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Abstract: Craters contain important information on geological history and have been widely used for
dating absolute age and reconstructing impact history. The impact process results in a lot of ejected
fragments and these fragments may form secondary craters. Studies on distinguishing primary
craters from secondary craters are helpful in improving the accuracy of crater dating. However,
previous studies about distinguishing primary craters from secondary craters were either conducted
by manual identification or used approaches mainly concerning crater spatial distribution, which
are time-consuming or have low accuracy. This paper presents a machine learning approach to
distinguish primary craters from secondary craters. First, samples used for training and testing were
identified and unified. The whole dataset contained 1032 primary craters and 4041 secondary craters.
Then, considering the differences between primary and secondary craters, features mainly related
to crater shape, depth, and density were calculated. Finally, a random forest classifier was trained
and tested. This approach showed a favorable performance. The accuracy and F1-score for fivefold
cross-validation were 0.939 and 0.839, respectively. The proposed machine learning approach enables
an automated method of distinguishing primary craters from secondary craters, which results in
better performance.

Keywords: moon; distinguish primary craters from secondary craters; machine learning;
crater characteristics

1. Introduction

The current surface of a terrestrial planet is the result of geologic and geomorphologic processes,
both having a significant effect on the landforms. Experiencing a continuous impact process, the
terrestrial planet surface is covered by myriad craters. These craters contain important information on
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geological history and have been widely used for dating absolute age, analyzing impact distribution,
reconstructing impact history, and so on [1–3]. These applications are usually based on the assumption
that all craters taken into consideration are primary craters produced by asteroids and comets [4,5].
However, the impact process results in a lot of ejected fragments, and these fragments may also form
craters, which are considered secondary craters [6]. There is no doubt that research on distinguishing
between primary and secondary craters is of great importance. On the one hand, it provides an
opportunity to get a more precise geological age through the crater size-frequency distribution (CSFD)
method. Making up a great percentage of small craters [7], secondary craters often lead to considerable
uncertainty in the CSFD method [1,4,8–12]. Distinguishing primary from secondary craters is helpful
in counting primary craters, hence improving the accuracy of crater dating. On the other hand,
identification of primary and secondary craters also has a significant effect on projects concerning
impact distribution, which may suggest diverse rotation. Besides, secondary craters also provide an
approach to understand the impact characteristics of their parent craters.

Researchers have tried to distinguish primary craters from secondary craters, and identifying and
learning the differences in their characteristics is the foundation of all related studies [1,13]. These
differences play an important role in the distinguishing effort. Different from primary craters, some
secondary craters occur in chains or clusters. These secondary craters are easy to identify, and this
difference is the most commonly used one [5,14,15]. In addition, some secondary craters are associated
with a “herringbone” ejecta pattern (V-shaped ridge), which indicates near-simultaneous formation
during ejecta fragment deposition [16]. Oberbeck and Morrison [17] proved that the herringbone
structure associated with lunar secondary craters can be accounted for simply by the interaction of
ejecta plumes of secondary craters formed near one another by nearly simultaneous impact. Moreover,
secondary craters have a more elliptical or irregular shape and are usually shallower than primary
craters with the same diameter [16,18,19]. Researchers also found that primary and secondary craters
also differ in rock size and center mound, which may be useful for distinguishing the two [20–22].

Similar to crater detection, current methods aiming at distinguishing primary craters from
secondary craters include manual and automatic techniques. Compared with the great progress made
in automatic crater detection, however, manual identification is still the method used in the most
recent works related to distinguishing primary craters from secondary craters [1,23–26], and very few
works have tried to develop a useful automatic approach [5,10,27–30]. Distinguishing primary craters
from secondary craters manually can give accurate results, but it requires a lot of time and expert
knowledge. It is difficult to deal with large regions, and studies need to be repeated several times.
As mentioned above, differences between primary and secondary craters are related to crater shape,
depth, and density. Automatic methods of distinguishing primary craters from secondary craters are
usually rule-based methods and have considered different features used for classification. According
to the used classification basis, automatic methods can be divided into two types: those that only
consider crater density and those that consider multiple aspects of the differences between primary
and secondary craters. Among the few works related to distinguishing primary from secondary
craters, most of them took crater density as the only basis, and proposed rule-based methods related
to clustering.

Applying methods related to clustering to distinguish primary from secondary craters was first
proposed by Bierhaus [5]. To estimate the primary crater population, Bierhaus developed a novel
algorithm that removes the strongly clustered (secondary) craters, and the core idea of this method
was calculating the probabilities of nonrandomness by comparing the cluster degree of a certain crater
within the research area with that of a suite of random populations of craters that possess the same
spatial density. This could be calculated using a single-linkage hierarchical clustering algorithm and
Monte Carlo methods. However, in Bierhaus’ method, there existed a problem of converting the
probabilities of nonrandomness into crater types. On the one hand, using this method to distinguish
or remove secondary craters depends largely on the selection of the threshold used to divide the
probabilities of nonrandomness into two types, which is hard to decide and varies from region to
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region. On the other hand, there still have some unclustered secondary craters and clustered primary
craters located near secondary crater clusters. These craters are hard to distinguish by density but
may show great differences in shape or depth. Kreslavsky [30] and Michael [10] also did some studies
on Mars aimed at quantifying the spatial randomness and clustering of craters, and the methods in
these works could also be used to distinguish primary craters from secondary craters. By inspecting
clustering at different scales of crater diameter and introducing features related to crater distance such
as the mean second-closest neighbor distance, the general idea of their works was the same as Bierhaus’.
Honda [29] and Salih [27] proposed similar secondary candidate detection methods by replacing the
single-linkage hierarchical clustering algorithm with Voronoi tessellation. All the methods mentioned
above are based on the differences of spatial distribution patterns between primary and secondary
craters, and are aimed at removing the influence of secondary craters in the CSFD method. The most
important and difficult part of these methods is the selection of the threshold of the probability of
nonrandomness, as the threshold is greatly affected by the research area, candidate crater radius, and
so on, and the setting of a threshold directly affects the performance of these methods. As Bierhaus [5]
pointed out in his work, a certain fraction of spatially random distributions are in fact secondary, so how
to distinguish this part of craters and further improve the precision of distinguishing primary from
secondary craters still needs to be solved. Until recently, researchers began considering using multiple
aspects of differences between primary and secondary craters to distinguish them. Considering that
a secondary crater may occur in a chain or cluster and has an elliptical shape, Wu et al. [28] proposed
an automatic approach for detection. They converted the descriptions of crater chains, crater clusters,
and the differences of crater shape into three criteria, and craters that met any of the criteria would be
regarded as secondary craters. The whole process of parameter calculation and criteria judgment could
be done automatically by a computer. Compared with previous algorithms, the algorithm developed
by Wu et al. considers more characteristics describing differences between primary and secondary
craters, but it needs more thresholds, which may also be difficult to define and will greatly affect the
performance. The difficulty of threshold setting greatly increases the amount of work before running
the algorithm and the uncertainty of results. Though researchers have tried to develop some methods
to automatically distinguish primary craters from secondary craters, the number of similar works is
relatively small and most of them are rule-base methods. There is still a lot of progress to be made in
this field. Except for the weak points mentioned above, most of these works try to present an idea
without providing statistical tests.

