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Abstract: Soil degradation, defined as the lowering and loss of soil functions, is becoming a serious
problem worldwide and threatens agricultural production and terrestrial ecosystems. The surface
residue of crops is one of the most effective erosion control measures and it increases the soil moisture
content. In some areas of the world, the management of soil surface residue (SSR) is crucial for
increasing soil fertility, maintaining high soil carbon levels, and reducing the degradation of soil due to
rain and wind erosion. Standard methods of measuring the residue cover are time and labor intensive,
but remote sensing can support the monitoring of conservation tillage practices applied to large fields.
We investigated the potential of per-pixel and object-based image analysis (OBIA) for detecting and
estimating the coverage of SSRs after tillage and planting practices for agricultural research fields
in Iran using tillage indices for Landsat-8 and novel indices for Sentinel-2A. For validation, SSR
was measured in the field through line transects at the beginning of the agricultural season (prior
to autumn crop planting). Per-pixel approaches for Landsat-8 satellite images using normalized
difference tillage index (NDTI) and simple tillage index (STI) yielded coefficient of determination
(R2) values of 0.727 and 0.722, respectively. We developed comparable novel indices for Sentinel-2A
satellite data that yielded R2 values of 0.760 and 0.759 for NDTI and STI, respectively, which means
that the Sentinel data better matched the ground truth data. We tested several OBIA methods and
achieved very high overall accuracies of up to 0.948 for Sentinel-2A and 0.891 for Landsat-8 with
a membership function method. The OBIA methods clearly outperformed per-pixel approaches in
estimating SSR and bear the potential to substitute or complement ground-based techniques.

Keywords: conservation tillage; crop residue; pixel-based image classification; fuzzy object-based
image analysis; Sentinel; tillage indices

1. Introduction

The world population is expected to reach 9.1 billion people by 2050. This will require the
production of 3 billion tons of cereals annually, up from today’s nearly 2.1 billion tons for both food
and animal feed [1]. Therefore, the use of conservation agricultural methods is necessary to protect
water and soil, which are the main sources of agricultural productions [2,3].

Conservation tillage systems are an important conservation strategy in agriculture. Residues
are left from the previous cultivation on the soil surface in order to protect the soil from water and
wind erosion [4]. A residue cover has several important advantages: it increases the soil organic
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matter [5], speeds up enzymatic activities [6], decreases the soil temperature [7], and reduces the water
consumption [8]. In conservation tillage systems, at least 30% of the previous crop residues are left
on the soil surface after tillage and planting operations [9]. Depending on the amount of soil surface
residue (SSR), conservation tillage systems include minimum (ridge tillage and mulch tillage) and no
tillage. In a no-tillage system, the seeding operation is carried out directly into the standing stubble of
the previous crops [9].

Various field measurement methods have been developed to estimate the SSR, including line
transect, photo comparison, and computational methods. While line transect is a highly accurate field
method, it is hardly applicable to large areas due to the time and labor costs. Therefore, several studies
aimed to utilize recent developments of remote sensing instruments (satellite, airborne, and unmanned
aerial vehicle (UAV)-based sensors) to estimate the SSR [10–14]. To this end, due to the absorption
properties of the SSR, the region of 2100 nm of electromagnetic spectrum was studied [15,16]. In this
region, the presence of lignin, cellulose, and other saccharides in the external wall of the residue allows
distinguishing the SSR signal from soil and vegetation signals [17]. In fact, several methods have
been developed for deriving the SSR from spectral images. The majority of approaches calculate the
brightness of pixels while object-based image analysis (OBIA) takes other factors, such as texture, color,
and geometry of the resulting objects into consideration in addition to brightness.

Several laboratory and field studies have been conducted using per-pixel methods for the
identification and mapping of the SSR. van-Deventer et al. [18] developed multispectral Landsat-based
indices, including the simple tillage index (STI) and normalized difference tillage index (NDTI),
for classifying tillage practices based on the percentage of residue cover. They found that bands of
5 and 7 due to covering the region near 2100 nm are suitable for the estimation of the SSR. Earlier
studies applied NDTI and STI indices to multispectral Landsat 6, 7, and 8 images [19–21] and obtained
accurate results.

Daughtry et al. [22] developed a cellulose absorption index (CAI) from hyper-spectral AVIRIS
data as another tillage index and found it to be superior to multispectral Landsat 6 tillage indices.
The lignin cellulose index and the shortwave infrared normalized difference residue index were two
other multispectral tillage indices based on advanced spaceborne thermal emission and reflection
radiometer data, which are superior to the Landsat-based tillage indices, but not as good as the CAI in
terms of mapping and characterizing the SSR [23]. Jin et al. [21] increased the accuracy of the detection
of SSR by integrating Landsat-8 based tillage indices and gray level co-occurrence matrix (GLCM)
textural features.

Pacheco and McNairn [24] obtained coefficient of determination (R2) values of 0.58–0.78 when
identifying corn, small grains, and soybean residues from the soil using a pixel-based spectral unmixing
analysis method. Sudheer et al. [25] applied an artificial neural network model to detect and map
the SSR using Landsat-5 data and obtained overall accuracies of 0.74–0.91 for experimental fields.
Bocco et al. [26] estimated corn SSR with an R2 value of 0.95 using an artificial neural network model
from Landsat-7 data.

