,5], the retrieval of canopy chlorophyll content [6], the mapping of the extent
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of glaciers [7], the water quality monitoring [8], the classification of crop or tree species [9], and the
built-up areas detection [10].

In light of its free availability, world-wide coverage, revisit frequency and, not least, its above
remarked wide applicability, several research teams have proposed solutions to super-resolve
Sentinel-2 images, rising 20 m and/or 60 m bands up to 10 m resolution. Besides, several works testify
the advantage of using super-resolved S2 images in several applications such as water mapping [11],
fire detection [12], urban mapping [13], and vegetation monitoring [14].

According to the taxonomy suggested by Lanaras et al. [2] resolution enhancement techniques
can be gathered in three main groups: (i) pansharpening and related adaptations; (ii) imaging model
inversion; and (iii) machine learning. In addition to these category, it is also worth mentioning the
matrix factorization approaches (e.g., [15,16]), which are more suited to the fusion of low resolution
hyperspectral images with high resolution multispectral ones. In fact, the spectral variability becomes a
serious concern to be handled carefully by means of unmixing oriented methodologies [17,18]. The first
category refers to the classical pansharpening, where the super-resolution of low-resolution bands is
achieved by injecting spatial information from a single spectrally-overlapping higher-resolution band.
This is the case for many remote sensing systems such as Ikonos, QuickBird, GeoEye, WorldView,
and so forth. The so-called component substitution methods [19,20], the multi-resolution analysis
approaches [21,22], or other energy minimization methods [23–25] belong to this category. A recent
survey on pansharpening can be found in [26]. Pansharpening methods can also be extended to
Sentinel-2 images in different ways, although S2 bands at different resolutions present a weak or
negligible spectral overlap, as shown by several works [27–31].

The second group refers to methods that face the super-resolution as an inverse problem under the
hypothesis of known imaging model. The ill-posedness is therefore addressed by means of additional
regularization constraints encoded in a Bayesian or a variational framework. Brodu’s super-resolution
method [32] separates band-dependent from cross-band spectral information, ensuring the consistency
of the “geometry of scene elements” while preserving their overall reflectance. Lanaras et al. [33]
adopted an observation model with per-band point spread functions that accounts for convolutional
blur, downsampling, and noise. The regularization consists of two parts, a dimensionality reduction
that implies correlation between the bands, and a spatially varying, contrast-dependent penalization
of the (quadratic) gradients learned from the 10 m bands. In a similar approach, Paris et al. [34]
employed a patch-based regularization that promotes self-similarity of the images. The method
proceeds hierarchically by first sharpening the 20 m bands and then the coarser 60 m ones.

