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Abstract: In the convolutional sparse coding-based image super-resolution problem, the coefficients
of low- and high-resolution images in the same position are assumed to be equivalent, which
enforces an identical structure of low- and high-resolution images. However, in fact the structure of
high-resolution images is much more complicated than that of low-resolution images. In order to
reduce the coupling between low- and high-resolution representations, a semi-coupled convolutional
sparse learning method (SCCSL) is proposed for image super-resolution. The proposed method uses
nonlinear convolution operations as the mapping function between low- and high-resolution features,
and conventional linear mapping can be seen as a special case of the proposed method. Secondly, the
neighborhoods within the filter size are used to calculate the current pixel, improving the flexibility
of our proposed model. In addition, the filter size is adjustable. In order to illustrate the effectiveness
of SCCSL method, we compare it with four state-of-the-art methods of 15 commonly used images.
Experimental results show that this work provides a more flexible and efficient approach for image
super-resolution problem.

Keywords: convolutional sparse learning; image super-resolution; semi-coupled dictionary learning

1. Introduction

Conventional sparse coding [1–3] (SC) formulates a signal by a linear combination of a few atoms
in a redundant dictionary. When processing the high-dimensional image signals, SC-based models
often divide the entire image into local patches and handle them separately since computing on
the entire image requires huge computing resources [4,5]. Although the block-wise SC scheme is
efficient, it is also true that block-wise operation has limited ability of extracting the global features
and thus weakens the continuity of edges and contours, sometimes even blocking artifacts. Under this
circumstance, the convolutional sparse coding (CSC) [6,7], also known as deconvolutional networks, is
put forward to enhance the description of the global features. In contrast to the conventional SC, the
CSC model can decompose an image into a group of convolutions of 2D filters and corresponding
feature maps as shown in Figure 1. These 2D filters form a dictionary of CSC, and the feature maps
which can be seen as sparse coefficients reflect the activation positions of the filters. In order to extract
structural features of the image, the feature maps are constrained by sparse priors. Empirical studies
show that CSC can better preserve the global structures of images due to the convolutional operation
and it has been widely used in computer vision [8–11].
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Figure 1. The framework of convolutional sparse coding (CSC). 

Image super-resolution (SR) [12–18] is an active topic in image processing, which is a typical 
application of the conventional SC-based models. The task of image super-resolution is to learn the 
nonlinear mapping between low-resolution (LR) and high-resolution (HR) images for reconstructing 
the input LR image into a HR image, so that the visual effect will be as good as possible. In training 
phase, the low-/high-resolution (LR/HR) image pairs are used to learn two coupled dictionaries [19,20] 
by assuming the coefficients of LR and HR patches are identical. In the testing phase, we first calculate 
the coefficients of the LR patches with the LR dictionary, then multiply the HR dictionary by the 
calculated coefficients to the HR patches. On the other hand, CSC can also be applied to the image 
SR problem [21,22]. It is not difficult to find a correspondence between SC- and CSC-based methods. 
By assuming the LR and HR feature maps are identical, two coupled filter groups can be learned. 
Following the pipeline of SC-based methods, the HR image can be synthesized by summing up the 
convolutions of the HR filters and the feature maps.  

Even though SC and CSC achieve great successes in cross-modality synthesis problems [13,22], 
they both face an intractable problem that their models are enforced to learn identical structures 
between LR and HR images under the coefficient equivalence assumption, but in fact the structures 
of HR images are much more complex than that of LR images. The strong coupling limits their 
synthesis performances. An effective way to weaken the coupling between HR and LR dictionaries 
is building a transform function between them. Wang et al. [23] used a matrix to map the LR 
coefficient vector to the HR space in the conventional SC-based model. Similarly, for CSC-based 
model, Gu et al. [22] constructed a mapping function that trains the function to map LR features to 
HR space. The above two mapping functions can both be interpreted as linear transformation which 
has been proven to be limited to the approximation of complex functions.  

In this paper, we present a semi-coupled convolutional sparse learning (SCCSL) based SR 
method which uses convolutions as mapping functions to promote the flexibility of the 
transformation between LR and HR coefficients. The proposed method has three advantages over the 
linear transformation-based methods. First, convolution is a non-linear operation that is more 
suitable than a linear function to describe the complex relationship between LR and HR coefficients. 
Second, when projecting the LR feature maps to HR space, the proposed method uses neighborhoods 
within the filter size to calculate the current pixel, which enhances the flexibility of the model. Third, 

Figure 1. The framework of convolutional sparse coding (CSC).

Image super-resolution (SR) [12–18] is an active topic in image processing, which is a typical
application of the conventional SC-based models. The task of image super-resolution is to learn the
nonlinear mapping between low-resolution (LR) and high-resolution (HR) images for reconstructing
the input LR image into a HR image, so that the visual effect will be as good as possible. In training
phase, the low-/high-resolution (LR/HR) image pairs are used to learn two coupled dictionaries [19,20]
by assuming the coefficients of LR and HR patches are identical. In the testing phase, we first calculate
the coefficients of the LR patches with the LR dictionary, then multiply the HR dictionary by the
calculated coefficients to the HR patches. On the other hand, CSC can also be applied to the image
SR problem [21,22]. It is not difficult to find a correspondence between SC- and CSC-based methods.
By assuming the LR and HR feature maps are identical, two coupled filter groups can be learned.
Following the pipeline of SC-based methods, the HR image can be synthesized by summing up the
convolutions of the HR filters and the feature maps.

