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Abstract: Single image super-resolution (SISR) has been widely studied in recent years as a crucial
technique for remote sensing applications. In this paper, a dense residual generative adversarial
network (DRGAN)-based SISR method is proposed to promote the resolution of remote sensing
images. Different from previous super-resolution (SR) approaches based on generative adversarial
networks (GANs), the novelty of our method mainly lies in the following factors. First, we made a
breakthrough in terms of network architecture to improve performance. We designed a dense residual
network as the generative network in GAN, which can make full use of the hierarchical features from
low-resolution (LR) images. We also introduced a contiguous memory mechanism into the network
to take advantage of the dense residual block. Second, we modified the loss function and altered
the model of the discriminative network according to the Wasserstein GAN with a gradient penalty
(WGAN-GP) for stable training. Extensive experiments were performed using the NWPU-RESISC45
dataset, and the results demonstrated that the proposed method outperforms state-of-the-art methods
in terms of both objective evaluation and subjective perspective.

Keywords: single image super-resolution (SISR); remote sensing images; generative adversarial
network (GAN); dense residual network (DRN); Wasserstein GAN with gradient penalty (WGAN-GP)

1. Introduction

High-resolution (HR) images, which contain abundant, detailed information, are crucial for
various remote sensing applications, such as target detection, surveillance [1], satellite imaging [2]
and others. Increasingly, many researchers prefer to reconstruct HR images from low-resolution (LR)
images via an image processing technology called super-resolution (SR), which is popularly used to
solve the LR problems caused by the sensor, compensates for the deficiencies of the hardware and
overcomes the influence of fuzziness, noise and other factors in the process of imaging [3–5].

Single image super-resolution (SISR) is an inherently ill-posed problem since vast pixel intensities
need to be predicted by the LR pixel. Such a problem is typically mitigated by constraining the solution
space using strong prior information. In order to learn the prior information, recent state-of-the-art
methods mostly adopt the example-based [6] strategies. Those methods either explored the
self-similarities of examples [7,8] or mapped the LR to HR patches with the help of external samples [9,10].
Yang et al. implemented a SR method utilizing sparse code to express LR and HR images [11]. Li et al.
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used the sparsity prior of image statistics to recover images [12]. Pan et al. proposed an SISR method
based on compressive sensing and structural self-similarity [13]. Radu et al. proposed anchored
neighborhood regression (ANR) for fast, example-based SR [14], and then proposed an improved
version called A+ [15].

In recent years, due to the powerful learning ability, deep learning (DL) models, especially
convolutional neural networks (CNNs), have been widely used to address the ill-posed inverse
problem of SR and have demonstrated superiority over reconstruction-based methods [16,17] and
other learning paradigms [18,19]. As the pioneering CNN model for SR, Dong et al. [20] proposed an
algorithm for super-resolution using convolutional neural networks (SRCNN) to predict the nonlinear
mapping between the LR and HR patches, which significantly outperformed the classical non-DL
methods. Shi et al. [21] presented an efficient sub-pixel convolutional neural network (ESPCN)
and rearranged the finally-acquired feature maps instead of up-sampling the images to reduce the
running time of the algorithm. Meanwhile, Dong et al. [22] proposed a compact, hourglass-shaped
convolutional neural network structure (FSRCNN) to accelerate SRCNN, which could process images
in real time. With the advantages of effectively building modules, the networks for SISR were made
deeper and wider to obtain better performance. Zhao et al. [23] proposed a novel SISR approach
for magnetic resonance (MR), which applied a channel splitting network to ease the burden of the
network. Abdul et al. [24] presented a hybrid residual attention network (HRAN), which can greatly
reduce the complexity of the CNN and achieve better performance. In [25], Zhao et al. proposed a
novel, example-based method for SISR, which contains two stages in the method and achieves better
reconstruction accuracy. Li et al. [26] presented a spatial modulated residual unit (SMRU) and a
recursively dilated residual network (RDRN) which can effectively utilize the contextual information
upon larger regions. In [27], He et al. designed a novel, deep–shallow cascade-based CNN method,
which can effectively recover the high-frequency information of remote sensing images.

SISR is also of great practical value for remote sensing and hyperspectral images, as it can assist
the visual interpretation of images in many fields of application, such as meteorology, agriculture,
military, etc. Ma et al. [28] present a novel method for remote sensing images via the wavelet transform
combined with the recursive residual network (WTCRR), which can fully exploit the potential to
depict remote sensing images at different frequency bands. Zhang et al. [29] applied multiple-point
statistics (MPS) and isometric mapping (ISOMAP) to solve the SR problem of remote sensing images,
which effectively utilized their respective advantages. Gu et al. [30] proposed a deep residual squeeze
and excitation network (DRSEN) to reduce the computational complexity and improve the accuracy of
remote sensing image reconstruction. Based on Laplacian pyramid network, He et al. [31] proposed a
novel SR method to enhance the resolution of hyperspectral images and simultaneously preserve the
spectral information. In [32], Kwan et al. integrated a hybrid color mapping (HCM) algorithm and a
plug-and-play algorithm for hyperspectral images SR task.