A machine learning approach has already been introduced in lunar study, especially in crater
identification and remote sensing image classification [31–37]. Due to the variety of crater structures,
machine learning–based methods usually show more robust performance that rule-based methods [37].
As primary craters also differ from secondary craters in various aspects and cannot be distinguished
according to one aspect, a machine learning–based method may have better performance that the
previous rule-based method too. A machine learning method learns the optimal filters and features based
on a great number of training examples. Compared with previous simple rule-based methods, it could
better imitate and learn the complex judgment rules contained in visual recognition. Also, a machine
learning method has better generalization ability and data adaptability [38]. Besides, a machine learning
method needs fewer predefined thresholds and can give results from a comprehensive perspective.
In the learning phase, features of primary craters and secondary craters are fed into a model to form
a classifier. In the detection phase, the previously trained classifier distinguishes primary and secondary
craters in a new set of candidate craters.

Based on a public crater database [39], this paper presents a machine learning approach to
distinguish primary craters from secondary craters. First, samples used for training and testing were
identified and unified. Then, features good at distinguishing primary craters from secondary craters
were calculated and used as training features. Finally, a random forest classifier was trained and tested.
The training process using different features was conducted several times, from which we selected
a classifier that had the best performance, such as the highest accuracy or sensitivity, and this classifier
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was used for automatic testing in other regions. Compared with previous studies, the approach
developed in this paper is based on machine learning and emphasizes the following two innovations:
(1) this method uses two groups of features to quantify a crater chain or a crater cluster, and (2)
instead of simply focusing on density and using a rule-based method, as in most secondary crater
automatic identification methods, this approach takes features related to shape, depth, and density
into consideration to develop a machine learning-based method, which may improve its performance.

2. Data

2.1. Reference Data

This approach is mainly aimed at distinguishing primary and secondary craters based on an
existing crater database. The lunar crater database used in this research was presented by Robbins [39],
estimated to be a complete census of all craters with diameters larger than 1–2 km. The identification
and feature extraction of training and testing samples are based primarily on the examination of the
following data:

Lunar Reconnaissance Orbiter (LRO) and Kaguya merged digital elevation model (DEM), which
spans 60◦ in latitude and has a resolution of 59 m/pixel [40];

• 1024 pixel per degree Lunar Orbiter Laser Altimeter topography data [41];
• 100 m/pixel Lunar Reconnaissance Orbiter Camera (LROC) wide-angle images [42].

2.2. Sample Data

The precision of the sample inventory greatly affects the reliability of the training classifier, and
the first step of most machine learning–based methods is to prepare a set of positive and negative
samples. One of the most used applications of the proposed method is to help get a more precise
geological age through the CSFD method, and this means that it is important to make sure that craters
identified as primary craters by this method are actual primary craters. Besides, there are usually more
secondary craters than primary craters, and secondary craters account for most small craters. Based on
these two reasons, in this method, primary craters are regarded as positive and secondary craters
are regarded as negative and the number of negative samples is larger than the number of positive
samples. It is commonly accepted that the diameter of the crater needs to be larger than 10 pixels
when identifying and extracting attributes, otherwise the uncertainty resulting from artifacts and data
accuracy may lead to unreliable conclusions [43]. Constrained by the resolution of DEM and remote
sensing images, only craters with a diameter greater than 1 km are taken into consideration.

Though some studies have manually identified secondary craters [1,20,44], their databases only
contain secondary craters and lack primary craters. Head et al. [3] proved that craters with diameters
larger than 20 km are usually primary craters by statistically searching the density of significantly
increased craters (>20 km) in annular zones of the Imbrium Basin and South Pole–Aitken Basin.
Thus, combining existing secondary crater databases and selected craters with diameters larger than
20 km can create a new database that meets the basic demand for distinguishing secondary craters from
primary craters. However, this new database is less representative, as it lacks small primary craters.
A useful way to improve the representativity is adding additional samples to this database. To fully
use previous study results and enhance data accuracy, the research region was set near Orientale Basin,
covering an area centered at the basin and extended out to a radial distance of 6 radius (Figure 1).
Samples used in this paper contain the following parts:

• Primary and secondary craters identified in this research, located within Orientale Basin
(manual identification);

• Secondary craters identified by Guo et al. [1], located within the green circle and outside
Orientale Basin;

• Randomly selected primary craters.
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Figure 1. Sketch map showing the geomorphological setting of the area for machine learning training
and testing. Background map is a hillshade image from Lunar Orbiter Laser Altimeter elevation data.
Dark blue dots mark the crater and crater basin center with names labeled in dark blue. Black circle
depicts the boundary of the Orientale Basin.

To keep data consistency, all the samples were obtained based on or unified with the lunar crater
database published by Robbins [39].

Manual sample identification was conducted within the Orientale Basin. According to the
definition, secondary craters are irregular, shallow, and elongate impact craters formed by fragments.
Secondary and primary craters were distinguished based on the following five criteria, and finally
554 primary craters and 1420 secondary craters were identified:

• Secondary craters occur in chains (lines of regularly spaced rows of three or more with similar sizes)
or clusters of 10 or more [1,14–16,45].

• Secondary craters are associated with a “herringbone” ejecta pattern (V-shaped ridge),
which indicates their near-simultaneous formation during ejecta fragment deposition and points
toward the parent crater [12,16–18,46].

• Secondary craters have an elliptical or irregular shape [15,16].
• Secondary craters show interference features such as septa and mounds [20].
• Secondary craters are usually shallower than primary impact craters with the same

diameter [1,16,18,19].

In addition, 2632 secondary craters identified by Guo et al. [1] were added to the sample inventory.
Guo et al. [1] identified a total of 2728 secondary craters of the Orientale Basin. These craters were
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unified with Robbins’ database and included in this inventory after examination. Only craters with
similar diameters and locations in both databases were used in this study. Taking the total ratio into
consideration, 478 craters with diameters ranging from 20 to 40 km were selected as a supplement.
These craters were used after a careful check and excluded secondary craters. It should be noted that
craters located on ramps were excluded from the catalog, as slope has a great influence on crater
ellipticity and depth-to-diameter ratio. Also, this inventory may not contain the self-secondary craters,
which have circular rims and dispersed spatial distribution.

A total of 5073 craters were identified and used in this study (Table 1). The statistics of the whole
crater inventory are described in Table 2. The diameters of the primary and secondary craters range
from 1.68 to 63.06 km and from 1.18 to 27.74 km, respectively. In order to fully evaluate the accuracy
of the model, the crater inventory was partitioned into three subsets used for training and testing
(Table 2). Craters located in lunar mare may show different characteristics compared with those in
highland, so we allocated mare craters to testing data, aiming at testing whether the classification
approach trained with highland craters can be applied to mare craters. One hundred and fifty-one
craters located in maria regions were selected as Testing Dataset I, and they were obtained by manual
identification and large primary crater selection. To test the performance of the proposed model on
well-accepted data, we further divided the remaining part into two subsets, a training dataset obtained
by all three ways and a testing dataset obtained by combining results from Guo et al. [1] and large
primary craters (Figure 2). Testing Dataset II can be regarded as true data accepted by the public,
and this dataset can minimize the errors caused by our personal identification. The training dataset
contained 606 primary craters and 3037 secondary craters. To avoid overfitting, the portion of the
two classes used for training should be similar. As secondary craters usually make up a large part of
small craters in a certain area, the model performance on a dataset with a biased portion of secondary
craters is much more representative than that on a dataset with a similar portion. A modified fivefold
cross-validation was used in this paper, which ensured that the proportion of the two classes used for
training was similar and that used for testing was different.

Table 1. Statistics of crater inventory.

Parameter
Value

Primary Craters Secondary Craters Craters

Count 1032 4041 5073
Mean 14.77 6.25 7.98

Standard deviation 12.93 4.55 7.89
Minimum 1.18 1.18 1.18

25th percentile 2.31 1.90 2.01
Median 8.50 5.66 5.72

75th percentile 25.80 8.94 10.08
Maximum 63.06 27.74 63.06

Table 2. Classification of crater inventory.