Even though SC and CSC achieve great successes in cross-modality synthesis problems [13,22],
they both face an intractable problem that their models are enforced to learn identical structures
between LR and HR images under the coefficient equivalence assumption, but in fact the structures of
HR images are much more complex than that of LR images. The strong coupling limits their synthesis
performances. An effective way to weaken the coupling between HR and LR dictionaries is building
a transform function between them. Wang et al. [23] used a matrix to map the LR coefficient vector
to the HR space in the conventional SC-based model. Similarly, for CSC-based model, Gu et al. [22]
constructed a mapping function that trains the function to map LR features to HR space. The above
two mapping functions can both be interpreted as linear transformation which has been proven to be
limited to the approximation of complex functions.

In this paper, we present a semi-coupled convolutional sparse learning (SCCSL) based SR
method which uses convolutions as mapping functions to promote the flexibility of the transformation
between LR and HR coefficients. The proposed method has three advantages over the linear
transformation-based methods. First, convolution is a non-linear operation that is more suitable than a
linear function to describe the complex relationship between LR and HR coefficients. Second, when
projecting the LR feature maps to HR space, the proposed method uses neighborhoods within the filter
size to calculate the current pixel, which enhances the flexibility of the model. Third, the filter size is
adjustable. In the limited case where the filter size is 1 × 1, the proposed model degenerates into the
linear model. That means that the linear model is a special case in the proposed semi-coupling model.
Like other CSC methods [24–26], the proposed method is solved in alternating direction method of
multipliers (ADMM) [27,28] framework, and the variables are transformed into Fourier domain in
which the final results can be calculated by solving a linear system.



Remote Sens. 2019, 11, 2593 3 of 19

The remainder of the paper is organized as follows: In Section 2, we briefly review the principle,
current situation of CSC, and its application in image SR. Section 3 details the proposed SCCSL
method and the algorithm for reducing the coupling between low- and high-resolution representations.
Experiments and discussion are presented in Section 4. Finally, the conclusion is discussed in Section 6.

2. Convolutional Sparse Coding

SC [1–3] aims at seeking a concise and efficient way of representing signals. The basic idea is that
a signal can be represented by the linear combination of very few atoms in a redundant dictionary
under the sparse assumption. Specifically, consider a redundant dictionary D, SC encodes a signal x by
Dα, where α is the sparse coefficient vector. The sparse representation framework has been widely
used in computer vision tasks, such as color image restoration [29], robust face recognition [30,31],
object detection [32,33], image segmentation [34,35], and image classification [36,37], and has achieved
state-of-the-art results. Specifically, supervised dictionary learning has a good application in image
classification [38], image super-resolution [39], and audio signal recognition [40], and supervised deep
dictionary learning has been successfully used in classification [41] and image quality assessment [42].
However, most of the SC-based methods divide the whole image into small patches and deal with them
separately for simplification and efficiency [43], which leads to the absence of continuous structures.

In order to overcome the above drawback of SC, Zeiler et al. [6] proposed a convolutional sparse
coding framework to sparsely describe the entire image, as well as preserve the global structures. As
shown in Figure 1, CSC framework approximates an image by the summation of convolutions of filters
and their feature maps. Let X ∈ RM×N be an input image an {Dk}1≤k≤K be a group of filters with size
s× s, thus the encoding formulation of the CSC can be expressed as follows:

min
{Zk}1≤k≤K

‖ X −
K∑

k=1

Dk ⊗Zk ‖
2
F +λ

K∑
k=1

‖ Zk ‖1 (1)

where {Zk}1≤k≤K is the feature map of {Dk}1≤k≤K and λ is a penalty factor. The first term ensures the
data fidelity, and the second term uses `1 norm to sparsely activate the feature maps, in which `1 norm
is the absolute value of the elements and `2 norm is used as a standard quantity for measuring a vector
difference. ⊗ is the convolution operation. Unlike the conventional SC model whose dictionary is used
to represent the local patches, the CSC model uses the filters as a dictionary which has the ability of
representing the global features by convolution operations [44]. In addition, the sparse constraints
on the feature maps make the corresponding filters have meaningful structures. It should be noted
that CSC is totally different from the extremely popular convolutional neural networks (CNN) [45–48],
although both are related to convolution. As described in Equation (1), the convolutions of CSC are
implemented on the filters and the feature maps, the filters can be seen as a dictionary and the feature
maps are the codings of the image. Distinctively, the filters act directly on the input image to obtain the
feature maps in CNN. In other words, CSC aims at image reconstruction [49,50], while CNN focuses
on feature extraction [51].