Moreover, generative adversarial networks (GANs) [33] have been developed rapidly and have
attracted a large amount of attention in recent years. Ledig et al. designed a GAN for image
super-resolution (SRGAN) [34]. He separately employed a deep residual network proposed by
He et al. [35] with skip-connection as the generative network (GN) and designed a classification
network as the discriminative network (DN). Moreover, he proposed a perceptual loss function
that consisted of an adversarial loss and a content loss. Ma et al. [36] proposed a novel method on
SR task named transferred generative adversarial network (TGAN), which can enhance the feature
representation ability of the model and solve the problem of poor quality and insufficient quantity of
remote sensing images. Alec et al. [37] proposed a novel network architecture, deep convolutional
generative adversarial networks (DCGANs), and enhanced the stability of the training and the
quality of the results. Martin et al. [38] defined a new form of GAN named Wasserstein GAN
(WGAN), which minimizes a reasonable and efficient approximation of the earth-mover (EM) distance.
Subsequently, Ishaan et al. [39] improved WGAN by penalizing the norm of gradient of the critic with
regard to its input (WGAN-GP), which outperformed the standard WGAN.
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However, GAN-based SR approaches mainly focus on the design of the loss function, ignoring
the influence of the property on the final performance of the method. Moreover, it is difficult to decide
when to suspend the training of the generator or discriminator for traditional GAN-based approaches.
Also, GAN-based methods often suffer from the situation of a gradient disappearing.

To address the above drawbacks, we propose a dense residual generative adversarial network
(DRGAN) for the remote sensing images SR task. More specifically, we introduce a network with
residual learning and dense connection as the GN, which is able to take advantage of all the hierarchical
features from the original LR images abundantly. We incorporated a memory mechanism (MM) into
the GN by using dense residual unit (DRU), which could further enhance the performance of GN,
as well as that of DRGAN. Moreover, we took note of the key idea of WGAN-GP, which could improve
the training speed and solve the problem of gradient vanishing in GAN-based SR approaches. We
modified the DN and improved the loss function also. Extensive experiments were performed using
the NWPU-RESISC45 dataset, and the DRGAN method we propose was compared with the classical
methods. The experimental results demonstrated that the new method improves both the test accuracy
and visualization results.

This paper is organized as follows: In Section 2, we introduce GAN-based and residual
learning-based methods and briefly discuss their pros and cons. Then, we describe the proposed
DRGAN method in detail in Section 3. Sections 4 and 5 are dedicated to the experimental details and a
comparison of the results with those of other state-of-the-art methods, respectively. Next, we present a
discussion of the proposed method in Section 6. Finally, the conclusions are drawn in Section 7.

2. Related Work

The success of Alex-Net [40] in ImageNet created a new era of DL for vision. In recent years,
DL-based methods have achieved dramatic performance compared with conventional methods in
SISR, especially GAN-based and residual learning-based approaches. The work related to these two
approaches in SISR is described briefly in this section.

2.1. GAN-Based SR

GAN presented by Goodfellow et al. was mainly inspired by the idea of a zero-sum game in game
theory. The core idea of GAN-based SR is training a GN, as shown in Figure 1, with the goal of fooling
a diverse DN that is trained to distinguish reconstructed images from real images.Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 25 
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color in Figure 3 belong to the same class. VDSR increased the network depth via cascading, vast 
convolutional layers. Since the reconstructed HR image is very similar to the input, global residual 
learning (GRL) is effective at reducing the difficulty of training deep networks. Kim et al. [43] 
augmented the receptive field of the network by introducing a recurrent neural network (DRCN), as 
shown in Figure 3b, which is beneficial for parameter sharing and reducing memory consumption. 
Moreover, they utilized recursive-supervision and skip-connection to overcome the difficulty of 
training. Tai et al. [44] proposed a very deep convolutional neural network model named deep 
recursive residual network (DRRN, illustrated in Figure 3c) that strives for deep yet concise networks. 
DRRN adopts both GRL and LRL. GRL and LRL mainly differ in that LRL is performed in every few 
stacked layers, while GRL is performed between the input and output images. Particularly, both GRL 
and LRL are employed to ease the problem of training the deep network. Comprehensive empirical 
evidence shows that the residual networks are easier to optimize and able to gain accuracy from their 
considerably increased depth. In contrast to residual learning-based SR methods, GAN-based 
approaches can recover more convincing and realistic HR images. 

3. Proposed Method 

In this section, we first describe the designed GN in the proposed dense residual generative 
adversarial network (DRGAN) in detail. Then, we demonstrate the DN part. Finally, we explicitly 
introduce the modified loss function of DRGAN according to WGAN-GP. 