The last category casts machine learning approaches, and notably deep learning (DL) ones, which
have recently gained great attention from the computer vision and signal processing communities
and nearby fields, including remote sensing. In this case, contrarily to the previous categories,
no explicit modeling (neither exact nor approximated) of the relationship between high and low
resolution bands is required, since it is directly learned from data. Deep networks allow in principle
to mimic very complex nonlinear relationships provided that enough training data are available.
In this regard, it is also worth recalling that the pansharpening of multi-resolution images is somewhat
related to the unmixing of multi-/hyper-spectral images [17,18], since in both cases the general
aim is to derive the different spectral responses covered by a single, spatially coarse observation.
However, more specifically, in these two problems, expectations are considerably different: spectral
unmixing is a pertinent solution when the interest is focused on surface materials, hence requiring
high precision on the retrieval of the corresponding spectral responses without the need to improve
their spatial localization. In pansharpening, the focus is mainly on spatial resolution enhancement
while preserving at most the spectral properties of the sources, and no specific information discovery
about the radiometry of materials is typically expected. In fact, traditional pansharpening methods
try to model spectral diversity, for example, by means of the modulation transfer function of the
sensor [21,22], instead of using radiative transfer models associated to the possible land covers. In any
case, from the deep learning perspective, it makes little difference once the goal is fixed and, more
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importantly, a sufficiently rich training dataset is provided, as the knowledge (model parameters) will
come from experience (data). To the best of our knowledge, the first notable example of DL applied
to the super-resolution of remote sensing images is the pansharpening convolutional neural network
(PNN) proposed by Masi et al. [35], which has been recently upgraded [36] with the introduction
of a residual learning block and a fine-tuning stage for target adaptivity and cross-sensor usage.
Another residual network for pansharpening (PanNet) is proposed in [37]. However, none of these
methods can be applied to S2 images without some architectural network adaptation and retraining.
Examples of convolutional networks conceived for Sentinel-2 are instead proposed in [2,11]. In [11],
the super-resolution was limited to the SWIR 20 m band, as the actual goal was water mapping by
means of the modified normalized difference water index (MNDWI), for which green and SWIR bands
were requested. Lanaras et al. [2], instead, collected a very large training dataset which has been used
to train two much deeper super-resolution networks, one for the 20 m subset of bands and the other
for the remaining 60 m bands, achieving state-of-the-art results. In related problems, for example the
single-image super-resolution of natural images or other more complex vision tasks such as object
recognition or instance segmentation, thanks to the knowledge hidden in huge and shared training
databases, deep learning has shown really impressive results compared to model-based approaches.
Data sharing has represented a key enabling factor in these cases allowing researchers to compete
with each other or reproduce others’ models. In light of this consideration, we believe that Sentinel-2 is
a very interesting case because of the free access to data that can serve as playground for a larger scale
research activity on remote sensing super-resolution or other tasks. In the same spirit, Lanaras et al. [2]
pushed on the power of the data by collecting a relatively large dataset to get good generalization
properties. On the other hand, complexity is also an issue that end users care about. In this regard,
the challenge of our contribute is to design and train a relatively small and flexible network capable of
achieving competitive results at a reduced cost on the super-resolution of the 20 m S2 bands, exploiting
spatial information from the higher-resolution 10 m S2/VNIR bands. Indeed, the proposed network
being lightweight, apart from enabling the use of the method on cheaper hardware, allows quickly
fine-tuning it when the target data are misaligned from the training data for some reason. The proposed
method for Fast Upscaling of SEntinel-2 (FUSE) images is an evolution of the proof-of-concept work
presented in [38]. In particular, the major improvements with respect to the method in [38] reside in
the following changes:

a. Architectural improvements with the introduction of an additional convolutional layer.
b. The definition of a new loss function which accounts for both spectral and structural consistency.
c. An extensive experimental evaluation using diverse datasets for testing that confirms the

generalization capabilities of the proposed approach.

The rest of the paper is organized as follows. In Section 2, we describe datasets and proposed
method. Evaluation metrics, comparative solutions and experimental results are then gathered in
Section 3. Insights about the performance of the proposed solution and related future perspectives are
given in Section 4. Finally, Section 5 provides concluding remarks.

2. Materials and Methods

The development of a deep learning super-resolution method suited for a given remote sensing
imagery involves at least three key steps, with some iterations among them:

a. Selection/generation of a suitable dataset for training, validation and test;
b. Design and implementation of one or more DL models;
c. Training and validation of the models (b) using the selected dataset (a).

By following this rationale, for ease of presentation, in this section, we first present the datasets
and their preprocessing (a), then we describe design (b) and training (c) of the proposed model.
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2.1. Datasets and Labels Generation

Regardless of its complexity and capacity, a target deep learning model remains a data-driven
machinery whose ultimate behavior heavily depends on the training dataset, notably on its
representativeness of real-world cases. Hence, we provide here detailed information about our
datasets and their preprocessing.

For the sake of clarity, let us first recall the main characteristics of the 13 spectral bands of
Sentinel-2, gathered in Table 1, and clarify symbols and notations that are used in the following with
the help of Table 2.

Table 1. Sentinel-2 bands. The 10 m bands are highlighted in blue. In red are the six 20 m bands to be
super-resolved. The remaining are 60 m bands.

Bands B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12

Center wavelength [nm] 443 490 560 665 705 740 783 842 865 945 1380 1610 2190
Bandwidth [nm] 20 65 35 30 15 15 20 115 20 20 30 90 180
Spatial resolution [m] 60 10 10 10 20 20 20 10 20 60 60 20 20

Table 2. Notations and symbols.

Symbol Meaning

x Stack of six S2 spectral bands (B5, B6, B7, Bba, B11, B12) to be super-resolved.
z Stack of four high-resolution S2 bands (B2, B3, B4, B8).

xhp, zhp High-pass filtered versions of x and z, respectively.
x̂ Super-resolved version of x.
r Full-resolution reference (also referred to as ground truth or label), usually unavailable.

x, x̂, r generic band of x, x̂, r, respectively.
x̃, x̃, x̃hp Upsampled (via bicubic) versions of x, x, xhp, respectively.

z Single (average) band of z.
x↓, z↓, r↓,... Reduced-resolution domain variables associated with x, z, r,..., respectively. Whenever

unambiguous subscript ↓ will be dropped.