Classification Training Dataset Testing Dataset I Testing Dataset II
2 Sum

Way 1 Primary craters 510 44 0 554
Secondary craters 1331 89 0 1420

Way II Primary craters 0 0 0 0
Secondary craters 1706 0 915 2621

Way III Primary craters 96 18 364 478
Secondary craters 0 0 0 0

Sum
Primary craters 606 62 364 1032

Secondary craters 3037 89 915 4041
Craters 3643 151 1279 5073
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Figure 2. Sketch map showing samples of different datasets. Red points represent samples in the
training dataset, black points show samples in Testing Dataset I, and green points mark samples in
Testing Dataset II. Black circle depicts the boundary of the Orientale Basin. Red and green circles
denote the region at the center of the basin and extending out to a radial distance of 3.5 radius (R) and
6 R, respectively.

The number of primary craters decreases with increased diameter, and the distribution of secondary
craters is the same. However, for primary craters, the number decreases in two intervals, from 1 km
to 20 km and from 20 km to 64 km. This is because we manually added a few large primary craters
(diameter larger 20 km). This inconstant distribution of primary craters does not affect the precision of
the proposed method very much, as these craters are distributed all over the moon surface and the
number in the training area is not so large (Figure 3).
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3. Method

3.1. Overview

Figure 4 presents a flowchart of the machine learning approach. Since secondary craters are
generally elliptical and shallower than primary craters, ellipticity and depth–diameter ratio are mostly
used in distinguishing the two. In order to fully detect and use these differences, we developed a
machine learning approach containing several kinds of features using random forest that needs to be
trained before use. The approach begins extracting features. Then, a training process is conducted.
Finally, each crater is recorded with a number that describes exactly how it can be a primary crater.
Accuracy assessment is conducted with manually labeled results. The pseudocode of the whole
algorithm could be found in Appendix A.
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3.2. Features

To distinguish primary craters from secondary craters, we analyzed features that can be used.
Features such as irregularity and eccentricity describe crater shape and are commonly used to quantify
the differences between primary and secondary craters. Besides, different incident velocities result
in different crater depths, thus features related to crater depth could well express the difference too.
Primary and secondary craters differ not only in their own features but also in density, as the existence
of chains or clusters affects crater density a lot. For this reason, features characteristics by crater density
should also be considered. Samples for this study consist of 32 features, reflecting crater shape, depth,
and density.

3.2.1. Features Related to Crater Shape

Features related to crater shape used in this study include irregularity (Irr), eccentricity (Ecc),
and rim integrity (Ri). Irregularity and eccentricity have proven to be useful in distinguishing primary
craters from secondary craters. Irregularity is usually defined as the ratio of the crater perimeter to
the perimeter of a circle whose area is the same as the crater [47]. For the convenience of calculation,
irregularity in this paper is defined as the difference between the boundary and the fit circle of a certain
crater. In Robbins‘ crater database, a feature named DIAM_CIRC_SD_IMG was calculated and defined
as the standard deviation of kilometers of the fit residuals [39]. Each manual rim point’s distance
from the crater center is calculated and subtracted from the best-fit radius, and this value is the
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standard deviation of those differences [39]. Irregularity used in this study is derived from Robbins
and defined as

Irr =

2
√∑n

i=1(ri−R)2

n
R

, (1)

where R is the radius from a circle fit, ri is the distance between a manual rim point and the crater
center, and n is the number of manual rim points. The closer the irregularity is to 0, the more likely the
crater is a primary crater.

Eccentricity used in this paper is provided by Robbins in his [39]. It is calculated as

Ecc =
2

√(
1−

b2

a2

)
, (2)

where a is the major axis from an ellipse fit and b is the minor axis. The closer the eccentricity is to 1,
the closer the crater shape is to an ellipse, and the more likely the crater is a secondary crater.

Rim integrity (Ri) is an estimation of the fraction of the complete rim that was traced, and can
also be obtained directly from Robbins’ lunar crater database [39]. Though this feature seems to
have no direct relationship to the difference between primary and secondary craters, it implies the
degree of boundary destruction and, further, the accuracy of other features related to the crater rim.
Thus, we consider rim integrity as a feature included in this method.

3.2.2. Features Related to Crater Depth

The selected features in this study related to crater depth include features describing the standard
deviation of rim elevation and depth-to-diameter ratio. Unlike the features mentioned above, features
related to crater depth usually describe craters from a three-dimensional perspective and can be derived
from DEM data. In a depth-to-diameter ratio, diameter refers to the distance from the crater center
to the rim, and depth refers to the difference between the minimum elevation within the crater and
the average rim height [48]. For ease of batch calculation, the calculation of the depth-to-diameter
ratio can be simplified by taking the diameter from a circle fit as the diameter and the difference in
elevation between the average fitted circle height and the deepest point within the crater as depth [2].
This simplified calculation is easy to apply, as the output of most crater databases or crater detection
approaches is a set of circles describing the rim of the crater. However, this simplified calculation also
results in uncertain accuracy of the depth-to-diameter ratio, as the fitted circle and crater rim do not
coincide completely and the rim may be destroyed at different levels. To reduce the uncertainty caused
by the precision of the fitted circle, we further consider calculating the depth-to-diameter ratio based
on an ellipse fit. The standard deviation of the height of the fitted line can also serve as a supplement,
as it represents the height difference caused by the ruined rim.

Features related to crater depth used in this study are the standard deviation of fitted circle height
(STD_dc), the standard deviation of fitted ellipse height (STD_de), the fitted circle depth-to-circle
diameter (dc/D), the fitted ellipse depth-to-ellipse major axis (de/Amaj), and the fitted ellipse
depth-to-ellipse minor axis (de/Amin). It should be noted that the merged LRO and Kaguya DEM spans
60◦ in latitude, thus for craters within that latitude, their features are calculated based on the merged
DEM, and the calculation of features of remaining craters is based on Lunar Orbiter Laser Altimeter
topography data. The standard deviation of a fitted circle/ellipse can be obtained by overlapping DEM
data and is formulated as follows:

STD_dc =
2

√√∑n
i=1

(
hci − hc

)2

nc
, (3)
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STD_de =
2

√√∑n
i=1

(
hei − he

)2

ne
, (4)

where hci represents the DEM value of each pixel falling on the fitted circle; nc represents the number
of these pixels; hc represents the average of hci; hei represents the DEM value of each pixel falling on
the fitted ellipse; ne represents the number of these pixels; and he represents the average of hei.

The fitted circle’s depth-to-circle diameter (dc/D), depth-to-ellipse major axis (de/Amaj),
and depth-to-ellipse minor axis (de/Amin) can be calculated as

dc/D =
hc− hcmin

D
, (5)

de/Amaj =
he− hemin

a
, (6)

de/Amin =
he− hemin

b
, (7)

where hcmin is the minimum value of all DEM pixels falling inside the fitted circle; D is the diameter of
the fitted circle; hemin is the minimum value of all DEM pixels falling inside the fitted ellipse; and a and
b are the major and minor axes of the fitted ellipse, respectively.