In the context of this state of the art in literature, we believe that applying OBIA to SSR is
a novelty and we will investigate its potential in the remainder of this article. Over the last years,
the number of applications that conceptually aim for objects—still built on the information of the
underlying pixels—rose quickly. Blaschke et al. [27] identified a high number of relevant publications
that use OBIA concepts and even claim that this concept and its instantiation to a particular order
of scale—the geographic, as opposed to applications in medical imaging or cell biology—is a new
paradigm in remote sensing. For this level of scale and geodomain, this paradigm is also referred to
as geographic object-based image analysis (GEOBIA). In essence, an OBIA process typically groups
similar pixels within an image through an image segmentation approach by either merging pixels or
by splitting the image iteratively. Both strategies—as well as in other segmentation approaches not
discussed herein—will result in relatively homogenous image objects. ‘Relative’ means compared to
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their surroundings. In the classification step, objects are assigned to a particular class based on a set of
classification rules.

There have been very few studies on the application of OBIA for identifying and mapping the
SSR. Najafi et al. [28] applied OBIA and Landsat-8 images to classify the SSR into the following three
classes: SSR < 30%, SSR 30%–60%, and SSR > 60%.

OBIA is a field within remote sensing and image processing that bridges geographic information
science (GIScience, in short). In this article, we highlight two groups of classification approaches based
on fuzzy object-based image analysis, namely, a) membership functions and b) nearest neighbor (NN).
From its onset, OBIA has often been associated with fuzzy methods, where objects are assigned to
a particular class based on fuzzy relations and rules. Many studies illustrate how to assign particular
objects to classes based on obtained fuzzy membership values for each object class and fuzzy rules
combining several such rules [29–33].

OBIA methods have already been used to identify landslides, debris-covered glaciers, and
vegetation [34]. Kalantar et al. [35] applied an OBIA method to identify land cover features using
spectral UAV images. They found that OBIA performed well in comparison to decision tree and support
vector machine methods. The accuracy of the results of OBIA is strongly influenced by the selection of
fuzzy operators and membership functions [36]. The nearest neighbor (NN) classifier algorithm aims
to classify images based on similarities of object values in the determined features [37,38]. Yu et al. [39]
applied an object-based NN classification for land cover mapping using high-resolution UAV spectral
images. They considered 52 object-based features in terms of their spectral properties, texture features,
topography, and object geometry in a feature space. Blaschke et al. [37] also investigated the capability
of OBIA and NN classification algorithms (spectral, GLCM textural features, and geometry features)
for detecting and identifying landslide locations with a semi-automated approach. The capability of
the NN method was also reported in other studies [40,41].

Based on the above-mentioned justifications, the objectives of this study are a) to describe a novel
method based on fuzzy OBIA for extracting and mapping SSR and tillage intensity, b) to compare
the capability of Landsat-8 and Sentinel-2A satellite images for mapping the residue cover, and c) to
investigate the accuracy of per-pixel and object-based image analysis approaches and their respective
indices and algorithms for residue cover assessment.

2. Materials and Methods

2.1. Study Area

Ground truth data of tillage and planting operations were collected within an agricultural area
operated by the Dryland Agricultural Research Institute of Iran’s East Azerbaijan province located
at 46◦ 27′ 29′′ E, 37◦ 15′ 36′′ N. The cropping system at the study site was composed of wheat, pea,
and forage crops. Different conservation methods and intensive tillage methods were carried out in
the study area as tillage/planting practices. As a result, a wide range of SSR levels from full residue
cover to bare soil was available across the study area (Figure 1). In this article, we investigate the
agricultural system of the study area with respect to environmental issues such as water scarcity
and soil erosion. The outcome of this research shall serve as an input for analyzing the efficiency of
conservation tillage systems.

2.2. Field Measurements

Between 5 and 15 October 2017, the SSR was measured at the experimental fields of the study
area through line transects. First, we used a 30 m measuring rope, which was divided into 100, 30 cm
intervals shown as black markings. At each sampling location, the rope was stretched diagonally (45◦)
across the rows and the number of markings intersecting the SSR was counted. Then we stretched
the rope across the rows again, but in the direction perpendicular to the first mode. After that, the
percentage of the SSR was calculated by taking the average number of markings of the two counting
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exercises. The exact location of each SSR location was obtained by a global positioning system (GPS)
measurement in the field. A total of 153 local points was measured with this line transect method over
the study area of 450 hectares.
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(c) map of the experimental fields operated by the Dryland Agricultural Research Institute (Aghjeh
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2.3. Remote Sensing Data

Two sources of satellite images were utilized in this study, namely Sentinel-2A and Landsat-8.
A Sentinel-2A image from 9 October 2017 and a Landsat-8 image from 16 October 2017 were acquired.
We used the ENVI 5.3 software for all image preprocessing tasks, including radiometric and atmospheric
corrections. We selected bands 2, 3, 4, 5, 6, and 7 of the Landsat-8 image with a resolution of 30 m and
used these bands together with bands 5, 6, 7, 8a, 11, and 12 of the Sentinel-2A image, whereby the
latter has a spatial resolution of 20 m. The two images were preprocessed using the ENVI 5.3 software.

2.4. Soil Surface Residue Identification: Workflow

For the Landsat-8 and Sentinel-2A data, two different approaches were applied to map the SSR
(Figure 2), namely, a) a common per-pixel method, which relies on the linear regression between tillage
indices and line transect field measurements and b) a classification based on fuzzy OBIA methods.
In general, a pixel-based approach estimates the residue cover continuously using tillage indices.
However, the OBIA method classifies the residue cover at different levels. While, both the methods
have some advantages in terms of estimation of the residue, because the final objective is to determine
the applied tillage methods in a region (depending on the percentage of residue cover that is left on the
field after tillage and planting practices), object-based classification methods are discussed in particular
in this study.
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2.5. Tillage Indices

The spectral specifications of Sentinel-2A and Landsat-8 images are shown in Table 1. As described
in Section 3.2, we only used six bands from each satellite to map the residue.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 21 

 

The spectral specifications of Sentinel-2A and Landsat-8 images are shown in Table 1. As 
described in Section 3.2, we only used six bands from each satellite to map the residue. 