Except for some cases where unsupervised learning strategies can be applied, a sufficiently large
dataset containing input–output examples is usually necessary to to train a deep learning model.
This is also the case for super-resolution or pansharpening. In our case, as we decided to fuse 10 m
bands (z) with 20 m (x) to enhance the resolution of x by a factor of 2 (resolution ratio), which means
that we should have examples of the kind ((x, z); r), being r the desired (super-resolved) output
corresponding to the composite input instance (x, z). In rare cases, one can rely on referenced data,
for example thanks to ad hoc missions to collect full-resolution data to be used as reference, whereas
in most cases referenced samples are unavailable.

Under the latter assumption, many deep learning solutions for super-resolution or pansharpening
have been developed (e.g., [2,11,35,36,39–41]) by means of a proper schedule for generating referenced
training samples from the same no-reference input dataset. It consists of a resolution downgrade
process that each input band undergoes which involves two steps:

(i) band-wise low-pass filtering; and
(ii) uniform R× R spatial subsampling, being R the target super-resolution factor.

This is aimed to shift the problem from the original full-resolution domain to a reduced-resolution
domain. In our case, R = 2 while the two original input components, x and z, will be transformed in
corresponding variables x↓ and z↓, respectively, lying in the reduced-resolution space, with associated
reference r↓ trivially given by r↓ = x. How to filter the several bands before subsampling is an
open question. Lanaras et al. [2] pointed out that with deep learning one does not need to specify
sensor characteristics, for instance, spectral response functions, since sensor properties are implicit
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in the training data. Contrarily, Masi et al. [35] asserted that the resolution scaling should be done
accounting for the sensor Modulation Transfer Function (MTF), in order to generalize properly when
applied at full resolution. Such a position follows the same rationale of the so-called Wald’s protocol,
a procedure commonly used for generating referenced data for objective comparison of pansharpening
methods [26]. Actually, this controversial point cannot be resolved by looking at the performances in
the reduced-resolution space, since a network learns from training data the due relationship whatever
preprocessing has been performed on the input data. On the other hand, in full-resolution domain,
no objective measures can be used because of the lacking referenced test data. In this work we follow
the approach proposed in [35] making use of sensor MTF. The process for the generation of a training
sample is summarized in Figure 1. Each band undergoes a different low-pass filtering, prior to being
downsampled, whose cut-off frequency is related to the sensor MTF characteristics. Additional details
can be found in [42].

band-wise

LPF bank
↓2×2

MTF-based resolution downgrade process

z x = r↓

z↓ x↓

(label)

(input)

Full-resolution domain

Reduced-resolution

domain

Figure 1. Generation of a training sample ((x↓, z↓); r↓) using Wald’s protocol. All images are shown in
false-color RGB using subsets of bands for ease of presentation. Each band is low-lass filtered with a
different cut-off frequency according with the sensor MTF characteristics.

Another rather critical issue is the training dataset selection as it impacts the capability of the
trained models to generalize well on unseen data. In the computer vision domain, a huge effort
has been devoted to the collection of very large datasets in order to support the development of
deep learning solutions for such diverse problems as classification, detection, semantic segmentation,
tracking video and so forth (notable examples are ImageNet and Kitty datasets). Instead, within the
remote sensing domain, there are no examples of datasets which are as large as ImageNet or Kitty.
This is due to several obstacles, among which the cost of the data and the related labeling which
requires domain experts, as well as the data sharing policy usually adopted in the past years by the
remote sensing community. Luckily, for super-resolution, one can at least rely on the above-described
fully-automated resolution downgrading strategy to avoid labeling costs. Due to the scarcity of data,
most deep-learning models for resolution enhancement applied to remote sensing have been trained on
a relatively small dataset, possibly taken from a few large images, from which non-overlapping sets for
training, validation and testing are singled out [35,37,41]. The generalization limits of a pansharpening
model trained on too few data have been stressed in [36], for both cross-image and cross-sensor
scenarios, where a fine-tuning stage has been proposed to cope with the scarcity of data. In particular,
it was shown that, for a relatively small CNN that integrates a residual learning module, a few training
iterations (fine-tuning) on the reduced-resolution version of the target image allow quickly recovering
the performance loss due to the misalignment between training and test sets. For Sentinel-2 imagery,
thanks to the free access guaranteed by the Copernicus program, larger and more representative
datasets can be collected, as done by Lanaras et al. [2], aiming for a roughly even distribution on the
globe and for variety in terms of climate zone, land-cover and biome type. In this study, we opted for a
lighter and flexible solution with a relatively small number of parameters to learn and a (pre-)training
dataset of relatively limited size. This choice is motivated by the experimental observation that in
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actual application the tuning of the parameters is still recommendable even if larger datasets have
been used in training, making appealing lighter solutions that can be quickly tuned if needed.