It is easy to extend the CSC model to the image SR problem. Similar to the SC-based methods, the
LR-HR image pairs are required to train LR and HR filters. Suppose that we have a group of LR-HR
image pairs

{
(Xi, Yi)

}
1≤i≤S for training, by enforcing that the LR and HR feature maps are identical, we

have the following formulation:
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min
{DL

k }1≤k≤K
{DH

k }1≤k≤K

S∑
i=1

‖ Xi −

K∑
k=1

DL
k ⊗Zi

k ‖
2
F

+
S∑

i=1

‖ Yi −

K∑
k=1

DH
k ⊗Zi

k ‖
2
F

+λ
S∑

i=1

K∑
k=1

‖ Zi
k ‖1

s.t. ∀1 ≤ k ≤ K ‖ DL
k ‖

2
F≤ εL, ‖ DH

k ‖
2
F≤ εH

(2)

where DL
k and DH

k are the LR and HR filters respectively, Zi
k is the k-th feature map of the i-th image, εL

and εH are two constants which are used to restrain the energy of the filters. Note that each LR image
is scaled to the size of the corresponding HR image by bilinear interpolation. Since the LR and HR
filters use the same feature maps, their learning structures are highly correlated, limiting the diversity
of HR reconstruction. Gu et al. [22] introduced a linear mapping function of LR and HR feature maps
to reduce their coupling. In their model, the LR filters and the LR feature maps are learned from the
LR training images as follows:

min
{DL

k }1≤k≤KL

{ZL
k }1≤k≤KL

‖ X −
KL∑

k=1
DL

k ⊗ZL
k ‖

2
F +λ

KL∑
k=1
‖ ZL

k ‖1

s.t. ∀1 ≤ k ≤ KL ‖ DL
k ‖

2
F≤ εL

(3)

Here, we use the expression of one training sample instead of all samples like Equation (2) for
simplification. Afterwards, the HR filters and mapping functions are trained with the learned LR filters
and feature maps as follows:

min
W,{DH

k }1≤k≤KH

‖ Y −
KH∑
k=1

DH
k ⊗F

(
ZL

: ; wk
)
‖

2
F

s.t. ∀1 ≤ k ≤ KH ‖ DH
k ‖

2
F≤ εH,

wk < 0, ‖ wk ‖1= 1

(4)

where W is the parameter matrix of the mapping function F (·), and wk is the k-th column of W. It is
important to notice that since the model directly acts on the original training pairs without zooming
the LR images, the mapping function includes an up-sampling process:

F

(
ZL

: ; wk
)
, ZH

k (m, n)

=

{
0, i f mod(m, h) , 0 or mod(n, h) , 0
wT

k zL
: (m, n), otherwise

(5)

where ZH
k (m, n) is a vector composed of all the coefficients in position (m, n) of all the LR feature maps.

Both the number and size of the HR feature maps can be changed after transformation, the HR feature
maps are filled with 0 s at the interpolated positions. The parameter W and the HR filters

{
DH

k

}
1≤k≤KH

are updated alternately by stochastic average (SA)-ADMM algorithm [52]. In the testing phase, first
compute the LR feature maps of the input LR image, then project the LR feature maps on the HR space,
and finally synthesize the HR image with the HR feature maps and filters.
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3. Semi-Coupled Convolutional Sparse Learning for Super Resolution

Even though introducing the mapping functions of LR and HR feature maps brings some flexibility
for various structures of HR images, linear transformation has limited ability to describe complex
functions. Motivated by this, we use convolution operations [53,54] in this section to build a more
powerful mapping.

3.1. Formulation

In order to promote the flexibility of the transformation between LR and HR, convolutions as the
mapping function have been used in the proposed SCCSL model for image super-resolution, which is
formulated as follows:

min
{dn,m}

{dL
m}, {dH

n }

1
2 ‖

∑
m

dL
m ⊗ zL

m − x ‖22 + 1
2 ‖

∑
n

dH
n ⊗ zH

n − y ‖22

+λ
2
∑
n
‖
∑
m

dn,m ⊗ zL
m − zH

n ‖
2
2

+λL
∑
m
‖ zL

m ‖1 +λH
∑
n
‖ zH

n ‖1

s.t. ‖ dL
m ‖

2
2≤ εL, ‖ dH

n ‖
2
2≤ εH

(6)

where all the variables are represented by vectors for conciseness. The first two terms are the fidelity of
the LR image and the HR image, respectively. The third term uses convolutions to map the LR feature
maps to the HR space. In particular, every HR feature map zH

n is synthesized by the summation of the
convolutions of all the LR filters and their feature maps, i.e.,

∑
m dn,m ⊗ zL

m, where dn,m is the mapping
filter for the m-th LR filter and the n-th HR filter. The transformation of an HR feature map zH

n is
calculated over m, which means there are totally KL ×KH mapping filters for the SCCSL model with KL

LR filters and KH HR filters. Note that KL and KH can be different in this model because LR and HR
images have different structures. The last two terms use `1 norm to enforce the sparsity of the feature
maps. The constants εL and εH are used to constrain the energies of the LR and HR filters, respectively.

3.2. The Training Phase

When using the SCCSL model to process a new input image, we often cannot get enough
information to directly calculate the LR and HR feature maps. The frequently used way to solve
this problem is to initialize the LR feature maps first by an abridged model, then start the iterative
refinement between LR and HR feature maps with the initial solution. However, there is no evidence
that this method is better than the “split” method since no extra information is introduced into the
model during the refinement. Therefore, we adopt the split method to separately learn the LR and HR
filters in the training phase. The Equation (6) is split into two individual parts which are related to the
LR filters learning and the mapping and HR filters learning, respectively.