 
Figure 2. Overview of the methodology. 

Table 1. Specifications of Sentinel-2A and Landsat-8 satellite images (in bold: bands used in this study). 

Sentinel-2A Landsat-8 

Band specification 
Wavelength 

(nm) 
Resolution 

(m) 
Band specification 

Wavelength 
(nm) 

Resolution 
(m) 

Band 1—Coastal 433–453 60 Band 1—Coastal 433–453 30 
Band 2—Blue 458–523 10 Band 2—Blue 450–515 30 

Band 3—Green 543–578 10 Band 3—Green 525–600 30 
Band 4—Red 650–680 10 Band 4—Red 630–680 30 

Band 5—Vegetation red edge 698–713 20 Band 5—NIR 845–885 30 
Band 6—Vegetation red edge 734–748 20 Band 6—SWIR 1560–1660 30 
Band 7—Vegetation red edge 765–785 20 Band 7—SWIR 2100–2300 30 

Band 8—NIR 785–900 10 Band 8—Panchromatic 500–680 15 
Band 8a—Vegetation red edge 855–875 20 Band 9—Cirrus 1360–1390 30 

Band 9—Water vapor 930–950 60 Band 10—Thermal 10,600–11,200 100 
Band 10—SWIR—Cirrus 1365–1385 60 Band 11—Thermal 11,500–12,500 100 

Band 11—SWIR 1565–1655 20    
Band 12—SWIR 2100–2280 20    

To calculate the relationship between spectral properties and residue cover, two categories of 
indices were considered for Landsat-8 (Table 2) based on the results of the literature review, and 
comparable indices were developed for Sentinel-2A (Table 3). 

Due to the wavelength similarities of Landsat-8 bands 6 and 7 and Sentinel-2A bands 11 and 12, 
we created similar indices for Sentinel-2A images as Sentinel NDTI (SNDTI) and Sentinel STI (SSTI). 

Table 2. Landsat-8-based tillage indices. 

Index Formula Descriptions 
NDTI (B6 − B7)/(B6 + B7) 

B3, B4, B5, B6, and 
B7: Landsat-8 bands 

of 3, 4, 5, 6, and 7 

STI B6/B7 
Modified crop residue cover (MCRC) (B6 − B3)/(B6 + B3) 
Normalized difference index 5 (NDI5) (B5 − B6)/(B5 + B6) 
Normalized difference index 7 (NDI7) (B5 − B7)/(B5 + B7) 

Shortwave red normalized difference index (SRNDI) (B7 − B4)/(B7 + B4) 

Figure 2. Overview of the methodology.

Table 1. Specifications of Sentinel-2A and Landsat-8 satellite images (in bold: bands used in this study).

Sentinel-2A Landsat-8

Band Specification Wavelength
(nm)

Resolution
(m) Band Specification Wavelength

(nm)
Resolution

(m)

Band 1—Coastal 433–453 60 Band 1—Coastal 433–453 30
Band 2—Blue 458–523 10 Band 2—Blue 450–515 30

Band 3—Green 543–578 10 Band 3—Green 525–600 30
Band 4—Red 650–680 10 Band 4—Red 630–680 30

Band 5—Vegetation red edge 698–713 20 Band 5—NIR 845–885 30
Band 6—Vegetation red edge 734–748 20 Band 6—SWIR 1560–1660 30
Band 7—Vegetation red edge 765–785 20 Band 7—SWIR 2100–2300 30

Band 8—NIR 785–900 10 Band 8—Panchromatic 500–680 15
Band 8a—Vegetation red edge 855–875 20 Band 9—Cirrus 1360–1390 30

Band 9—Water vapor 930–950 60 Band 10—Thermal 10,600–11,200 100
Band 10—SWIR—Cirrus 1365–1385 60 Band 11—Thermal 11,500–12,500 100

Band 11—SWIR 1565–1655 20
Band 12—SWIR 2100–2280 20

To calculate the relationship between spectral properties and residue cover, two categories of
indices were considered for Landsat-8 (Table 2) based on the results of the literature review, and
comparable indices were developed for Sentinel-2A (Table 3).

Table 2. Landsat-8-based tillage indices.

Index Formula Descriptions

NDTI (B6 − B7)/(B6 + B7)

B3, B4, B5, B6, and B7:
Landsat-8 bands of 3, 4, 5, 6,

and 7

STI B6/B7
Modified crop residue cover (MCRC) (B6 − B3)/(B6 + B3)
Normalized difference index 5 (NDI5) (B5 − B6)/(B5 + B6)
Normalized difference index 7 (NDI7) (B5 − B7)/(B5 + B7)

Shortwave red normalized difference index (SRNDI) (B7 − B4)/(B7 + B4)
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Due to the wavelength similarities of Landsat-8 bands 6 and 7 and Sentinel-2A bands 11 and 12,
we created similar indices for Sentinel-2A images as Sentinel NDTI (SNDTI) and Sentinel STI (SSTI).

Table 3. Sentinel-2A-based tillage indices.