To be aligned with the work of Lanaras et al. [2], we decided to keep their setting by using
Sentinel-2 data without atmospheric correction (L1C product) for our experiments. For training and
validation, we referred to three scenes (see Figure 2), corresponding to different environmental contexts:
Venice, Rome, and Geba River. In particular, we randomly cropped 18,996 square tiles of size 33 × 33
(at 20 m resolution) from the three selected scenes to be used for training (15,198) and validation (3898).
Besides, we have choosen four more scenes for the purpose of testing, namely Athens, Tokyo, Addis
Abeba, and Sydney, which present different characteristics, hence allowing for a more robust validation
of the proposed model. From such sites, we singled out three 512 × 512 crops at 10 m resolution, for a
total of twelve test samples.

Rome Venice Geba River

Figure 2. Examples of images used for training. (top) RGB-composite images using 10 m bands B4(R),
B3(G) and B2(B), subset of z; and (bottom) corresponding 20 m RGB subset of x, using B5(R), B8a(G)
and B11(B).

2.2. Proposed Method

The proposed solution takes inspiration from two state-of-the-art CNN models for pansharpening,
namely PanNet [37] and the target-adaptive version [36] of PNN [35], both conceived for very high
resolution sensors such as Ikonos or WorldView-2/3. Both methods rely on a residual learning scheme,
while main differences concern loss function, input preprocessing, and overall network backbone
shape and size.

Figure 3 shows the top-level flowchart of the proposed method. As we deal with Sentinel-2 images,
differently from Yang et al. [37] and Scarpa et al. [36], we have 10 input bands, six lower-resolution
ones (x), to be super-resolved, plus four higher-resolution bands (z). Let us preliminarily point out
that we train a single (relatively small) network for each band x to be super-resolved, as represented
at the output in Figure 3. However, the deterministic preprocessing bounded by the dashed box is
a shared part, while the core CNN, with fixed hyper-parameters, changes from one band to another
to be super-resolved. This choice presents two main advantages. The first is that whenever users
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need to super-resolve only a specific band, they can make use of a lighter solution with computational
advantages. The second reason is related to the experimental observation that training separately the
six networks allows reaching the desired loss levels more quickly than using a single wider network.
This feature is particularly desirable if users need to fine-tune the network on their own dataset.
Turning back to the workflow, observe that both input subsets, x and z, are high-pass filtered (HPF) as
also done by PanNet. This operation relies on the intuition that the missing details that the network
is asked to recover lie in the high frequency range of the input image. Next, the HPF component
xhp is upsampled (R × R) using a standard bicubic interpolation, yielding x̃hp, in order to match
the size of zhp with which to be concatenated prior to feed the actual CNN. The single-band CNN
output fΦ(x, z) is therefore combined with the upsampled target band x̃ to provide its super-resolved
version x̂ = x̃ + fΦ(x, z). This last combination, obtained through a skip connection that retrieves the
low-resolution content of x̂ directly from the input, is known as residual learning strategy [43], and has
soon became a standard option for deep learning based super-resolution and pansharpening [2,36,37],
as it is proven to speed-up the learning process.

HPF ↑2×2

HPF

↑2×2

Batch Norm.

Layer

Convolutional

Layer

+

z

x

zhp

x̃hp

x̃

fΦ(x, z) x̂

Figure 3. Top-level workflow for the super-resolution of any 20 m band of Sentinel-2. The dashed box
gathers the shared processin,g which is the same for all predictors.

The CNN architecture is more similar to the pansharpening models [35,36] than to PanNet [37],
making use of just four convolutional layers, whereas PanNet uses ten layers, each singling out
32 features (except for the output layer). Moreover, a batch normalization layer operating on the input
stack precedes the convolutional ones. This has proven to make the learning process robust with respect
to the statistical fluctuations of the training dataset [44]. In Table 3, the network hyper-parameters of
the convolutional layers are summarized.