3.2.3. Features Related to Crater Density

Features related to crater density are mainly used to describe crater distribution, as special
distribution patterns of secondary craters deviate from the uniform distribution of primary craters.
Here, 24 features belonging to 4 groups are designed to express crater patterns, with 12 features aimed
at describing chains and 12 describing clusters. A secondary crater chain is a line of regularly spaced
rows of 3 or more secondary craters with similar sizes, thus a secondary crater belonging to a chain may
have statistically significant increased density in a certain direction. Based on the above considerations,
we designed 12 features calculating crater number and density in different areas. Features belonging
to chain group I (Chain_I) and chain group II (Chain_II) are defined as follows:

Chain_I = [Ch_I1 , Ch_I2 , Ch_I3 , Ch_I4 , Ch_I5 , Ch_I6], (8)

Ch_Ii = NChsi, (9)

Chain_II = [Ch_II1 , Ch_II2 , Ch_II3 , Ch_II4 , Ch_II5 , Ch_II6], (10)

Ch_IIi =
NChsi
NChi

, (11)

where Ch_Ii and Ch_IIi ( i = 1, 2, 3, 4, 5, 6) represent features consisting of Chain_I and Chain_II,
respectively; NChsi (i = 1, 2, 3, 4, 5, 6) represents the number of craters with similar sizes in the
corresponding region; and NChi (i = 1, 2, 3, 4, 5, 6) represents the number of all craters in the
corresponding region (Figure 5a). For each crater to be identified, the total area used for calculating
Chain_I and Chain_II covers an area beginning at the center and extending out to a radial distance of
6 R (R is the radius of the crater). The extending distance of the counting area is set as 6 R, as a chain
contains at least 3 craters with similar sizes and there may be distance between them. The total area is
further divided into 6 regions in which crater counting is conducted, and the counting result in each
region is regarded as a feature (Figure 5a).

A secondary crater cluster contains 10 or more secondary craters with similar sizes, and a secondary
crater belonging to a cluster may have statistically significant increased density in a certain area. Similar
to the features describing crater chains, we also designed 12 features calculating crater number and
density. Cluster group I (Cluster_I) and cluster group II (Cluster_II) are defined as follows:
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Cluster_I = [Cl_I1 , Cl_I2 , Cl_I3 , Cl_I4 , Cl_I5 , Cl_I6], (12)

Cl_Ii = NClsi, (13)

Cluster_II = [Cl_II1 , Cl_II2 , Cl_II3 , Cl_II4 , Cl_II5 , Cl_II6], (14)

Cl_IIi =
NClsi
NCli

, (15)

where Cl_Ii and Cl_IIi (i = 1, 2, 3, 4, 5, 6) represent features consisting of Cluster_I and Cluster_II,
respectively; NClsi (i = 1, 2, 3, 4, 5, 6) represents the number of craters with similar sizes in the
corresponding region; and NCli (i = 1, 2, 3, 4, 5, 6) represents the number of all craters in the
corresponding region (Figure 5b). For each crater to be identified, the total area used for calculating
Cluster_I and Cluster_II is same as that used for calculating Chain_I. The extending distance of
counting area is set as 6 R, as a crater cluster contains at least 10 craters with similar sizes. The 6 regions
used for crater counting are areas beginning at the center and extending out to different distances.
From Region 1 to Region 6, the extending distance ranges from R to 6 R (Figure 5b). In this paper,
craters with similar sizes means that the variation of their diameters is within 20%, a little smaller than
that set by Wu [28], and all the calculation associated with counting craters is conducted based on
Robbins’ lunar crater database.
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Figure 5. Sketch maps showing corresponding regions used for calculating features related to crater
density related to (a) crater chain and (b) crater cluster. Light red circles represent craters whose features
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Ch_IIi, Cl_Ii, and Cl_IIi. Gray circles show regions at the centers of craters and extended out to a radial
distance of 6 R (R is crater radius).

3.3. Description of Classifiers

Among all the methods in machine learning, the random forest method is thought to have the
advantages of simplicity, high accuracy, and an avoidance of overfitting [49]. In addition, the random
forest classifier is good at processing data of higher dimensions and can calculate the importance of each
feature after the training period. Moreover, the random forest classifier has been applied successfully
in many research fields [50] and has been introduced into study related to geomorphology [51]. Besides,
we conducted a preliminary test of common machine learning classifiers with our samples, including
random forest, support vector machine, and adaptive boosting, and found that among these three,
random forest had the best performance. Thus, the random forest classifier was chosen to form the
proposed algorithm.

Random forest classifier is a combination of tree predictors [49]. The basic idea of random forest
is to combine several weak classifiers (tree predictors) to form a strong classifier (random forest
classifier). The process of combining weak classifiers reduces the impact of a single classifier error,
thus the classification accuracy and stability of the strong classifier can be improved. Decision trees
are the foundation of a random forest. The main components of a decision tree model are nodes and
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branches, and the most important steps in building a model are splitting and stopping [52]. Nodes can
be further divided into root nodes, internal nodes, and lead nodes according to their different locations
in a decision tree. Branches represent chance outcomes or occurrences that emanate from nodes, and
this process can be regarded as splitting parent nodes into child nodes. The splitting process would
be stopped if stopping rules are met, such as tree depth or minimum number of records in a leaf.
Parameters that may influence the performance of a decision tree model include the maximum number
of features used for splitting, the maximum depth of the decision tree, the minimum number of samples
in a leaf node, and the minimum number of samples to split [53,54]. Among all the parameters, the
minimum number of samples to split and the maximum depth of the decision tree are two of the most
important that affect the performance of the model and should be seriously considered when adjusting
parameters [55–57]. A random forest classifier can model a series of different decision tree models, and
each decision tree model would be trained based on its own training samples and features, which are
selected randomly from all of the training samples and features. This is different from the training
process of a traditional decision tree model, as the traditional process uses all of the training samples
and features as input data. The result of a random forest classifier is obtained by calculating the results
of each decision tree, and the mode number among the results is regarded as the result. Figure 6 shows
a random forest classifier model. Except for the parameters affecting the performance of the decision
tree model, the maximum number of decision tree models contained in a random forest model is
another parameter that has a great impact on model performance.
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A modified fivefold cross-validation was used in training process (Figure 7). The usual fivefold
cross-validation means that a dataset is randomly divided into five subsets and each subset is made
a verification set, and the remaining four groups of subset data are used as training sets. In this paper,
we manually added some negative samples to the subset used for testing, which could help test the
performance on a dataset with a biased portion. First, 606 secondary craters in the training dataset
were randomly selected and combined with the 606 primary craters forming the preliminary dataset.
Then, this dataset and the remaining 2431 secondary craters were randomly divided into five subsets.
Each subset combined with a secondary crater subset was made a verification set, and the remaining
four groups of subset data were used as training sets.
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The proposed algorithm was implemented based on the scikit-learn package in Python.
Model parameter adjustment is a necessary process for better model performance. To find the best
parameter settings, we changed the maximum number of decision trees from 100 to 500 in steps of 10,
the maximum number of features used for splitting among the total feature number, base 2 logarithm
of total feature number, and the square root of the total feature number and minimum number of
samples to split from 2 to 10 in steps of 1. The random forest classifier has its best performance when
the maximum number of decision trees is set to 350, the maximum number of features used for splitting
is set to the square root of the total feature number, and the minimum number of samples to split
is set to 2.

A feature selection process was done through recursive feature elimination. The recursive feature
elimination can select the model with best performance for a setting model feature number by building
a model repeatedly. Each round, the feature having worst importance is eliminated and then the
process is repeated on the remaining features until all features are traversed or reach a setting feature
number. With the setting feature number changing from 1 to 32, 32 subsets of features were selected
and each of them was the best feature combination for a given feature number. After testing model
performance, a combination of 29 features was selected as the final features.