Index Formula Description

SNDTI (B11 − B12)/(B11 + B12)
B5, B6, B7, B8a, B11, and B12
refer to the respective bands 5,

6, 7, 8a, 11, and 12 of the
Sentinel-2A satellite

SSTI B11/B12
Vegetation red edge shortwave tillage index (VRESTI) (B7 − B12)/(B7 + B12)

Narrow near-infrared tillage index (NITI) (B8a − B12)/(B8a + B12)
Vegetation red edge tillage index (VRETI) (B6 − B12)/(B6 + B12)

Red shortwave difference index (RSDI) (B5 − B12)/(B5 + B12)

2.6. Object-Based Image Analysis

2.6.1. Image Segmentation

Image segmentation is typically the first step in an OBIA workflow. It clusters relatively
homogenous pixels into objects [42–44]. Multi-resolution segmentation is the most common image
segmentation process in OBIA and it serves the objective to derive “relatively homogeneous regions”
by a global optimization heuristic [42]. It is a bottom-up region-merging algorithm that merges adjacent
pixels with similar specifications to create initial image objects. It then merges similar objects together
to produce larger objects. This is carried out as long as the internal heterogeneity (color, texture, and
shape) of produced objects does not exceed user-defined thresholds [37,42,45–48].

These multi-resolution segmentation processes usually apply the three parameters of scale, color,
and shape. The scale parameter value is not equal to the sizes of the resulting objects, but strongly
influences their sizes. A high scale parameter value allows for a high heterogeneity within image
objects and tends to result in larger segments. Likewise, a low scale parameter value results in a high
homogeneity within image objects and a smaller number of image objects [28,44,49]. Drǎguţ et al. [47]
developed methods for estimating appropriate scale parameters prior to the segmentation step. Shape
and color are additional parameters in multi-resolution segmentation that influence spectral and
textural homogeneity of the image objects, while shape influences the resulting objects in terms of their
smoothness and compactness. Based on the method of Drǎguţ et al. and initial trials, we used color and
shape parameters of 0.4 and 0.5, respectively, for Landsat-8 and Sentinel-2A images. The segmentation
processes are illustrated in Figure 3.
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2.6.2. Basic Fuzzy Concepts Used in OBIA

In mathematics, two general logics are distinguished, namely, binary and fuzzy. While binary is
a two-valued logic that considers only {0, 1} for each object, fuzzy is a multi-valued logic that considers
[0,1] for each member. The fuzzy set theory was introduced by Zadeh [50] to investigate uncertainty
using linguistic terms instead of common numerical variables. As discussed in the literature review,
most OBIA studies use fuzzy rule-based classifications and employ either membership functions or
a nearest neighbor classifier (for differences and advantages of both methods, see [51]).

In a fuzzy object-based image analysis procedure, the characteristics of each image object can be
qualified by a fuzzy feature space and described by a membership function. A fuzzy rule is a set of
orders that makes a correspondence relationship between the features that describe each object and
the class.

Membership Function Method

Membership functions assign fuzzy values to a predefined feature space for each object class
using a particular membership function (larger than, smaller than, singleton, Gaussian, about range,
and full range) [29,36,46]. Features with high membership values (depending on the test conditions)
are selected for classification [33,52,53]. The classification operator is another important factor that
affects classification accuracy since it determines how several rules are combined. The most frequently
used operators are simple ‘AND’ and ‘OR’ functions, but more complex operators can also be defined.

In the present study, the membership function method is applied to both Landsat-8 and Sentinel-2A
images through the following steps: a) determining the number of classes, b) selecting feature space(s),
c) calculating fuzzy membership values for each object class, and d) applying the classification algorithm.

Basic Concepts of NN

Classifiers are often grouped into the following: (i) parametric classifiers that require
a learning/training phase of the classifier parameters, these methods are also known as learning-based
approaches, and (ii) nonparametric classifiers, which is a group of classifiers that require no
learning/training phase for the determination of classifier parameters [54]. Classification decision
in nonparametric classifiers is directly based on the data. In object-based image analysis, NN is
a popular nonparametric classifier that relies on estimating the NN distance from the nearest (most
similar) image objects in the database. There are several advantages to using nonparametric classifiers
compared to parametric methods, in particular, that a) a learning/training phase is not required,
and b) nonparametric classifiers can easily handle a large number of classes. Parametric classifiers
require training of parameters which may take several days for large dynamic databases, while for
nonparametric classifiers changing classes/training sets is straightforward [55]. In addition, to validate
the results, NN classifiers provide almost unlimited capabilities for a classification system, which can
be extended to other areas by selecting training samples [54]. The NN method in this study consists of
the following three main steps [56]: a) determining the features space, b) training the system with line
transect field measurements, and c) applying the classification algorithm.

2.7. Classes and Features Space

For the classification of SSR and tillage intensity, three classes were considered in this
study: SSR < 30% (reduced tillage), SSR 30%–60% (minimum tillage), and SSR > 60% (no tillage).
Three different groups of features, namely, mean features, tillage features, and GLCM textural features,
were applied to both the methods, membership functions, and NN. The features were selected based
on the results of the literature review.
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2.7.1. Mean Features

In this study, band ratio, brightness, and maximum difference (Max. Diff) were considered as the
mean functions for both Sentinel-2A and Landsat-8 data. The band ratio included bands 2, 3, 4, 5, 6,
and 7 of Landsat-8 data with a resolution of 30 m and bands of 5, 6, 7, 8a, 11, 12 of Sentinel-2A data
with a resolution of 20 m. The brightness of an object represents the quality of lightness or darkness
within each image object [41,57,58]. Due to the contrast between soil and residue, lightness or darkness
within an object may differ from one to another. Accordingly, increasing the SSR within an object
increases the brightness of the object while an increasing amount of soil within an object decreases the
brightness of the object.

B =

∑nvis
i=1 ci(vis)

nvis
, (1)

where B is the brightness of an image object, ci(vis) is the sum of the mean object brightness in the
visible bands, and nvis is the number of corresponding spectral bands.