Table 3. Hyper-parameters of the convolutional layers for the proposed CNN model.

ConvLayer 1 ConvLayer 2 ConvLayer 3 ConvLayer 4

Input Channels 10 48 32 32
Spatial Support 3 × 3 3 × 3 3 × 3 3 × 3
Output Channels 48 32 32 1
Activation ReLU ReLU ReLU tanh

Training

Once the training dataset and model are fixed, a suitable loss function to be minimized needs to be
defined in order for the learning process to take place. L2 or L1 norms are typical choices [2,35,36,38,39]
due to their simplicity and robustness, with the latter being probably more effective to speed-up the
training, as observed in [2,36]. However, these measures do not account for structural consistency
as they are computed on a pixel-wise basis and, therefore, assess only spectral dissimilarity. To cope
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with this limitation, an option is to resort to a so-called perceptual loss [45], which is an indirect
error measurement performed in a suitable feature space generated with a dedicated CNN. In [37],
structural consistency is enforced by working directly on detail (HPF) bands. In the proposed solution,
in addition to the use HPF components, we also define a combined loss that explicitly accounts for
spectral and structural consistency. In particular, inspired by the variational approach [46], we make
use of the following loss function:

L = λ1LSpec + λ2LStruct + λ3LReg (1)

where three terms, corresponding to fidelity, or spectral consistency (LSpec), structural consistency
(LStruct) and regularity (LReg), are linearly combined. The weights were tuned experimentally using
the validation set as λ1 = 1, λ2 = 0.1, and λ3 = 0.01.

By following the intuition proposed in [2,36], we decided to base the fidelity term on the L1 norm,
that is

LSpec = E
{∥∥x̂↓ − r↓

∥∥
1

}

= E
{∥∥ fΦ(x↓, z↓) + x̃↓ − r↓

∥∥
1

}

where the expectation E{·} is estimated on the reduced-resolution training minibatches during the
gradient descent procedure. fΦ(·) stands for the CNN function (including preprocessing) whose
parameters to learn are collectively indicated with Φ. This loss term, as well as the other two, refers
to a single band (x↓) super-resolution whose ground-truth is r↓ = x. As the training is performed in
the reduced-resolution domain, in the reminder on this section, we drop the subscript ↓ for the sake
of simplicity.

The structural consistency term is given by

LStruct = E

{
4

∑
i=1
‖Gi(x̂− r)‖1/2

}
,

where the operator G = (G1, . . . , G4) generalizes the gradient operator including derivatives in
the diagonal directions that help to improve quality, as shown in [46]. It has been shown that the
gradient distribution for real-world images is better fit with a heavy-tailed distribution such as a
hyper-Laplacian (p(x) ∝ e−k|x|p , 0 < p < 1). Accordingly, we make use of a Lp-norm with p = 1/2,
which we believe can be more effective [46]. This term penalizes discontinuities in the super-resolved
band x̂ if they do not occur, with the same orientation, in the panchromatic band. As the dynamics
of these discontinuities are different, an additional prior regularization term that penalizes the total
variation of x̂ helps to avoid unstable behaviors:

LReg = E {‖∇x̂‖1} = E {‖∇ fΦ(x, z) +∇x̃‖1} .

Eventually, the network parameters were (pre-)trained by means of the Adaptive Moment
Estimation (ADAM) optimization algorithm [47] applied to the above-defined overall loss
(Equation (1)). In particular, we have set the ADAM default hyper-parameters, which are learning rate,
η = 0.002, and decay rate of the first and second moments, β1 = 0.9 and β2 = 0.999, respectively [48].
The training was run for 200 epochs, being an epoch a single pass over all minibatches (118) in which
the training set has been split, with each minibatch composed of 128 33 × 33 input–output samples.

3. Experimental Results

In this section, after a brief recall of the accuracy evaluation metrics (Section 3.1) and of the
comparative methods (Section 3.2), we provide and discuss numerical and visual results (Section 3.3).
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3.1. Accuracy Metrics

The quality assessment of pansharpening algorithms can be carried out in two frameworks,
with or without ground-truth. Since normally the ground-truth is unavailable, the former context
refers to the application of Wald’s protocol [42], which is the same process used for the generation of
training samples, as described in Section 2.1. Therefore, this evaluation frame, hereinafter referred to
as reference-based, applies in the reduced-resolution domain and allows one to provide objective quality
measurements. Because of the resolution shift (downgrade), the reference-based evaluation approach
has a limited extent and it is therefore custom to complement it with a full-resolution assessment,
referred to as the no-reference one, aimed to give qualitative measurements at full resolution.