In this paper, let GI denote the ground-truth image with size m × n. LI denotes the down-
sampled result of GI with size (m/s) × (n/s), where s is the corresponding scale factor. SRI represents the 
corresponding reconstructed SR image with size m× n. 

Figure 1. The architecture of the generative network (GN) in a GAN for image super-resolution
(SRGAN). Layers with the same color indicate that they are the layers of the same type. IL is fed into
the network and passed through GN, and finally, IHR is obtained.

Moreover, SRGAN defines a novel perceptual loss consisting of an adversarial loss and a content
loss. The content loss is obtained based on the Euclidean distance between the feature maps of the
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images generated and the ground-truth images extracted from VGG19 [41]. The adversarial loss is
achieved by the DN as shown in Figure 2.
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activation function is utilized to obtain the probability for distinction.

The proposed loss function was not based on the mean square error (MSE) of the pixel space,
resulting in the reconstructed images exhibiting relatively low peak signal-to-noise ratios (PSNRs).
Moreover, SRGAN always suffers from the conundrums of training and the gradient disappearing.

2.2. Residual Learning-Based SR

Originally, residual learning was proposed to address problems such as image classification
and detection. Residual learning exhibits excellent performance in computer vision problems from
low-level to high-level tasks. Christian et al. introduced the idea of residual learning into the problem
of SR and employed a deep residual (Res-Net) with skip-connection as the GN, as shown in Figure 1.
Res-Net utilizes local residual learning (LRL) to ease the training of networks, and comprehensive
empirical evidence showed that the residual networks are easier to optimize and able to gain accuracy
from the considerably increased depth. Nevertheless, LRL simply extracts local features by preserving
the information, and it is not able to save the hierarchical features in a global manner.

Kim et al. [42] were enlightened by the residual network and then introduced a deeper network for
super-resolution (VDSR), as shown in Figure 3a. It should be noted that the layers with the same color in
Figure 3 belong to the same class. VDSR increased the network depth via cascading, vast convolutional
layers. Since the reconstructed HR image is very similar to the input, global residual learning (GRL) is
effective at reducing the difficulty of training deep networks. Kim et al. [43] augmented the receptive
field of the network by introducing a recurrent neural network (DRCN), as shown in Figure 3b,
which is beneficial for parameter sharing and reducing memory consumption. Moreover, they utilized
recursive-supervision and skip-connection to overcome the difficulty of training. Tai et al. [44]
proposed a very deep convolutional neural network model named deep recursive residual network
(DRRN, illustrated in Figure 3c) that strives for deep yet concise networks. DRRN adopts both GRL
and LRL. GRL and LRL mainly differ in that LRL is performed in every few stacked layers, while GRL
is performed between the input and output images. Particularly, both GRL and LRL are employed to
ease the problem of training the deep network. Comprehensive empirical evidence shows that the
residual networks are easier to optimize and able to gain accuracy from their considerably increased
depth. In contrast to residual learning-based SR methods, GAN-based approaches can recover more
convincing and realistic HR images.
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3.1.1. Feature Extraction 

We employed two convolutional layers to extract features at first, because of two significant 
roles of convolutional layers: mitigating the effect of noise and strengthening the characteristics of 
the original signal. The operation of the feature extraction part can be expressed as follows:  

Figure 3. Architectures of convolutional neural networks (CNN)-based networks. (a) VDSR. The red
line represents the global residual learning (GRL). There are 20 convolutional layers in total, each of
which consists 64 filters of size 3 × 3. The tawny layers represent the element-wise sum operation.
(b) DRCN. The layers in yellow refer to recursive layers and share the same weights and bias. The final
output is obtained by computing the weighted mean. (c) DRRN. The green blocks represent recursive
units, and each of them contains two convolutional layers and the corresponding activation functions.
DRRN adopts both GRL and local residual learning (LRL).

3. Proposed Method

In this section, we first describe the designed GN in the proposed dense residual generative
adversarial network (DRGAN) in detail. Then, we demonstrate the DN part. Finally, we explicitly
introduce the modified loss function of DRGAN according to WGAN-GP.

In this paper, let IG denote the ground-truth image with size m × n. IL denotes the down-sampled
result of IG with size (m/s) × (n/s), where s is the corresponding scale factor. ISR represents the
corresponding reconstructed SR image with size m × n.

3.1. Structure of the GN

The whole architecture of the GN is drawn in Figure 4. According to the functions in the GN,
we can divide it into four parts: feature extraction, dense residual units (DRUs), residual learning and
image reconstruction. IL and ISR are the input and output of the GN, respectively. Nah et al. removed
the batch normalization layers in their image deblurring work due to the batch normalization layers
normalizing the features and getting rid of range flexibility [45]. That is to say, the batch normalization
layers are applicable in the area of target classification rather than the field of SR. Therefore, we did not
employ batch normalization (BN) layers in the whole GN, as shown in Figure 4.
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Figure 4. The architecture of the GN in the proposed DRGAN. IL is also taken for GRL afterwards,
in addition, to the input of the network. Layers with the same color represent layers of the same type.