3.2.1. LR Filters Learning

In the learning phase of the LR filter, LR image is decomposed into fuzzy components and residual
components, which is used to extract the low frequency information and high frequency information,
respectively, so as to obtain the sparse feature map. The fuzzy component is amplified by bicubic
interpolation, and the residual component is decomposed into multiple feature maps. In the Fourier
domain, the LR filter is obtained by the ADMM-based optimization algorithm. In the optimization,
the large global problem is decomposed into multiple local problems. By coordinating the solution of
the sub-problems to obtain the solution to the largest global problem, the problem of LR filter bank
learning can be effectively solved. The LR filters are learned by solving the following problem:
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min
{dL

m},{zL
m}

1
2
‖

∑
m

dL
m ⊗ zL

m − x ‖22 +λL

∑
m
‖ zL

m ‖1

s.t. ‖ dL
m ‖

2
2≤ εL

(7)

Note that the feature maps are also required to be calculated since they will be used when learning
the mapping and HR filters. Equation (7) is a typical CSC problem that can be efficiently solved by
ADMM in Fourier domain. The feature maps

{
zL

m

}
and filters

{
dL

m

}
are updated alternately.

• Subproblem to
{
zL

m

}
:

By introducing auxiliary variables {rm}, calculating
{
zL

m

}
can be reformulated as follows

min
{zL

m},{rm}

1
2
‖

∑
m

dL
m ⊗ zL

m − x ‖22 +λL

∑
m
‖ rm ‖1

s.t. zL
m − rm = 0

(8)

which can be solved by the following ADMM iterations:{
zL

m

}(k+1)
= argmin

{zL
m}

1
2 ‖

∑
m

dL
m ⊗ zL

m − x ‖22

+
ρ
2
∑
m
‖ zL

m − r(k)m + u(k)
m ‖

2
2

(9)

{rm}
(k+1) = argmin

{rm}

ρ
2
∑
m
‖ zL(k+1)

m − rm + u(k)
m ‖

2
2

+λL
∑
m
‖ rm ‖1

(10)

u(k+1)
m = u(k)

m + zL(k+1)
m − r(k+1)

m (11)

where {um} are the dual variables of
{
zL

m

}
. Transform the Equation (9) into Fourier domain, it can be

rewritten as follows
min
{ẑL

m}

1
2 ‖

∑
m

d̂L
m � ẑL

m − x̂ ‖22

+
ρ
2
∑
m
‖ ẑL

m − r̂(k)m + û(k)
m ‖

2
2

(12)

where � is the Hadamard product. Let diag(d) be a diagonal matrix whose diagonal elements are
composed of the vector d, based on d� z = diag(d)z, we have

min
ẑL

1
2
‖

∑
m

D̂LẑL
− x̂ ‖22 +

ρ

2
‖ ẑL
− ŝ(k) ‖22 (13)

D̂L =
[
diag(d̂L

1), diag(d̂L
2), · · · , diag(d̂L

KL
)
]

ẑL =


ẑL

1
ẑL

2
...

ẑL
KL

, ŝ(k) =


r̂(k)1
r̂(k)2

...

r̂(k)KL


−


û(k)

1
û(k)

2
...

û(k)
KL


(14)

Thus, the solution of Equation (13) can be given as follows(
(D̂L)

H
D̂L + ρI

)
ẑL = (D̂L)

H
x̂ + ρŝ(k) (15)
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which can be solved by independent linear systems with time complexity of O(MNKL). Equation (10)
can be solved by shrinkage thresholding operator as follows:

r(k+1)
m = SλL/ρ

(
zL(k+1)

m + u(k)
m

)
(16)

where
Sτ(z) = sign(z) �max(|z| − τ) (17)

where sign(·) and |·| are element-wise sign and absolute value function respectively.

• Subproblem to
{
dL

m

}
:

By fixing the feature maps
{
zL

m

}
, the LR filters can be learned as follows:

min
{dL

m}
‖

∑
m

dL
m ⊗ zL

m − x ‖22 s.t. ‖ dL
m ‖

2
2≤ εL (18)

This problem also can be solved by the following ADMM iterations:{
dL

m

}(k+1)
= argmin

{dL
m}

1
2 ‖

∑
m

dL
m ⊗ zL

m − x ‖22

+
ρ
2
∑
m
‖ dL

m − g(k)m + h(k)m ‖
2
2

(19)

{
gm

}(k+1) = argmin
{gm}

ρ
2
∑
m
‖ dL(k+1)

m − gm + h(k)m ‖
2
2

s.t. ‖ dL
m ‖

2
2≤ εL

(20)

h(k+1)
m = h(k)m + dL(k+1)

m − g(k+1)
m (21)

where
{
gm

}
and {hm} are the auxiliary and dual variable, respectively. Equation (19) is computed in

the Fourier domain as same as the Equation (9), since the filters dL
m are of constrained size of the

spatial domain, a zero-padding operation on the filters must be implemented before discrete Fourier
transform (DFT).