In OBIA, Max. Diff (MD) for each image object is defined as the absolute difference between the
minimum object mean and the maximum object mean in the visible bands divided by the mean object
brightness [37].

MD =

∣∣∣∣min
(
Ci(vis)

)
−max

(
Ci(vis)

)∣∣∣∣
B

, (2)

2.7.2. Tillage Features

In the literature review, we discussed different tillage spectral indices which aim to distinguish
the SSR from soil. These indices might vary depending on the type of spectral image (multispectral
and hyper-spectral) and the characteristics of the sensor. We used the indices described in Section 3.2
and Tables 2 and 3.

2.7.3. Textural Features

Textural features based on a gray level co-occurrence matrix (GLCM) were first introduced by
Haralick et al. [59]. The initial 23 textural features were decreased to eight major features (Table 4)
in [60]. Textural features are calculated based on the distance and angle between two pairs of adjacent
pixels that are located in a window. The accurate extraction of textural features in a pixel-based image
analysis method depends on the size of the window, while in an object-based approach, the results of
segmentation create objects with different shapes and sizes. These objects, which are considered as
windows, can illustrate the real shape and size of the land cover objects [61].

Table 4. Gray level co-occurance matrix (GLCM)-based textural features

Index Formula

Angular second moment (ASM)
∑

i
∑

j
{
p(i, j)

}2

Contrast
N−1∑
i, j=0

pi, j(i− j)2

Correlation
N−1∑
i, j=0

pi, j

 (i−µi)( j−µi)√
(σ2

i )
(
σ2

j

)


Dissimilarity
N−1∑
n=0

n

 N∑
i=1

N∑
j=1

p(i, j)


Entropy

N−1∑
i, j=0

pi, j
(
−ln pi, j

)
Homogeneity

∑
i
∑

j
1

1+(i− j)2 p(i, j)

Mean µi =
N−1∑
i, j=0

i
(
pi, j

)
Standard Deviation (St.D) σi =

√
N−1∑
i, j=0

pi, j

(
i, j−

∑N−1
i, j=0 pi, j

N2

)
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The main assumption in the computation of object-based GLCM textural features is the probability
of the simultaneous presence of a pair of objects with the same brightness. The GLCM is a square
matrix in which each member represents the number of pairs of pixels. The GLCM texture considers
the relationship between two pixels at a time. These two pixels are called the reference and neighbor
pixels and they are at a distance d and an angle θ to each other [62]. The directions of analysis for
GLCM can be horizontal (0◦), vertical (90◦), or diagonal (45◦ and 135◦) and are denoted as a0, a45, a90,
and a135.

2.8. Accuracy Assessment

2.8.1. Overall Accuracy

The estimation of the error matrix is the most common method for estimating the accuracy of the
classification results. To analyze the classification quality, the error matrix compares the classification
results with ground truth data. The overall accuracy is the key factor to evaluate the accuracy of the
classified map. It can be calculated as the area of the correctly classified sample objects divided by the
total area of sample objects (Equation (3)) [27].

OA =

∑N
k=1 akk∑N
i,k=1 aik

, (3)

where i is the row number, j is the column number, p(i, j) is normalized value in the cell, and N is the
number of rows or columns.

2.8.2. User Accuracy

The user accuracy is the accuracy from the point of view of a map user. It demonstrates how the
class on the map will actually be present on the ground. The user accuracy is calculated from the
number of correctly identified objects in a given map class divided by the number of claimed objects to
be in that map class (Equation (4)) [27].

UA =
aii∑N

i=1 aik
, (4)

2.8.3. Producer Accuracy

The producer accuracy is the accuracy from the point of view of a map maker. It demonstrates
how the real objects on the ground are correctly shown on the classified map. It is also calculated from
the number of correctly identified objects in the reference plots of a given class divided by the number
actually in that reference class (Equation (5)) [27].

PA =
att∑N

i=1 aki
, (5)

2.8.4. Kappa Statistics

The kappa coefficient is a statistical method that measures the accuracy of an image classification
process. The reason for the robustness of this method is that it eliminates agreement occurring by
chance through the classification. The range of the kappa coefficient is from −1 to 1. A value of
1 indicates that the raters are in complete agreement [63]. A value of 0 indicates no agreement between
the raters, which means the classification is completely by chance. A negative kappa coefficient
indicates agreement worse than occurring by chance. The kappa coefficient is expressed as:

κ =
Pa − Pe

1− Pe
, (6)
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where Pa is the probability of relative observed agreement between raters and Pe is the probability of
a chance agreement.

3. Results

3.1. Tillage Indices

The spectral indices described in Section 2.5 were calculated to estimate the residue. Figure 4
shows the linear correlation between Landsat-8-based tillage indices (normalized difference tillage
index (NDTI), simple tillage index (STI), normalized difference index 7 (NDI7), normalized difference
index 5 (NDI5), shortwave red normalized difference index (SRNDI), and modified crop residue cover
(MCRC)) and the percentage of the SSR.
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Figure 4. Correlation between Landsat-8-based tillage indices and soil surface residue (SSR).
(a) Normalized difference tillage index (NDTI), (b) Simple tillage index (STI), (c) normalized difference
index 7 (NDI7), (d) Normalized difference index 5 (NDI5), (e) Shortwave red normalized difference
index (SRNDI), and (f) Modified crop residue cover (MCRC).

The coefficient of determination (R2) explains how much a dependent variable (here, surface
residue) is affected by an independent variable (here, tillage indices) and to what degree these changes
are impacted by related objects such as soil and vegetation. The root-mean-square error (RMSE) also
indicates the distance of the individual points from a regression line, whereby greater distances mean
greater errors and lower distances are equal to smaller errors.