In particular, we use the following reference-based metrics:

• Universal Image Quality Index (Q-Index) takes into account three different components:
correlation coefficient, mean luminance distance and contrasts [49].

• Erreur Relative Globale Adimensionnelle de Synthése (ERGAS) measures the overall radiometric
distortion between two images [50].

• Spectral Angle Mapper (SAM) measures the spectral divergence between images by averaging
the pixel-wise angle between spectral signatures [51].

• High-pass Correlation Coefficient (HCC) is the correlation coefficient between the high-pass
filtered components of two compared images [52].

On the other hand, as no-reference metrics, we use the following [26,53]:

• Spectral Distortion (Dλ) measures the spectral distance between the bicubic upscaling of the
image component to be super-resolved, x̃, and its super-resolution, x̂.

• Spatial Distortion (DS) is a measurement of the spatial consistency between the super-resolved
image x̂ and the high-resolution component z.

• Quality No-Reference (QNR) index is a combination of the two above indexes that accounts for
both spatial and spectral distortions.

For further details about the definition of the above metrics, the reader is referred to the
associated articles.

3.2. Compared Methods

We compared our FUSE method with several state-of-the-art solutions. On the one side are
classical approaches for pansharpening, properly generalized to the case of Sentinel-2, such as
the following:

• Generalized Intensity Hue Saturation (GIHS) method [20].
• Brovey transform-based method [54].
• Indusion [55].
• Partial Replacement Adaptive Component Substitution (PRACS) [56].
• A Troús Wavelet Transform-based method (ATWT-M3) [22].
• The High-Pass Filtering (HPF) approach [21].
• Generalized Laplacian Pyramid with High Pass Modulation injection (MTF-GLP-HPM) [57].
• Gram-Schmidt algorithm with Generalized Laplacian Pyramid decomposition (GS2-GLP) [57].

Detailed information about these approaches can be found in the survey work of Vivone et al. [26].
Besides, we also compared with the following deep learning approaches native for Sentinel-2

images, including two ablations of our proposal:

• Our previous CNN-based method (M5) proposed in [11], extended (training from scratch) to all
six 20 m bands.

• The CNN model (DSen2) proposed in [2], which is much deeper than ours and has been trained
on a very large dataset.
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• An enhancement of M5 where High-Pass filtering on the input and other minor changes have
been introduced (HP-M5) [38], which represents a first insight on the improvements proposed in
this work.

• FUSE with only three layers instead of four.
• FUSE trained using the L1 norm without regularization and structural loss terms.

3.3. Numerical and Visual Results

To assess the performance of the proposed method, we collected twelve 512× 512 images (at 10 m
resolution) from four larger images taken over Athens, Adis Abeba, Sydney and Tokyo, respectively,
from which no training or validation samples were extracted.

Numerical figures were computed for all compared methods on each test image. The average
measures over the dataset are gathered in Table 4. Reference-based accuracy indicators shown on
the left-hand side of the table are computed in the reduced-resolution space and provide objective
measurements of the reconstruction error. Overall, we can see that the proposed FUSE method
performs slightly better than DSen2 and outperforms all compared solution on three out of four
indicators. On the other hand, M5 and ATWT-M3 show a slightly better spectral preservation compared
to FUSE according to the Spectral Angle Mapper indicator.

As reduced-resolution data do not fully reproduce statistical fluctuations that may occur in
the full resolution context, a common choice is to complement the low-resolution evaluation with a
full-resolution assessment that, however, does not rely on objective error measurements. In particular,
we resort to three well-established indicators that are usually employed in the pansharpening context:
the spectral and spatial distortions, Dλ and DS, respectively, and their combination, the QNR.
According to these indicators, shown on the right-hand side of Table 4, the proposed method,
again, outperforms the competitors. A slightly better spectral preservation is given by HP-M5, M5
and ATWT-M3.

Table 4. Accuracy assessment of several super-resolution methods. On top are model-based approaches
and DL methods are on the bottom, including the proposed FUSE method.