3.2.2. Mapping and HR Filters Learning

In mapping and HR filter learning phase, it is similar to LR filters learning that each HR image
block is decomposed into a fuzzy component and a residual component. According to the LR feature
mapping and HR image obtained in the previous stage, the HR filter and the corresponding mapping
function can be learned as follows

min
{dn,m},{dH

n }

1
2 ‖

∑
n

dH
n ⊗ zH

n − y ‖22

+λ
2
∑
n
‖
∑
m

dn,m ⊗ zL
m − zH

n ‖
2
2 +λH

∑
n
‖ zH

n ‖1

s.t. ‖ dH
n ‖

2
2≤ εH

(22)

In this formulation,
{
zH

n

}
,
{
dn,m

}
and

{
dH

n

}
are alternately updated.
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• Subproblem to
{
zH

n

}
Due to the introduction of the mapping functions,

{
zH

n

}
is obtained by solving the following

problem:
min
{zH

n }

1
2 ‖

∑
n

dH
n ⊗ zH

n − y ‖22

+λ
2
∑
n
‖
∑
m

dn,m ⊗ zL
m − zH

n ‖
2
2 +λH

∑
n
‖ rn ‖1

s.t. zH
n − rn = 0

(23)

The solution to the above minimization problem has the same form of the Equation (8). We can
derive a similar linear system of Equation (15) as follows:(

(D̂H)
H

D̂H + (λH + ρ)I
)
ẑH = (D̂H)H ŷ + λt̂ + ρŝ (24)

where t̂n =
∑
m

d̂n,m � ẑL
m, and t̂ = [t̂1; t̂2; · · · ; t̂KH ]. The corresponding versions of other variables can be

referred to Equation (15). The above problem can be solved by the independent linear system with the
same time complexity of Equation (15).

• Subproblem to
{
dn,m

}
and

{
dH

n

}
The mapping and HR filters are learned respectively as follows

min
{dn,m}

∑
n
‖

∑
m

dn,m ∗ zL
m − zH

n ‖
2
2 (25)

min
{dH

n }
‖

∑
n

dH
n ∗ zH

n − y ‖22 s.t. ‖ dy
n ‖

2
2≤ εH (26)

The calculations of them can refer to the solution of
{
dL

m

}
, and both of them can be solved efficiently.

In the reconstruction phase, the low-resolution image is input firstly and the LR filter bank is
obtained through training, then the LR feature map is obtained by convolution decomposition. Finally,
the HR feature map is obtained by HR feature map estimation, and the reconstructed HR image is
obtained by convolution of the HR filter bank.

3.2.3. Algorithm Summary

After detailing all the portions of the training phase, the entire training algorithm is summarized in
Algorithm 1. Firstly, LR filter

{
dL

m

}
, feature mapping

{
dn,m

}
, and HR filter

{
dH

n

}
are learned independently.

Secondly, the image is decomposed into non-overlapping image blocks of the feature representation
part. Finally, the feature map and the HR filter are jointly learned. In the reconstruction process, the
LR structure is simple and the HR is complex and contains more spatial information on the local
area, so that a small number of LR filters and a large number of HR filters are used for the HR image
reconstruction process.
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Algorithm 1 Semi-Coupled Convolutional Sparse Learning

Require:
Training image pairs

{
(xi, yi)

}
;

Initial LR filters
{
dL

m

}
;

Initial HR filters
{
dH

n

}
;

Initial mapping filters
{
dn,m

}
;

Ensure:
Training results of

{
dL

m

}
,
{
dH

n

}
and

{
dn,m

}
;

1: LR filters learning
2: While stopping criteria not met do
3: Calculate

{
zL

m

}
by solving Equation (8);

4: Update
{
dL

m

}
via Equation (18);

5: end while
6: Mapping and HR filters learning
7: While stopping criteria not met do
8: Calculate

{
zH

n

}
by solving Equation (23);

9: Update
{
dn,m

}
via Equation (25);

10: Update
{
dH

n

}
via Equation (26);

11: end while
12: return

{
dL

m

}
,
{
dH

n

}
and

{
dn,m

}
3.3. The Testing Phase

After training phase, the LR filters
{
dL

m

}
, mapping filters

{
dn,m

}
, and HR filters

{
dH

n

}
are achieved.

In the testing phase, for testing LR images, the LR feature maps
∼
z

L
m of the input LR image is first

estimated, and then the LR feature maps are transformed into the HR form as follows:

∼
z

H
n =

∑
m

dn,m ⊗
∼
z

L
m (27)

The final HR image is synthesized as follows

∼
y =

∑
n

dH
n ⊗

∼
z

H
n (28)

3.4. Relationship to Linear Mapping Based Model

The architecture of the mapping functions of the proposed SCCSL is illustrated with Figure 2a. As
shown in the figure, each pixel of the HR feature maps is synthesized by the weighted sum within the
receptive field over all LR feature maps. That is to say, each value of the HR feature maps is determined
not only by its corresponding LR pixels, but also the neighborhood information within the receptive
field. In the limited case where the filter size reduces to 1× 1 as shown in Figure 2b, the connections
between LR and HR feature maps degenerate into a simple perceptron. Each HR pixel is only related
to its own pixels in the LR feature maps, and the mapping can be expressed as a linear projection. In a
word, as a special case, the linear mapping-based model is unified with the proposed SCCSL model.
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Figure 2. The relationship between convolutional and linear mapping functions. (a) Convolutional
mapping architecture. (b) Linear mapping architecture.

4. Experiments

First, the algorithm implementation and the images used in the experiments were presented in
detail. Then, the impacts on the parameters (i.e., filter size, filter number) on the SR performance
were explored. Afterwards, the convergence of the algorithm was analyzed, and then the proposed
method was compared with several state-of-the-art SR methods of both numerical evaluating indices
and visual effects. In the end, the time complexity of the proposed algorithm was presented and the
time comparison of different methods was made.