The linear regression between the Landsat indices and SSR demonstrated NDTI as the best index
with R2 of 0.727 and RMSE of 11.51%, closely followed by the STI with R2 of 0.722 and RMSE of
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11.62%. Thus, both NDTI and STI are efficient SSR estimators, which is in line with the results of earlier
studies (e.g., [12,16,18,21,22]). The NDI7 and SRNDI indices yielded similar results with R2 and RMSE
values of 0.625 and 13.50%, respectively. Finally, the results of NDI5 and MCRC were considered to be
insufficient with R2 of 0.395 and 0.232 and RMSE of 17.16% and 19.33%, respectively. This is again in
line with the results of Sullivan et al. [64].

As mentioned in the literature review, lignin and cellulose in the residue cause a high absorption
at the electromagnetic spectra around 2100 nm wavelength. The NDTI and STI utilize Landsat-8 bands
6 and 7 which cover wavelengths between 1560 nm and 2300 nm. Once the wavelength range is too
broad, other factors such as water, vegetation, soil, and minerals may influence the results. Figure 5
shows an SSR map of the Landsat-8-based indices. Brighter regions indicate more residue on the
surface and darker areas represent a shortage of the SSR.
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In a second step, the Sentinel-2A satellite image (bands 5, 6, 7, 8a, 11 and 12) with 20 m resolution
was similarly investigated to estimate the percentage of the SSR (Figure 6).

The SNDTI-based model correlates with the ground truth data with R2 of 0.76 and RMSE of
10.80%, followed by the SSTI indicator with R2 of 0.75 and RMSE of 10.83%. The Narrow near infrared
tillage index (NITI) indicator yielded R2 of 0.61 and RMSE of 13.67%. Figure 7 shows the resulting SSR
maps based on the Sentinel-2A satellite image data. Lighter areas indicate high SSR values and darker
regions represent low SSR values.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 21 
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Figure 6. Linear regression between Sentinel-2A-based tillage indices and SSR: (a) Sentinel normalized
difference tillage index (SNDTI), (b) Sentinel simple tillage index (SSTI), (c) Narrow near infrared tillage
index (NITI), (d) Vegetation red edge shortwave tillage index (VRESTI), (e) Vegetation red edge tillage
index (VRETI), and (f) Red shortwave difference index (RSDI).
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3.2. Results of Object-Based Image Analysis Methods

3.2.1. Fuzzy Object-Based Image Analysis

Fuzzy Membership Values

According to our literature review, the fuzzy sigmoid function was described as a very suitable
function to compute fuzzy membership values of feature spaces in several studies. Thus, we computed
fuzzy membership values using a Gaussian function. Results are presented in Table 5 and the functions
with the highest membership values are highlighted in bold.
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Table 5. Membership values of feature spaces for the Sentinel-2A and Landsat-8 images.

Sentinel-2A Landsat 8

Features
Membership Values

Features
Membership Values

<30% 30%–60% >60% <30% 30%–60% >60%
VRETI 0.846 0.922 0.907 NDVI 0.862 0.917 0.973
RSDI 0.842 0.903 0.878 NDSVI 0.962 0.958 0.844

SNDTI 0.939 0.922 0.965 SRNDI 0.963 0.893 0.885
SSTI 0.937 0.925 0.962 NDI7 0.981 0.902 0.839
NITI 0.873 0.917 0.920 NDI5 0.943 0.813 0.77

VRESTI 0.849 0.926 0.914 MSSR 1 0.95 0.928
Entropy 0.826 0.815 0.753 STI 0.979 0.978 0.893

Dissimilarity 0.825 0.918 0.824 NDTI 0.976 0.967 0.914
Homogeneity 0.760 0.961 0.882 Homogeneity 0.93 0.955 0.942

ASM 0.848 0.858 0.900 Contrast 0.97 0.85 0.69
Contrast 0.902 0.912 0.898 St. D 0.977 0.683 0.636

St. D 0.923 0.866 0.905 ASM 0.924 0.867 0.806
Mean 0.931 0.902 0.991 Dissimilarity 0.97 0.862 0.75

Correlation 0.995 0.969 0.935 Mean 0.637 0.993 0.879
Band 6 0.884 0.867 0.882 Entropy 0.893 0.878 0.839
Band 7 0.871 0.858 0.876 Correlation 0.914 0.793 0.674
Band 8a 0.882 0.853 0.879 Max. Diff 0.963 0.902 0.846
Band 11 0.958 0.926 0.953 Band 2 0.994 0.941 0.948
Band 12 0.98 0.956 0.979 Band 4 0.99 0.966 0.985
Band 5 0.853 0.865 0.863 Band 5 0.948 0.911 0.972

Max. Diff 0.86 0.948 0.926 Band 3 0.964 0.97 0.997
Brightness 0.888 0.872 0.917 Band 7 0.967 0.985 0.751

Band 6 0.987 0.997 0.919
Brightness 0.973 0.998 0.886

Results of Classification Based on Fuzzy Membership Functions

We implemented the classification algorithms using eCognition Developer to apply fuzzy logic to
membership functions and classified image objects using three classes (Figure 8). The classification
algorithm evaluated the class descriptions completely and then assigned each object to the
corresponding class.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 21 
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Accuracy Assessment for the Membership Function Classification

An accuracy assessment was carried out by comparing the map derived using the membership
function method with the ground truth data. Results for both Sentinel-2A and Landsat-8 image are
shown in Table 6.

Table 6. Accuracy assessment of object-based image analysis (OBIA) membership function classification
for Landsat-8 and Sentinel-2 images.