Reference-Based No-Reference
Method Q HCC ERGAS SAM QNR Dλ DS
(Ideal) (1) (1) (0) (0) (1) (0) (0)

HPF 0.9674 0.6231 3.054 0.0641 0.8119 0.1348 0.0679
Brovey 0.9002 0.6738 4.581 0.0026 0.6717 0.2382 0.1241
MTF_GLP_HPM 0.8560 0.6077 19.82 0.2813 0.7802 0.1678 0.0643
GS2_GLP 0.9759 0.6821 2.613 0.0564 0.8129 0.1367 0.0647
ATWT-M3 0.9573 0.6965 3.009 0.0019 0.8627 0.0947 0.0473
PRACS 0.9767 0.7284 2.274 0.0019 0.8800 0.0847 0.0395
GIHS 0.8622 0.6601 5.336 0.0579 0.6112 0.2999 0.1444
Indusion 0.9582 0.6273 3.314 0.0425 0.8424 0.1311 0.0321

M5 0.9883 0.8432 1.830 0.0019 0.8715 0.0942 0.0389
HP-M5 0.9895 0.8492 1.720 0.0282 0.8779 0.0931 0.0329
DSen2 0.9916 0.8712 1.480 0.0194 0.8684 0.1028 0.0330
FUSE (3 layers) 0.9931 0.8602 1.631 0.0020 0.8521 0.1082 0.0474
FUSE (L1 loss) 0.9930 0.8660 1.681 0.1963 0.8570 0.1081 0.0410
FUSE (full version) 0.9934 0.8830 1.354 0.0184 0.8818 0.1002 0.0203

Let us now look at some sample results starting from the full-resolution context. Figures 4 and
5 show some of the 512 × 512 images used for test, associated with urban and extra-urban contexts,
respectively. For the sake of visualization, we use RGB false-color subsets of z and x. In particular,
we use three out of four bands of z (B2, B3 and B4), and three out of six bands of x (B5, B8a and
B11—see Table 1). The input components z and x̃ are shown on the left and middle columns, while the
super-resolution x̂ obtained with the proposed method is shown on the right.
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Although at a first glance these results look pretty nice, a different observation scale would help
to gain insight the behavior of the compared solutions. Therefore, in Figure 6, we show some zoomed
details with the corresponding super-resolutions using different selected methods. In particular, for the
sake of simplicity, we have restricted the visual inspection to the most representative DL and not DL
approaches according to both reference-based and no-reference indicators reported in Table 4. A careful
inspection reveals that some model-based approaches provide higher detail enhancement compared to
DL methods. However, it remains difficult to appreciate the spectral preservation capability of the
different methods due to the lack of objective references.

z x̃ x̂ – FUSE

Figure 4. Super-resolution of the test images—Urban zones. From top to bottom: Adis Abeba, Tokyo,
Sydney, and Athens. From left to right: High-resolution 10 m input component z, low-resolution 20 m
component x̃ to be super-resolved, and super-resolution x̂ using the FUSE algorithm.
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z x̃ x̂ – FUSE

Figure 5. Super-resolution of the test images—Extra-urban zones. From top to bottom: Adis Abeba,
Tokyo, Sydney, and Athens. From left to right: High-resolution 10 m input component z, low-resolution
20 m component x̃ to be super-resolved, and super-resolution x̂ using the FUSE algorithm.

Actual errors can be visualized in the reduced-resolution domain instead. In Figure 7, we show
in particular a few meaningful details processed in such a domain. For each sample, the composite
input (x̃↓, z↓) is shown in the leftmost column, followed by the reference ground-truth r↓. Then,
Columns 3–7 show a few selected solutions (odd rows) with the corresponding error maps (even rows)
obtained as difference between the super-resolved image and the reference, x̂↓ − r↓. As it can be
seen, the DL methods perform pretty well in comparison with model based approaches as the error
map is nearly constant gray, whereas for PRACS and ATWT-M3 visible piece-wise color shifts are
introduced. This observation does not contrast with the good values of SAM obtained by PRACS,
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since this indicator accounts for the relative color/band proportions but not for their absolute intensity
(some “colorful” error maps in Figure 7 are partially due to the band-wise histogram stretching used
for the sake of visualization). Overall, by looking at both numerical accuracy indicators and visual
results, in both reduced- and full-resolution contexts, the proposed method provides state-of-the-art
results on our datasets, as does DSen2.

z x̃ PRACS ATWT-M3 HP-M5 DSen2 FUSE

Figure 6. Full-resolution results for selected details. For each detail (row) from left to right are shown the
two input components to be fused, followed by the corresponding fusions obtained by compared methods.
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x̃↓ r↓ = x (GT) PRACS ATWT-M3 HP-M5 DSen2 FUSE

z↓ Error maps: x̂↓ − r↓

x̃↓ r↓ = x (GT) PRACS ATWT-M3 HP-M5 DSen2 FUSE

z↓ Error maps: x̂↓ − r↓

x̃↓ r↓ = x (GT) PRACS ATWT-M3 HP-M5 DSen2 FUSE

z↓ Error maps: x̂↓ − r↓

Figure 7. Reduced-resolution samples. Bottom images (Columns 3–7) show the difference with the
ground-truth (GT).