4.1. Implementation

In the experiments, the training and testing images were from the frequently used Set69 dataset
in the SR problem. Set69 was composed of 69 images from Set91 [54]. Set91 provided about
24,800 sub-images and these sub-images were extracted from the original images with a stride of 14.
The images were divided into 178 × 178 pixel overlapped sub-images with step length of 33 pixels
for computational efficiency. Among all sub-images, 25 were used as the training set, and the others
were used as the testing set. Each sub-image was down-sampled with scaling factor 2 to get its LR
version, and then the LR version was resized to the same size of the original sub-image by bicubic
interpolation. The resized LR sub-images and their corresponding original versions constituted the
LR-HR pairs. Note that the proposed model was performed on the resized LR sub-images instead of
the down-sampled ones. Like other methods [23,55], the RGB color images were first transformed into
YCbCr color space, the algorithm only dealt with the Y channel, and the other two channels remained
unchanged. In addition, in order to learn meaningful filters and ensure the sparsity of the feature maps,
the LR-HR pairs were divided into low-frequency and high-frequency components and the algorithm
was performed on the high-frequency component [22]. To obtain the low-frequency component of an
image, one intuitive way is to minimize the following equation:

zlp = argmin
z
‖ x− dlp

⊗ z ‖22 +γ ‖ dh
⊗ z ‖22 +γ ‖ dv

⊗ z ‖22 (29)

where the dlp is a 3× 3 low pass filter with all entries being 1/9, zlp is the corresponding feature map,
dh = [1,−1] and dv = [1,−1] are the horizontal and vertical gradient operators. The above minimization
problem has closed-form solution and can be solved in Fourier domain.

4.2. Parameter Analysis

Experiments showed that the size and number of the filters had a significant impact on the model
performance, so we conducted a series of experiments to explore the relationships between them. We
denoted the size of the LR, HR and mapping filters by sL, sH and sM, respectively.
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4.2.1. Number of Filters

In general, the more filters the better performance, because the more filters there are, the more
feature types will be extracted, which leads to a strong ability of model expression. We adopted
qualitative analysis to examine the impacts of the numbers of LR and HR filters KL and KH. The sizes
of the LR, HR, and mapping filters were set to sL = sH = 8, sM = 3. We first fixed the number of the
HR filters KH = 15, and varied the number of the LR filters from 5 to 25. For each number we trained
a model on the training set and calculated the peak signal-to-noise ratio (PSNR) [56] averaged over
the testing set. PSNR is a metric that has been widely used for evaluating image restoration quality
quantitatively. Figure 3a depicts the PSNR curve with respect to KL; we can see that the PSNR had
some improvement with the increasing of KL for KL < 15. However, when KL > 15, the PSNR began to
decline. We also made the same investigation on the number of HR filters. The sL, sH and sM remained
unchanged, and the KL was set to 15. We observed the model performance with KH varying from
5 to 25 as shown in Figure 3b. Overall, the PSNR had an obvious increase for KH < 15, but it dropped
slightly when KH = 15. According to the above observation, the number of the LR and HR filters were
set to KL = KH = 15.
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4.2.2. Size of Filters

In the proposed model there are three types of filters whose sizes all affect the model performance.
Like the investigation of the filter number, we examined the impact of one type by fixing the other two
types of filters. First, the sH, sM were set to 8 and 3, respectively, and different sL, ranging from 4 to 16
were tried. From Figure 4a we can see that the model achieved the best PSNR for sL = 8, while when
sL > 8 the PSNR had a linear decline. For the largest size of sL, the performance was the worst. Then,
we observed the impact of the size of the HR filters on the model performance. The sizes of the LR
and mapping filters were set to sL = 8 and sM = 3. The PSNR curve as a function of sH is depicted in
Figure 4b. The results show that when sH = 8n the PSNR reached the top. Different from the LR filters,
when sH > 8 the PSNR did not decrease linearly but rose again. Therefore, combining the observations
of the LR and HR filters, we can demonstrate that it is not the larger the better; excessive enlargement
of the filter size may cause the degradation of the performance.

At last, we turn to the size of the mapping filters which describe the relationship between
the LR and HR feature maps. Intuitively, the larger sM is, the more neighborhood information the
transformation process uses, at the same time, it is more robust to the outliers. On the other hand,
larger filter size will weaken the representation of the central pixel. We fixed the sizes of LR and
HR filters as sL = sH = 8 and varied the size of the mapping filters to validate the above statement.
Figure 4c shows the PSNR curve with varying sM, we can see that the performance was the worst for
sM = 1. That is because no neighborhood information was taken advantage of in the transformation,
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and each pixel in the HR feature maps was just related to the pixels on the same location in the LR
feature maps. With the growth of the sM, the performance improved. However, when the sM became
intemperately large, the PSNR dropped again. Based on the above results and also in view of the
running time, we set the parameters as sL = sH = 8 and sM = 3 in later experiments.
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4.3. Super-Resolution Experiments

In order to validate the effectiveness of the proposed method, we compared it with four
state-of-the-art methods on 15 commonly used images in the SR problem [57]. The methods include
bicubic interpolation (BI), soft-decision-adaptive interpolation (SAI) [58], the conventional convolutional
sparse coding (CSC) [24] method, and the linear mapping-based convolutional sparse coding (LMCSC)
method [22], in which BI is a traditional interpolation method, SAI provides a powerful result in
preserving edge structures for interpolation, while CSC can deal with the consistency issue. Note that,
in comparison, the LMCSC is also trained in the full-size LR images instead of the down-sampled ones,
so it does not need a zero-padding operation for the LR-HR linear transformation. Besides, all the
convolutional methods adopted 15 LR and HR filters, and the filter sizes were all 8× 8.