3.4. Accuracy Assessment

As an efficient tool, a confusion matrix can describe the relationship between detection results
and true values, show the number of correct and incorrect detections directly, and help calculate other
quantitative criteria. Metrics used to evaluate the goodness of fit for the proposed approach included
sensitivity, precision, accuracy, the F1-score, and the kappa coefficient. They are formulated as follows:
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Sensivity =
TP

TP + FN
, (16)

Precision =
TP

TP + FP
, (17)

Accuracy =
TP + TN

TP + TN + FP + FN
, (18)

F1− score = 2 ∗
Precision× Sensivity
Precision + Sensivity

, (19)

Kappa =
po − pe

1− pe
, (20)

po =
TP + TN

TP + TN + FP + FN
, (21)

pe =
(TP + FP) × (TP + FN) + (TN + FN) × (TN + FP)

(TP + TN + FP + FN)2 , (22)

where TP, representing true positive, is the number of correct positive detections; TN, representing true
negative, is the number of correct negative detections; FN, representing false negative, is the number
of incorrect positive detections; and FP, representing false positive, is the number of incorrect negative
detections. A higher kappa coefficient means better results. The kappa coefficient is 0.6–0.8 and 0.8–1,
representing a substantial and almost perfect agreement between the estimation and observation,
respectively [58].

4. Experimental analysis

4.1. Feature Distribution Analysis

4.1.1. Features Related to Crater Shape

The irregularities of the identified craters are shown in Figure 8 and Table 3. The irregularities of
primary craters range from 0.020 to 0.057, and of secondary craters range from 0.028 to 0.148. About 75%
of primary craters have an irregularity under 0.25, though the max is 0.57. As for secondary craters,
nearly half of them are above 0.25, and 10% above 0.5. Figure 8a,b shows the irregularities of identified
craters using frequency distribution histograms, in which blue represents primary craters and orange
represents secondary craters. These two plots also show that the peaks in the two histograms are
all skewed toward lower irregularities. We calculated the mean irregularities of craters in different
diameter bins (Figure 8c). It is obvious that secondary craters usually have higher mean irregularities
compared with primary craters with similar diameters. Besides, the confidence intervals for the mean
irregularity of primary craters and secondary craters also have different change trends. For craters
with diameters smaller than 5.7 km, the range of confidence interval for mean irregularity of primary
craters is smaller than that of secondary craters. A small number of samples may account for the large
confidence interval of craters with diameters larger than 10 km.

The eccentricities of identified craters are shown in Figure 9 and Table 4. Figure 9a,b shows the
eccentricities of identified craters using frequency distribution histograms, in which blue represents
primary craters and orange represents secondary craters. The eccentricities of primary craters range
from 0.06 to 0.62, and of secondary craters range from 0.07 to 0.94. The mean eccentricity of primary
craters is 0.36, a little smaller than that of secondary craters (Table 4). The eccentricity distributions of
primary and secondary craters are different, which can be seen from the mean and standard deviation,
though they both approximate normal distributions. In general, the peak in the histogram of primary
craters is skewed toward lower eccentricities. Different from primary craters, the peak in the histogram
of secondary craters is skewed toward middle eccentricities. The frequency distribution histogram
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results indicate that craters with eccentricity larger than 0.6 are more likely to be identified as secondary
craters. Figure 9c shows that secondary craters usually have higher mean eccentricities compared
with primary craters with similar diameters, and the eccentricity difference between primary and
secondary craters decreases with increased diameter. It also shows that mean eccentricity decreases
with increased diameter, and this is in agreement with the results of Guo [1].
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Figure 8. Histograms of irregularity distribution of (a) primary craters and (b) secondary craters, and
(c) the relationship between the statistics irregularity and diameter. In (c), the points represent mean
irregularity. Blue lines and points represent primary craters, and orange lines and points represent
secondary craters.

Table 3. Statistics of irregularity.

Parameter
Value

Primary Craters Secondary Craters Craters

Count 1032 4041 5073
Mean 0.020 0.028 0.027

Standard deviation 0.007 0.015 0.014
Minimum 0.005 0.004 0.004

25th percentile 0.015 0.018 0.017
Median 0.019 0.025 0.024

75th percentile 0.025 0.035 0.032
Maximum 0.057 0.148 0.148
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Figure 9. Histograms of eccentricity distribution of (a) primary craters and (b) secondary craters,
and (c) the relationship between the statistics eccentricity and diameter. In (c), points represent mean
eccentricity. Blue lines and points represent primary craters, and orange lines and points represent
secondary craters.
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Table 4. Statistics of eccentricity.

Parameter
Value

Primary Craters Secondary Craters Craters

Count 1032 4041 5073
Mean 0.36 0.46 0.44

Standard deviation 0.10 0.14 0.14
Minimum 0.06 0.07 0.06

25th percentile 0.30 0.37 0.35
Median 0.37 0.46 0.44

75th percentile 0.43 0.56 0.53
Maximum 0.62 0.94 0.94

The rim integrity (Ri) of identified craters is shown in Figure 10 and Table 5. Figure 10a,b shows
the rim integrity of identified craters using frequency distribution histograms, in which blue represents
primary craters and orange represents secondary craters. The mean rim integrity of primary craters is
0.87, a little higher than that of secondary craters (Table 5). The rim integrity distributions of primary
and secondary craters are different, which can be seen from the mean and 75th percentile rim integrity,
though the number of primary and secondary craters increases with increased rim integrity. It can
be seen that the distribution of rim integrity for primary and secondary craters generally shows the
same trends. Yet the frequency distribution histogram of primary craters indicates that nearly half
of them have a rim integrity equal to 1, and only a few have rim integrity smaller than 1. As for
secondary craters, though the peak in the histogram is skewed toward higher rim integrity, with
increased rim integrity, the number of primary craters increases sharply when rim integrity is higher
than 0.7. In other words, in Figure 10b, no significant peak is observed in the interval from 0.7 to 1.
Figure 10c shows that compared with secondary craters, primary craters of the same size usually have
higher rim integrity. A small number of samples may account for the low rim integrity and large
confidence interval of primary craters with diameters larger than 22 km.
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Figure 10. Histograms of rim integrity distribution of (a) primary craters and (b) secondary craters,
and (c) the relationship between the statistics boundary integrity and diameter. In (c), points represent
mean rim boundaries. Blue lines and points represent primary craters and orange lines and points
represent secondary craters.

Table 5. Statistics of boundary integrity.

Parameter
Value

Primary Craters Secondary Craters Craters

Count 1032 4041 5073
Mean 0.87 0.82 0.83

Standard deviation 0.18 0.13 0.15
Minimum 0.14 0.20 0.14

25th percentile 0.80 0.75 0.75
Median 0.98 0.81 0.83

75th percentile 1.00 0.92 1.00
Maximum 1.00 1.00 1.00
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4.1.2. Features Related to Crater Depth