Sensors Tillage Methods Producer
Ccuracy

User
Accuracy

Kappa Per
Class

Overall
Accuracy

Overall
Kappa

La
nd

sa
t-

8 Reduced tillage 0.928 0.915 0.919
0.924 0.870Minimum tillage 0.871 0.920 0.802

No tillage 0.961 0.928 0.932

Se
nt

in
el

-2
A Reduced tillage 0.934 0.989 0.915

0.948 0.918Minimum tillage 0.879 0.877 0.853

No tillage 0.954 0.998 0.976

3.2.2. Nearest Neighbor Object-Based Image Analysis

Classification of NN Using OBIA

As previously mentioned, the NN classification was applied based on OBIA features. We employed
algorithms based on earlier research [28], as well as on results of the per-pixel analysis which is discussed
in Section 3.1. We employed three groups of features for the Landsat-8 image, namely a) spectral
features (mean values for bands 4, 5, and brightness), b) textural features (GLCM mean), and c) tillage
features (NDTI, STI, and NDI7). Likewise, we employed the same spectral features, textural features,
and the new tillage features (SNDTI, SSTI, and NITI) for the NN classification of the Sentinel-2A image.
Figure 9 shows the results of the NN classification for object-based SSR mapping.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 21 
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Accuracy assessment of NN-OBIA

An accuracy assessment was carried out by comparing the map created using the NN method
with a reference map based on validated ground truth data. Results for both Sentinel-2A and Landsat-8
data are shown in Table 7.

Table 7. Accuracy assessment of the NN classification method using OBIA for Landsat-8 and
Sentinel-2A images.

Sensors Tillage Methods Producer
Accuracy

User
Accuracy

Kappa Per
Class

Overall
Accuracy

Overall
Kappa

La
nd

sa
t-

8 Reduced tillage 0.693 0.571 0.525
0.812 0.734Minimum tillage 0.654 0.743 0.828

No tillage 0.840 0.982 0.761

Se
nt

in
el

-2
A Reduced tillage 0.921 0.834 0.705

0.891 0.813Minimum tillage 0.853 0.882 0.787

No tillage 0.949 0.894 0.820

4. Discussions

Some earlier remote sensing-based studies demonstrated the potential to distinguish no tillage
from intensive tillage, but it was and is still difficult to distinguish between categories of conservation
tillage (minimum tillage and no tillage) due to the similarities between soil and residue [21,65].
The present study employed per-pixel and object-based image analysis approaches to estimate the SSR
using Sentinel-2A and Landsat-8 data.

4.1. Landsat-8 vs. Sentinel-2A

We aimed to compare the capability of Sentinel-2A and Landsat 8 satellite images for SSR mapping.
Different band combinations were employed to explore the capabilities of six Sentinel-2A bands for
analyzing the SSR using six Sentinel-2A bands (5, 6, 7, 8a, 11, and 12). In order to map the SSR from
Sentinel-2A, we developed the following indices: Sentinel normalized difference tillage index (SNDTI),
Sentinel simple tillage index (SSTI), narrow near infrared tillage index (NITI), vegetation red edge
shortwave tillage index (VRESTI), red shortwave difference index (RSDI), and vegetation red edge
tillage index (VRETI). The same bands and indices were applied to per-pixel and OBIA image analysis
methods. The results of estimating the SSR using Landsat-8 and Sentinel-2A data models revealed
that Sentinel-2A indices (Sentinel NDTI and Sentinel STI) were able to map the SSR more efficiently
than Landsat-8 and its respective indices (Landsat NDTI and Landsat STI). Differences in the spatial
resolution of these two major sources of remote sensing data justify such a difference. In particular,
Sentinel-2A has a 20 m spatial resolution with 13 bands, while Landsat has a 30 m spatial resolution and
11 bands. Due to the absorption properties of lignin and cellulose at 2100 nm of the electromagnetic
spectrum, it can be concluded that both NDTI and STI indicators for Landsat-8, and NDTI and STI
indicators for Sentinel-2A, which monitor the spectrum region of 2100 nm, were able to estimate and
map the SSR more accurately than other indices. Similar results have also been reported in earlier
research using Landsat satellites images [10,12,17,19].

4.2. Pixel-Based Image Analysis

As demonstrated in Section 3, per-pixel approaches for Landsat-8 satellite images using NDTI
and STI indices yielded R2 values of 0.727 and 0.722, respectively. Sentinel-2a and the novel but
comparable indices yielded R2 values of 0.760 and 0.759, respectively. It means that the Sentinel-2
data better matched the ground truth data. Due to the same spectral resolution for the applied bands
(1560–1660 nm and 2100–2300 nm) for those indices, and given that all the images were subjected to the
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same radiometric and atmospheric corrections, it is concluded that the spatial resolution of Sentinel-2
data improved the correlation of estimated SSR data with the ground truth data. It was also a key
factor for producing lower RMSE than Landsat 8 data.

Results showed that, while getting closer to the 2100 nm region in the selection of bandwidths for
calculating an indicator, increased the correlation between estimated and actual SSR and produced
higher RMSE, getting away from that region produced lower RMSE. It obviously can be observed for
NDI7 (band 5–band 7), SRNDI (band 7–band 4), NDI5 (band 5–band 6), and MCRC (band 6-band 3) for
Landsat-8 indices and NITI (band 8a–band 12), VRESTI (band 7–band 12), and VRETI (band 6–band
12) for Sentinel-2 indices. The results were in line with former studies [19,20,22].