Figure 5 depicts the filters learned by CSC, LMCSC and SCCSL, respectively, under the same
condition. We can see that the LR and HR filters learned by CSC have similar structures due to strong
coupling, which limits the diversity of the model. In contrast, LMCSC and SCCSL obtain much finer
HR filters.
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Figure 5. Filters learned by different methods. (a) Filters learned by conventional convolutional sparse
coding (CSC). (b) Filters learned by linear mapping-based convolutional sparse coding (LMCSC).
(c) Filters learned by semi-coupled convolutional sparse learning (SCCSL).

Two commonly used evaluating indices, PSNR and structural similarity index (SSIM) [59,60],
were used in the comparison. SSIM is a measure of similarity between uncompressed undistorted
image and distorted image which was proposed by the laboratory for image and video engineering at
the university of Texas at Austin. Tables 1 and 2 exhibit the PSNR and SSIM results of the 15 images by
different methods. We can see that SCCSL outperformed others in most cases of the PSNR results,
except that it is slightly worse than LMCSC for images Foreman and Bridge. In addition, as two
baseline methods, BI and SAI were inferior to other three methods. The PSNR of SCCSL had a gain of
about 0.1 dB and 0.7 dB compared with LMCSC and CSC, respectively. For the SSIM results, LMCSC
and SCCSL are in the first echelon, and their values were nearly identical. The strong coupling method
CSC is behind them, and BI is the worst.
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Table 1. The PSNR (dB) results of the 15 images by different methods, and bold font indicates that the
algorithm has the best PSNR value on a single image.

Methods
Images

Butterfly Face Bird Comic Woman Foreman Coast. Flowers

BI 26.87 34.14 36.29 24.52 31.60 32.08 28.59 29.81
SAI 25.18 33.02 32.24 24.14 28.66 30.36 27.46 28.05
SCS 29.93 34.83 38.19 25.20 33.52 33.40 29.72 31.64

LMSCS 30.12 35.67 39.36 25.29 34.13 34.18 30.30 32.23
SCCSL 30.47 35.69 39.67 25.32 34.24 34.14 30.41 32.30

Zebra Lena Bridge Baby Peppers Man Barbara Avg. val.

BI 28.39 34.08 27.11 36.51 32.47 28.55 27.21 30.55
SAI 26.73 31.59 24.88 33.63 31.20 27.50 26.37 28.73
SCS 28.53 35.33 26.97 37.19 33.20 29.96 28.08 31.71

LMSCS 28.56 36.20 27.44 38.51 33.50 30.35 28.42 32.28
SCCSL 28.64 36.28 27.42 38.52 33.78 30.42 28.45 32.38

Table 2. The SSIM results of the 15 images by different methods, and bold font indicates that the
algorithm has the best SSIM value on a single image.

Methods
Images

Butterfly Face Bird Comic Woman Foreman Coast. Flowers

BI 0.86 0.81 0.95 0.69 0.91 0.91 0.73 0.85
SAI 0.89 0.83 0.94 0.80 0.92 0.92 0.73 0.86
SCS 0.94 0.85 0.97 0.84 0.95 0.95 0.80 0.91

LMSCS 0.94 0.89 0.98 0.85 0.96 0.96 0.85 0.93
SCCSL 0.95 0.89 0.98 0.86 0.96 0.96 0.85 0.93

Zebra Lena Bridge Baby Peppers Man Barbara Avg. val.

BI 0.75 0.87 0.72 0.93 0.85 0.78 0.80 0.83
SAI 0.85 0.88 0.72 0.93 0.88 0.80 0.80 0.85
SCS 0.86 0.91 0.81 0.95 0.89 0.85 0.85 0.89

LMSCS 0.88 0.93 0.84 0.97 0.91 0.88 0.87 0.91
SCCSL 0.88 0.93 0.84 0.97 0.91 0.88 0.87 0.91

Figures 6 and 7 show the SR results of the images Butterfly and Barbara by different methods. The
figures show that BI and SAI produce relatively blurry results, while other convolutional methods
perform well in detail and have similar visual effects.
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In a word, super-resolution experiments show that LR and HR filter learning are of great guiding
significance for the design of deep learning network filter banks, which helps to maintain the spatial
information of images and improve the reconstruction effect.