Features related to crater depth used in this study are the standard deviation of fitted circle height
(STD_dc), the standard deviation of fitted ellipse height (STD_de), the fitted circle’s depth-to-diameter
ratio (dc/D), the fitted ellipse’s depth to major axis (de/Amaj), and the fitted ellipse’s depth to minor
axis (de/Amin), shown in Figure 11. Figure 11a,b shows the average standard deviation of fitted circle
height and fitted ellipse. Blue lines and points represent primary craters, and orange lines and points
represent secondary craters. In general, the average STD_dc and STD_de increase with increased crater
diameter, and secondary craters usually have a slightly higher average STD_dc and STD_de compared
with primary craters of the same size. Figure 11c shows the distribution of dc/D with respect to
crater diameter. It indicates that before 20 km, the line of primary craters lies above that of secondary
craters, which means at least the average dc/D of primary craters is higher than that of secondary
craters. However, for craters with diameters larger than 20 km, the mean dc/D of primary craters
declines quickly and seems lower than that of secondary craters. Line diagrams of the difference
between de/Amaj and dc/D of different crater classes as a function of diameter are shown in Figure 11d.
Figure 11e shows the difference between de/Amin and dc/D of different crater classes as a function of
diameter. Both figures show that differences between de/Amaj (de/Amin) and dc/D of primary craters
slowly decline with increased diameter, which show an opposite trend to that of secondary craters.
The differences between de/Amaj (de/Amin) and dc/D of primary craters are usually smaller than those
of secondary craters of the same size, and the diversity between primary and secondary craters enlarges
with increased diameter.
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Figure 11. Relationship between diameter and (a) standard deviation of fitted circle height (STD_dc),
(b) standard deviation of fitted ellipse height (STD_de), (c) fitted circle’s depth-to-diameter ratio (dc/D),
(d) difference between fitted circle’s depth-to-diameter ratio (dc/D) and fitted ellipse depth to major
axis (de/Amaj), (e) difference between fitted circle depth-to-diameter ratio (dc/D) and fitted ellipse
depth to minor axis (de/Amin). Blue lines and points represent primary craters, and orange lines and
points represent secondary craters.

4.1.3. Features Related to Crater Density

According to the definition of a secondary crater chain, a secondary crater belonging to a chain
may have statistically significant increased density in a certain direction, and this means that for



Remote Sens. 2019, 11, 2594 18 of 30

a crater in a chain, the range of its parameters consisting of chain group I (Chain_I) and chain group II
(Chain_II) may be larger than that of a primary crater. The mean range of Chain_I for primary craters
is 1.18, smaller than that of secondary craters (Table 6). A lower range of crater count in different
azimuths means more randomness of crater distribution, thus it less likely to consist of a secondary
crater chain. Figure 12a,b shows the distribution of the range of parameters in Chain_I for different
diameters and crater classes. Figure 12c,d shows the distribution of the range of parameters in Chain_II.
Blue boxes represent primary craters and orange boxes represent secondary craters. For craters with
diameters larger than 10 km, the range of Chain_I of secondary craters is seldom smaller than 1.5,
but for primary craters, nearly 25% have a range larger than 1.5. Compared with primary craters,
the box diagram of secondary craters shows more abnormal values, which means that the ranges
of Chain_I and Chain_II of secondary craters present a more dispersed distribution, and this is also
consistent with our perception.

Table 6. Statistics of the range of Chain_I.

Parameter
Value

Primary Craters Secondary Craters Craters

Count 1032 4041 5073
Mean 1.18 1.84 1.71

Standard deviation 1.24 1.33 1.34
Minimum 0.00 0.00 0.00

25th percentile 0.00 1.00 1.00
Median 1.00 2.00 2.00

75th percentile 2.00 3.00 3.00
Maximum 7.00 9.00 9.00
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Cluster group I (Cluster_I) and cluster group II (Cluster_II) are used to describe the aggregation
level of craters with a similar degree in a given area and can represent the possibility that they make
up a secondary cluster. According to the definition of a secondary crater cluster, a secondary crater
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belonging to a cluster may have statistically significant increased density in a certain area, and this
means that for a crater in a cluster, the standard deviation of its parameters consisting of cluster group
I (Cluster_I) and cluster group II (Cluster_II) may be larger than that of a primary crater. In general,
the standard deviation of Cluster_I of primary craters is smaller than that of secondary craters, with the
former ranging from 0 to 9.29 and the latter ranging from 0 to 10.02 (Table 7). Box diagrams of standard
deviations of Cluster_I and Cluster_II as a function of crater diameter are shown in Figure 13a,b.
Among primary craters, the standard deviation of Cluster_I changes slowly with increased diameter.
For secondary craters, the crater number first keeps stable with increased standard deviation, and then
increases quickly. By contrasting Figure 13a and 13b, we can see that with diameters ranging from
2.8 to 16 km, secondary craters generally have a higher standard deviation of the six parameters in
Cluster_I. Figure 13c,d shows that for craters with diameters smaller than 4 km, the standard deviation
of Cluster_II of primary craters ranges from 0 to 40, while that of secondary craters ranges from 15 to 40.
This can imply that small craters with a standard deviation of vector 2 Cluster_II of more than 15 are
more likely to be primary craters.

Table 7. Statistics of standard deviation for Cluster_I.

Parameter
Value

Primary Craters Secondary Craters Craters

Count 1032 4041 5073
Mean 1.69 2.59 2.40

Standard deviation 1.72 1.86 1.87
Minimum 0.00 0.00 0.00

25th percentile 0.37 1.00 0.76
Median 1.07 2.34 2.11

75th percentile 2.63 3.80 3.64
Maximum 9.29 10.02 10.02
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4.2. Model Validation

Modified fivefold cross-validation on the training dataset was conducted. The performance of
a model is given by the statistical parameters. Figure 14 and Table 8 show the training and fivefold
cross-validation testing results. A comparison of the training and testing metrics indicates a clear
decrease in accuracy and sensitivity, which indicates overfitting of the models with the training data
and that further model validation is necessary. The cross-validation testing dataset has 727 craters,
containing 121 primary and 606 secondary craters. Among all the craters, 115 primary and 568 secondary
craters were identified correctly, 38 secondary craters were wrongly regarded as primary craters,
and 6 primary craters were incorrectly regarded as secondary craters. The evaluation results of the
fivefold cross-validation are listed in Table 8. The results show that the trained model had higher
sensitivity compared by precision (0.950 and 0.752, respectively). This means that through this approach,
most primary craters can be truly predicted but some miscalculation of secondary craters leads to
decreased precision. This may be because nearly five times the number of secondary craters than
primary craters were used in testing. But we think this is in line with the actual situation, as secondary
craters may usually have a larger population than primary craters, especially among small craters.
Additionally, this model had a high kappa coefficient of 0.803, signifying substantial consistency
between prediction and observation. Figure 14 shows the classification results by enlarging three
regions in the cross-validation testing dataset.

Table 8. Statistics of model performance.

Precision Sensitivity Accuracy F1-score Kappa

Training dataset 1 1 1 1 1
Testing dataset 0.752 0.950 0.939 0.839 0.803

The evaluation results of Testing Dataset I are listed in Table 9. Testing dataset I consists of
151 craters, 62 primary and 89 secondary craters. Among all the craters, 55 primary and 82 secondary
craters were identified correctly, 7 primary craters were wrongly regarded as secondary craters,
and 7 secondary craters were mistaken as primary craters (Figure 15). Unlike the results of fivefold
cross-validation, the precision of Testing Dataset I was same as sensitivity. This means that nearly 88%
of craters predicted as primary craters by this approach are actual primary craters. Although there may
be some primary craters mistaken as secondary craters, the accuracy indicates that nearly 90 percent of
craters can be correctly identified, which proves that this approach also performs well in lunar mare.

Table 9. Statistics of Testing Dataset I.

Precision Sensitivity Accuracy F1-score Kappa

Testing Dataset I 0.887 0.887 0.907 0.887 0.808

The evaluation results of Testing Dataset II are listed in Table 10. Testing dataset II has 1280 craters,
364 primary and 915 secondary craters. Among all the craters, 340 primary and 898 secondary
craters were identified correctly, 24 primary craters were wrongly regarded as secondary craters,
and 17 secondary craters were mistaken as primary craters. Figure 16 shows the classification results
by enlarging two regions in Testing Dataset II. The results of this dataset are the best among the three
testing results. Though the kappa coefficients of the three testing datasets were all within the range
of 0.8–1, which indicates almost perfect agreement between estimation and observation, the kappa
coefficient of Testing Dataset II was 0.921, much higher than that of the other two datasets.