4.3. Object-Based Image Analysis

We tested several OBIA methods and achieved very high overall accuracies of up to 0.948 for
Sentinel-2A and 0.891 for Landsat-8, but with some differences between the two OBIA approaches
used. Earlier studies also yielded high accuracies using Landsat images for SSR classification [21,26].
As discussed in Section 2, the basis for classifying using the OBIA approach is the application of fuzzy
logic to assign objects in the scene to each class. In this way, two methods of classification (membership
functions and nearest neighbor) were employed. Overall accuracy results in Section 4 showed a fine
superiority of membership functions over the nearest neighbor. The most important reason that can
influence this superiority is the applied method for selecting properties in order to assign local objects to
the classes. While, membership functions perform based on the magnification of the fuzzy number for
each object class, in the nearest neighbor the properties ascertain based on a map maker’s knowledge,
which may increase the overall error of the classification. However, a reason for the popularity of the
nearest neighbor may in some cases be faster computations that reduce time costs, because this method
does not require time-consuming fuzzy calculations to select final properties [27,28,36].

4.3.1. Membership Function Method

A critical step when using membership functions in the OBIA process is the selection of a suitable
membership function to compute fuzzy membership values. To this end, in order to compute
membership values for the selection of the final features for the classification, a Gaussian function
was applied in our research. Advantages of the Gaussian functions are that they need less data to
define a membership function and that the membership function parameters can easily be modified.
In addition, the partition unity condition is automatically satisfied (the sum of the membership values
for each object is equal to 1) as discussed in former studies [66,67].

The accuracy of a fuzzy membership function classification can be significantly improved by
selecting an appropriate operator. As discussed in Section 3, two categories of operators (simple and
weighted) were implemented in the eCognition software to make a fuzzy conjunction, disjunction,
or complement in the feature spaces. In this study, based on the results of former research [30,36,68],
the fuzzy operator of ‘AND’ was applied to classify image objects. Finally, features were selected in
a way to apply the classification based on the maximum membership value for a particular object class.

As previously mentioned in Section 3, the accuracy of classification for each individual class
was obtained using user and producer accuracies. It was observed that among the three classes
(reduced tillage, minimum tillage, and no-tillage), the highest classification accuracy was assigned to
the no-tillage class. It was due to the accumulation of the residue in the local objects that classified
as no tillage (SSR more than 60%). In this context, the light and yellowish color of the residue well
distinguished them from the soil and increased classification accuracy. In terms of accuracies, reduced
tillage was the second class to meet study objectives. In this way, the main part of the assigned objects’
class included the dark and brownish color of the soil that distinguished them from the other objects.
In this study, minimum tillage class (SSR between 30%–60%) also obtained lowest producer and user
accuracies from both Landsat-8 and Sentinel-2A data. The objects assigned to this class were mainly
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a uniform mixture of residue and soil. It was clearly due to an overlapping problem of spectral
boundaries from reduced tillage and no-tillage classes into this class.

4.3.2. The NN Classification Method

As discussed in Section 2.7, one of the most important steps in the NN classification method is to
identify efficient feature space. This is due to the direct implementation of the selected feature space in
the classification process. It means that no computational evaluation is performed by the NN method
to select features. In this study, the primary feature space was composed of three feature categories
(mean features, spectral features, and GLCM textural features). Features were selected and optimized
based on the results of our earlier research [28] together with results derived from the per-pixel analysis.
The comparison of the resulting accuracies of Landsat-8 and Sentinel-2A images using the NN method
demonstrated that spatial resolution is a critical factor for SSR detection. Results from the Sentinel-2A
satellite with 20 m resolution yielded a higher accuracy than those derived from Landsat-8 data with
30 m resolution, which is in line with the results of earlier studies [21,24].

5. Conclusions

Due to the water and soil erosion problems affected by agricultural activities, the use of conservation
tillage methods has increasingly been recommended in recent years as an appropriate alternative to
intensive tillage methods. Conservation tillage methods typically leave the previous crop residues,
or parts of it, on the soil surface. It is well demonstrated that this practice can significantly reduce
water consumption, especially in arid and semi-arid regions.

Intensive tillage methods with burning or burying previous crop residues are in contrast to
sustainable agricultural approaches. Today, conservation tillage methods are widely used, and many
equipment (machines, pesticides, and specialists) are provided for. Thus, knowing the percentage of
residue on the soil surface in a large agricultural area is very informative for agricultural organizations
in planning support programs and providing necessary requirements. In precision farming point
of view, satellite images can be used for fast and accurate SSR estimation in order to distinguish
conventional and conservation tillage practices on the fields with lower time and labor costs. The aim
of this study was to provide a fast, inexpensive, and precise solution to map and characterize the
residue left on the soil surface after tillage and planting practices. We have found that satellite remote
sensing data can be used to identify areas under conservation tillage from those under intensive
tillage methods. To this end, we also designed a novel and successful fuzzy object-based approach
to estimate SSR and map tillage intensity and then compared it with per-pixel methods. Results
indicated that, in general, the remote sensing-based methods can provide appropriate information on
the applied tillage methods to technical experts, farmers, and decision makers to improve conservation
management efficiency in a region, but with slightly different results between the methods used.

In total, among the applied approaches (pixel-based and object-based), OBIA due to the capability
of SSR classification in individual classes is more applicable for decision makers than pixel-based
methods (continuous residue cover mapping). When comparing two different OBIA classification
strategies, the membership function classifier yielded the highest accuracies for residue mapping.
In terms of the comparison of the two satellites used, we can state that Sentinel-2A data yielded better
SSR mapping results for both pixel-based (tillage indices) and object-based (membership functions
and NN) approaches compared with Landsat-8 data. It was due to the better spatial resolution of the
Sentinel-2 images in which the details were better specified and accuracy increased.
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