5. Discussions

5.1. Convergence

Since all the variables in the model are computed alternately during the training process, the loss
easily gets stuck in the local minimum and behaves swinging. In order to validate the convergence of
the algorithm, we examine the loss which is calculated via Equation (6) of each iteration in training
phase. Figure 8 shows the loss curves of three models which use different filter numbers during the
training. We have three observations: First, the algorithm has good convergence as all three curves
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tend to be stable after 30 iterations, and the curves are rather smooth. Second, the more filters the model
uses, the slower the model converges. When KL = KH = 5, the decreasing rate of the loss is obviously
slowed down after five iterations. But this phenomenon occurs in the 10th and 15th iterations for
KL = KH = 10 and KL = KH = 15, respectively. Finally, the more filters the model has, the higher
accuracy the model achieves. When the number of filters rises from 5 to 10, the stable loss dropped
by about 5.82. But this number becomes about 2.42 when the number of filters rises from 10 to 15.
Even though the training accuracy increases with the growth of the filter number, this increased trend
becomes obscure.

 

16 

5. Conclusions 

5.1. Convergence 

Since all the variables in the model are computed alternately during the training process, the 
loss easily gets stuck in the local minimum and behaves swinging. In order to validate the 
convergence of the algorithm, we examine the loss which is calculated via Equation (6) of each 
iteration in training phase. Figure 8 shows the loss curves of three models which use different filter 
numbers during the training. We have three observations: First, the algorithm has good convergence 
as all three curves tend to be stable after 30 iterations, and the curves are rather smooth. Second, the 
more filters the model uses, the slower the model converges. When 𝐾 = 𝐾 = 5, the decreasing rate 
of the loss is obviously slowed down after five iterations. But this phenomenon occurs in the 10th 
and 15th iterations for 𝐾 = 𝐾 = 10 and 𝐾 = 𝐾 = 15, respectively. Finally, the more filters the 
model has, the higher accuracy the model achieves. When the number of filters rises from 5 to 10, the 
stable loss dropped by about 5.82. But this number becomes about 2.42 when the number of filters 
rises from 10 to 15. Even though the training accuracy increases with the growth of the filter number, 
this increased trend becomes obscure. 

 
Figure 8. The convergence of the proposed algorithm. 

5.2. Time Complexity 

Here we mainly consider the time complexity of the methods of the testing phase. The proposed 
method first calculates the LR feature maps via Equation (1), and then it computes the HR feature 
maps via Equation (27). At last it synthesizes the HR image via Equation (28). Among all formulas, 
the time complexity is dominated by the Equation (1) which can be solved in 𝒪(𝐾 𝑀𝑁𝑙𝑜𝑔(𝑀𝑁)) 
in the Fourier domain. In fact, CSC, LMCSC and SCCSL have the same time complexity, because 
SCCSL requires extra transformation operation, SCCSL is slightly slower than the other two methods. 
Table 3 gives the time comparison of different methods. BI and SAI have absolute advantages over 
the other three methods which are at the same level. 

Table 3. Time comparison of different methods. 

Methods BI SAI CSC LMCSC SCCSL 
Time (sec) 0.01 0.07 4.14 4.23 4.31 

In summary, SCCSL can obtain better results of image super-resolution compared with BI, SAI, 
LMCSC and CSC, because the spatial information of images is maintained and the reconstruction 
effect is improved. Furthermore, in order to improve the image super-resolution accuracy, a small 
number of LR filters and a large number of HR filters are used for the HR image reconstruction 
process. However, the experiments show that the number of filters is not as large as possible. In 

Figure 8. The convergence of the proposed algorithm.

5.2. Time Complexity

Here we mainly consider the time complexity of the methods of the testing phase. The proposed
method first calculates the LR feature maps via Equation (1), and then it computes the HR feature
maps via Equation (27). At last it synthesizes the HR image via Equation (28). Among all formulas, the
time complexity is dominated by the Equation (1) which can be solved in O(KLMNlog(MN)) in the
Fourier domain. In fact, CSC, LMCSC and SCCSL have the same time complexity, because SCCSL
requires extra transformation operation, SCCSL is slightly slower than the other two methods. Table 3
gives the time comparison of different methods. BI and SAI have absolute advantages over the other
three methods which are at the same level.

Table 3. Time comparison of different methods.

Methods BI SAI CSC LMCSC SCCSL

Time (sec) 0.01 0.07 4.14 4.23 4.31

In summary, SCCSL can obtain better results of image super-resolution compared with BI, SAI,
LMCSC and CSC, because the spatial information of images is maintained and the reconstruction effect
is improved. Furthermore, in order to improve the image super-resolution accuracy, a small number of
LR filters and a large number of HR filters are used for the HR image reconstruction process. However,
the experiments show that the number of filters is not as large as possible. In addition, compared with
other algorithms in this paper, the non-linear algorithm SCCSL takes more time in the testing phase.
Since SCCSL converts transforms into Fourier domains under the ADMM framework, convolution
operations are used to increase flexibility. Based on the convolution operations, neighborhoods within
the filter size and the adjustable filter size, SCCSL is a more flexible and efficient approach for image
super-resolution problem. Furthermore, SCCSL has room for improvement in time complexity.
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6. Conclusions

We propose a novel semi-coupled convolutional sparse learning method of image super-resolution.
It builds a convolutional mapping relationship between the LR and HR feature maps to weaken
the strong coupling of the conventional CSC methods. The learned HR filters show good structure
and fine details. Experiment results show that the proposed method performs better than several
state-of-the-art methods in both numerical evaluating indices and visual effects. More importantly,
the linear mapping-based model can be seen as a special case of SCCSL, which demonstrates the
generalization of the proposed model.
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