Table 10. Statistics of Testing Dataset II.

Precision Sensitivity Accuracy F1-score Kappa

Testing dataset II 0.952 0.934 0.968 0.943 0.921
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Figure 14. Fivefold cross-validation results: (a) sketched map showing locations of regions A, B, and 
C; (b–d) DEM and LROC-WAC (Lunar Reconnaissance Orbiter Camera-wide angle camera) images, 
and classification results for region A; (e–g) DEM and LROC-WAC images, and classification results 
for region B; (h–j) DEM and LROC-WAC images, and classification results for region C. Green points 

Figure 14. Fivefold cross-validation results: (a) sketched map showing locations of regions A, B, and
C; (b–d) DEM and LROC-WAC (Lunar Reconnaissance Orbiter Camera-wide angle camera) images,
and classification results for region A; (e–g) DEM and LROC-WAC images, and classification results
for region B; (h–j) DEM and LROC-WAC images, and classification results for region C. Green points
represent false positive (FP), red points represent false negative (FN), pink points represent true positive
(TP), and blue points represent true negative (TN).
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Figure 15. Testing Dataset I validation results showing classification results by enlarging two regions in
dataset I: (a) sketched map showing locations of Regions A and B; (b–d) DEM and LROC-WAC images,
and classification results for region A; (e–g) DEM and LROC-WAC images, and classification results for
Region B; Green points represent FP, red points represent FN, pink points represent TP, and blue points
represent TN.
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4.3. Feature Sensitivity Analysis

The importance of each feature can be evaluated based on the worsening of the prediction if
the parameter is randomly permuted. The feature importance of each model was calculated during
the training procedure with fivefold cross-validation. Figure 17 shows the importance of the features
according to category. Features related to crater shape, depth, and density are marked in yellow, blue,
and dark pink and dark green, respectively.

Among all features involved in this model, Ch_II4 and Cl_II2 are the two most important.
The importance value of eccentricity is 4.72, nearly double the importance value of irregularity (Irr),
and the importance value of fitted ellipse depth to major axis is 6.89, which is the highest of the three
similar features. This means that compared with fitted circle depth-to-diameter ratio (dc/D) and fitted
ellipse depth to minor axis (de/Amin), fitted ellipse depth to major axis is more useful in distinguishing
primary craters from secondary craters. Besides, by comparing the two groups of features describing
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crater chains, we found that features in Chain_II are generally more important than those in Chain_I.
This may be partly because features in Chain_II are composite indicators that not only contain the
information of features in Chain_I but also include information such as crater diameter and so on.
Moreover, we can conclude that compared with other statistical regions used in calculating features
related to crater clusters, the region beginning at the crater center and extending out to 2 radius is more
suitable for distinguishing primary craters from secondary craters, as its corresponding feature has
a higher importance value.
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4.4. Comparision with Previous Work

A comparison with previous studies could better explain the differences and advantages of the
method proposed in this paper. However, none of the previous works expressed the performance
of their methods in a statistical way. Although the method proposed by Wu et al. was more related
to ours concerning the features involved, it was aimed at detecting secondary craters belonging to
a certain parent crater and some settings of the key thresholds, such as the degree used to define a crater
chain, were not revealed. So here, to contrast the performance of our method with a previous study,
we conducted an experiment in a small region using a traditional rule-based method [29]. The key point
of this method is to calculate the nonrandom degree of craters. By comparing the results of a Voronoi
diagram and the average and standard deviation of ideally random spatial distributions, one can
determine whether a crater is nonrandom with high significance, and craters with a significance of
nonrandomness higher than a certain value could be regarded as secondary craters [29].

The difference between this previous rule-based method and the method in this paper lies in
two aspects. From the feature aspect, this previous rule-based method is only concerned with the
difference in spatial distribution between primary and secondary craters. In this paper, we synthesized
the literature explaining the difference between primary and secondary craters, extracted features
that may be considered when the work is conducted via visual identification, and preliminarily
selected 32 features concerning crater shape, depth, and density. After seriously testing the importance
of these features, a series of 29 features were finally selected as the input features of the classifier.
Although both methods use crater density as a key point to distinguish primary and secondary craters,
the expression of this feature in the two methods is quite different. As we explained in the introduction
section, this previous rule-based method uses the degree of spatial aggregation as the expression of the
difference in crater density realized through a Voronoi diagram. In our method, we describe crater
density in a group of features and the description is based on the definitions of crater chains and
clusters. On the one hand, this expression fails to express the difference of degree in spatial aggregation
between crater chains and clusters and may introduce uncertainty in the detection result, as this method
only uses one threshold. One the other hand, a certain fraction of spatially random distributions are in
fact secondary, and this expression can be used to solve such a situation. In our method, we describe
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a crater chain by counting the number of craters with approximate size in certain directions, counting
the number of craters with approximate size in certain areas. These descriptions can help to better
express the characteristics of crater chains and clusters and convert them to a classifier more accurately.
From the method aspect, the previous method is rule-based and mainly solves this problem from
a statistical perspective. A rule-based method is relatively flexible and easy to understand. It is suitable
for simple questions or questions that have been carefully studied and can be accurately described by
rules. When talking about distinguishing primary and secondary craters, researchers already know
in which aspects their differences exist, and this means that researchers know the objects that rules
should describe. However, most of the thresholds of the rules are unknown. For example, a secondary
crater cluster consists of some clustered craters, and to distinguish them, a rule describing the degree
of clustering should be created, but researchers are unable to quantify the extent to which spatial
aggregation could be considered as a crater cluster. To solve this problem, the method proposed in this
paper is a machine learning–based method. Choosing random forest as the classifier, one can replace
the process of setting thresholds with selecting positive and negative samples. The random forest
classifier can automatically learn the rules hidden in samples through the training process. A rule-based
method is more like a decision tree, and a random forest classifier is a combination of decision trees,
which reduces the impact of single decision tree classifier error and improves the accuracy and stability
of the strong classifier.

Ground truth data are important when assessing the performance of a certain method. Compared
with craters classified by us, a classified crater database proposed by others would be more suitable
and impartial when used for contrast. There are many lunar crater databases, but no database
containing classified secondary and primary craters has been published. Thus, we used part of the
secondary craters in training dataset II identified by Guo [1] as ground truth data and the number of
correctively identified secondary craters as a metric to assess the methods. The area used for comparison
contained 146 identified secondary craters belonging to the Orientale Basin. Using the typical rule-based
method, 66 of them were identified correctly, corresponding with 144 craters identified through the
machine-learning based method. The identification result shows that the proposed method has a better
performance than the typical rule-based method. Two reasons may account for the rule-based model’s
slightly worse performance in this comparison. Based on crater density, the typical rule-based method
has a better performance in the whole testing region, and an assessment on only parts of secondary
craters may be a little biased. The setting of the thresholds also affects the model performance. Though
the performance of the rule-based model may be worse than its ideal one, the identified ratio of the
two models can still prove that the proposed model has a better performance.

5. Conclusions and Discussions

A machine learning approach is proposed for distinguishing primary and secondary craters
automatically and with good performance. The developed approach was evaluated with actual
datasets collected on the moon. The theoretical analysis and experimental validation lead to the
following conclusions:

• The evaluation process was conducted with manually labeled primary and secondary craters.
The whole dataset contains 1032 primary craters and 4041 secondary craters, with 1974 craters
identified for this research, 2621 referenced from other research, and 478 large primary craters selected.