4. Discussion

To assess the impact of the proposed changes with respect to the baseline HP-M5, an additional
convolutional layer and a composite loss that adds a regularization term and a structural term to
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the basic spectral loss (L1-norm), we also carried out an ablation study. In particular, we have the
three-layer scaled version of FUSE and the four-layer version trained without regularization and
structural loss terms. These two solutions are also reported in Table 4. As can be seen, except for the
SAM index, the full version of FUSE outperforms consistently both scaled versions, with remarkable
gains on ERGAS, in the reference-based framework, and on the spatial distortion DS, in the no-reference
context. Focusing on the two ablations, it seems that the use of the composite loss has a relatively
better impact compared to the network depth increase. This is particular evident looking at the
SAM indicator.

The experimental evaluation presented above confirms the great potential of the DL approach in
the context of the data fusion problem at hand, as already seen for pansharpening [35] and single-image
super-resolution of natural images [39] a few years ago. The numerical gap between DL methods
and the others is consistent and confirmed by visual inspection. In particular, we observe that the
use of the additional structural loss term, the most relevant change with respect to our previous
models M5 and HP-M5, allowed us to reach and slightly overcome the accuracy level of DSen2. Beside
accuracy assessment, it is worth focusing on the related computational burden. DL methods, in fact,
are known to be computationally demanding, hence potentially limited for large-scale applicability.
Thus, we focused from the beginning on relatively small CNN models. Indeed, the proposed model
involves about 28K parameters in contrast to DSen2 which has 2M parameters. In Table 5, we gather a
few numbers obtained experimentally on a single GPU Quadro P6000 with 24 GB of memory. For both
the proposed and DSen2, we show the GPU memory load and the computational time for the inference
with respect to the image size.

Table 5. Computational burden of FUSE and DSen2 at test time for different image sizes.

GPU Memory (Time)

Im. Size 512 × 512 512 × 1024 1024 × 1024 1024 × 2048 2048 × 2048

DSen2 6.6 GB (3.4 s) 8.7 GB (4.3 s) 9.2 GB (7.4 s) 17.4 GB (9.8) out of memory
FUSE 391 MB (6×0.45 s) 499 MB (6 × 0.47 s) 707 MB (6 × 0.50 s) 1.1 GB (6 × 0.55 s) 1.9 GB (6 × 0.60 s)

As the proposed model is replicated, with different parameters, for each of the six bands to
be super-resolved, we assume either a sequential GPU usage (as done in the table) or a parallel
implementation, therefore with 6×memory usage but also 6× faster processing. In any case, to have
a rough idea of the different burden, it is sufficient to observe that, by using about one third of the
memory necessary for DSen2 to super-resolve a 512 × 512 image, FUSE can super-resolve a 16× larger
image (2048 × 2048) in the same time slot. In addition, it also has to be considered that, in many
applications, the user may be interested in super-resolving a single band, hence saving additional
computational and/or memory load. Finally, this picture does not consider the less critical training
phase or an eventual fine-tuning stage, which would further highlight the advantage of using a smaller
network. To have a rough idea of this, we recall that, according to Lanaras et al. [2], DSen2 was trained
in about three days on a NVIDIA Titan Xp 12 GB GPU, whereas the training of our model took about
3 h using a Titan X 12 GB.

5. Conclusions

We presented and validated experimentally a new CNN-based super-resolution method for
the 20 m bands of Sentinel-2 images, which blends high-resolution spatial information from the
10 m bands of the same sensor. The proposed network is relatively small compared to other
state-of-the-art CNN-based models, such as DSen2, achieving comparable accuracy levels in both
numerical and subjective visual terms. Overall, it is worth noticing that DL methods overcome
model-based approaches especially in terms of spectral distortion (see Figure 7), which is rather
interesting considering that the two band sets to be fused are only partially overlapped/correlated,
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as can be seen in Table 1. In light of this, it will be interesting to explore in our future work the
extension to 60 m bands of the proposed approach.
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