• The proposed machine learning shows favorable performance. The accuracy and F1-score for
fivefold cross-validation were 0.939 and 0.839, respectively, for Testing Dataset I, 0.907 and 0.887,
for Testing Dataset II, 0.968 and 0.943.

• The experimental results of Testing Datasets I and II show that the proposed machine learning
method produces accurate crater classification in other areas. This means that the method has
good generalization ability. Also, as Testing Dataset II consists of secondary craters identified by
other researchers and large primary craters, its good performance shows homogeneity with others.
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There exist great differences between diameters of primary and secondary craters in Testing
Dataset II. The diameter of a primary crater is usually larger than 20 km, but a secondary crater is
usually smaller than 20 km; only 16 craters had a diameter larger than 15 km. The classification result
of Testing Dataset II had higher precision (0.952) and kappa value (0.921) compared with the training
dataset (0.752 and 0.803) and Testing Dataset I (0.887 and 0.808), and this great difference may have led
to the extremely good performance of the model. Though the parameters of the model do not directly
contain diameter, some of them may be greatly affected by diameter, such as parameters in Chain_II,
and the difference in diameter between primary and secondary craters may reduce the difficulty of
differentiation to some degree. However, this does not totally negate the good performance of our
model on Testing Dataset II. This is in part because the model was trained with the training dataset
and there is not a great difference between the diameters of primary and secondary craters, which
means that the trained model did not focus much on distinguishing primary craters from secondary
craters by diameter, but also because the trained model performed well on Testing Dataset I and the
diameters of wrongly identified primary and secondary craters of Testing Dataset II range from 20 km
to 29 km, and from 12 km to 20 km, respectively, both not fully concentrated around 20 km. It should be
noted that the automatic classification process mainly concerns craters smaller than 20 km in diameter,
due to the lack of large secondary samples. The proposed approach is able to detect craters with
diameters larger than 20 km on images; however, the detection rate might be decreased. To improve
accuracy, all craters were projected again before feature extraction, setting the new projection centered
at the crater center. If the approach is only applied in a small region, projection has little effect on the
final classification result. The most time-consuming part of the whole method was feature extraction.
Calculating features for about 5000 craters needs about 2–3 days based on computer performance and
this time could be shorten if the whole process is conducted using GPU or the research region is small
and the process of reprojection could be left out. Except the feature extraction part, all remain processes
could be finished in within 10 minutes.

Researchers have tried to create reliable methods for automatically distinguishing primary
craters from secondary craters [5,10,27,28]. These rule-based methods were either mainly aimed at
detecting secondary crater chains and clusters and failed to distinguish primary craters located within
or near a cluster, or needed a threshold defined before use. The proposed method mainly differs
from previous studies in feature selection and base method, and these two points guarantee the
performance of the proposed method. Primary craters differ from secondary craters in a lot of aspects,
such as depth-to-diameter ratio and irregularity, and manual identification is a process that takes
many parameters into consideration. However, previous studies using parameters related to crater
density failed to consider parameters related to shape and depth. Not considering crater shape or
morphologic features will certainly lead to negative effects on performance and a full consideration
of these differences helps improve the proposed model’s performance. In this paper, we take full
consideration of all features that can be used; those related to crater shape and depth, such as Irr, Ecc,
STD_dc, and dc/D are used together with those related to crater density. A full use of these features
help the proposed method better study the difference between primary and secondary craters and
imitate the process of manual identification. Taking advantage of the random forest classifier also
guarantees the precision of the model. Previous rule-based methods are more like a decision tree,
and a random forest classifier is a combination of decision trees. By combination a serious of decision
trees, a random forest classifier could reduce the impact of single decision tree classifier error and
improve the accuracy and stability. Besides, experts can conclude whether a crater is a primary crater
but cannot give the threshold for distinguishing, and a little difference in setting thresholds may
lead to a great difference in the results. Previous approaches usually needed to define a threshold to
distinguish primary craters from secondary craters. In the proposed method, the threshold setting
is included in the learning process and is done by random forest classifier which can weaken the
influence of improper setting of thresholds.
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Our future work will try to enlarge the sample dataset with more distant secondary craters and
to find primary craters that the identified secondary craters belong to, using a crater degradation
model and the relationship between primary craters and their secondary craters. The proposed
machine learning approach enables an automated method of classifying primary and secondary craters,
which results in better performance.
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Appendix A. Pseudocode of the Whole Algorithm

Input identified positive and negative sample database (target dataset), Robbins’ crater database, DEM
num← the total number of positive and negative samples
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Feature extraction- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
for i← 1 to num

extract circular center longitude, circular center latitude, ellipse center longitude, ellipse center latitude, diameter,
ellipse major axis, ellipse minor axis, ellipse angle, eccentricity and irregularity from database

- - - - - - - - - - - - - - - - - - - - - - - - - -Calculation: features related to crater shape - - - - - - - - - - - - - - - - - - - - - - - - - - - -
irr← irregularity / diameter
- - - - - - - - - - - - - - - - - - - - - - - - - Calculation: features related to crater depth - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
circle← a circle generate according circular center longitude, circular center latitude and diameter
overlay DEM with circle according to their location
circle _polyline← extract value from DEM for every pixel located on circle
circle _polygon← extract value from DEM for every pixel within the circle
std _cl← standard deviation of circle _ polyline
dc/d← (the average of circle _polyline – the minimum of circle _polygon) / diameter
ellipse← generate according ellipse center longitude, ellipse center latitude, ellipse major axis,

ellipse minor axis and ellipse angle
overlay DEM with ellipse according to their location
ellipse _polyline← extract value from DEM for every pixel located on ellipse
ellipse _polygon← extract value from DEM for every pixel within the ellipse
std _el← standard deviation of ellipse _polyline
de/Amaj← (the average of ellipse _polyline – the minimum of ellipse _polygon) / ellipse major axis
de/Amin← (the average of ellipse _polyline – the minimum of ellipse _polygon) / ellipse minor axis
- - - - - - - - - - - - - - - - - - - - - - - -Calculation: features related to crater density - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
radius← diameter / 2
region← a circle generate according circular center longitude, circular center latitude and 6 times radius
degree← 0
rectangle← a rectangle with a width of 1.5 times radius, a length of 6 times radius facing north
for j← 1 to 6

area← the overlap part of region and rectangle
ch _I[j]← the number of crater of similar size in whole crater database located in area
count← the number of crater in whole crater database located in area
ch _II[j]← ch _I[j] / count
rectangle← rectangle rotate 30 degrees clockwise at center
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for j← 1 to 6
area← a circle generate according circular center longitude, circular center latitude and j times radius
cl _I[j]← the number of crater of similar size in whole crater database located in area
count← the number of crater in whole crater database located in area
cl _II[j]← cl _I[j] / count

feature dataset← restore eccentricity, irr, std _cl, std _el, dc /d, de _Amaj, de _Amin, ch _I, ch _II, cl _I, cl _II
Divide feature dataset and target dataset into Training Dataset, Testing Dataset I and Testing Dataset II
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Training Process - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Training Dataset I← positive samples in Training Dataset and the same number of negative samples selected
randomly
Training Dataset II← the rest part of Training Dataset
Classifier← Training: setting parameters, selecting features, modified fivefold cross-validation
Analysis feature importance
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Testing Process- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Test the performance of classifier in Testing Dataset I and Testing Dataset II
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