3.1.1. Feature Extraction

We employed two convolutional layers to extract features at first, because of two significant roles
of convolutional layers: mitigating the effect of noise and strengthening the characteristics of the
original signal. The operation of the feature extraction part can be expressed as follows:{

F1 = g(WFE,1 ∗ IL + BFE,1)

FE = g(WFE,2 ∗ F1 + BFE,2)
, (1)

where WFE,1 and WFE,2 represent nFE,1 convolution kernels of size c× kFE,1 × kFE,1 and nFE,2 convolution
kernels of size nFE,1 × kFE,2 × kFE,2, respectively; c denotes the channel number of the input image IL;
kFE,1 and kFE,2 are the spatial sizes of the convolution filter; BFE,1 and BFE,2 represent the biases; ∗
represents the convolution operation; g(·) represents the activation function; and FE is the output part
of the feature extraction and the input of the DRU.

In the case of SR, we only need to process the luminance channel of images, since human eyes
are more sensitive to the brightness information of the images. Thus, we extract the Y-channel after
transforming the images from RGB to YCbCr color space. The remaining two channels are upscaled to
the required size via bicubic interpolation, and the final SR image can be obtained by fusing these three
channels of the image. Therefore, the channel number of the input image IL is always c = 1.

This paper adopts the parametric rectified linear unit (PReLU) [46] as the activation function
g(·). It can achieve a regular effect to a certain extent. Compared to ReLU [47], PReLU improves the
convergence rate of the network by adding a few of parameters. The formula of g(·) can be expressed
as follows:

g(x) =
{

x,
αtx,

i f x > 0
i f x < 0

, (2)

where αt is a learnable parameter, α is initialized to 0.25 and t denotes the time of iteration. When the
network updates the parameters in reverse, the update formula of αt can be formulated as

∆αt+1 = µ∆αt + ε
∂L
∂αt

, (3)

where µ denotes the momentum, ε refers to the learning rate and L represents the loss function.

3.1.2. DRUs

Assume that there are d DRUs; the specific architecture of each DRU is shown in Figure 5.
Each DRU includes three convolutional layers, three activation layers, one weighted-sum layer and one
element-wise sum layer. The convolutional layers in each DRU are densely connected in the manner
shown in Figure 5. GRL and LRL are utilized simultaneously.
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Dp,1 = Sp,1

(
g
(
Wp,1 ∗Dp−1 + Bp,1

)
, Dp−1

)
Dp,2 = Sp,2

(
g
(
Wp,2 ∗Dp−1 + Bp,2

)
, Dp,1, Dp−1

)
Dp,3 = Sp,3

(
g
(
Wp,3 ∗Dp−2 + Bp,3

)
, Dp,2, Dp,1, Dp−1

)
Dp = Dp,3 + Dp−1

(4)

where Wp,1 to Wp,3 and Bp,1 to Bp,3 represent the kernels and biases, respectively, of the three successive
convolutional layers; Sp,1 to Sp,3, denote the weighted-sum layers in sequence; Dp,1 to Dp,3 represent
the output of the former convolutional layers in sequence (the activation layers are omitted for clarity);
and Dp denotes the corresponding output of the p-th DRUp.

The blue lines in Figure 5 represent that the preceding outputs of convolutional layers in a DRU
are fed into the posterior convolutional layers, which form the short-term memory. Similarly, the red
and purple lines in Figure 5 represent that the preceding outputs of DRUs are fed into the latter layers,
which correspond to the long-term memory. The outputs of the previous DRUs and convolutional
layers can connect to the latter layers directly, which can not only save the feed-forward features but
also extract local dense features. All of these result in a memory mechanism.

In the circumstance that the former DRU and the whole convolutional layers are fed into
the latter layer, we need to decrease the feature numbers to reduce the burden of the network.
Thus, we employ weighted-sum layers Sp,1 to Sp,3 that adaptively learn specific weights for each
memory, which determines how much of the long-term and short-term memory should be saved.
We refer to the operation of Sp,1 to Sp,3 in DRUp as the local decision function.

3.1.3. Residual Learning

In recent studies, residual networks have achieved great performance on the low-level to high-level
computer vision tasks. In this paper, we adopt both LRL and GRL in order to make full use of them.
As shown in Figure 5, the blue lines represent LRL for the GN, and the red lines denote GRL for GN.
The whole function of the part of residual learning can be formulated as follows:

Rws = SRL ∗ (D1, D2, · · · , Dd, FE)
Rws,1 = g(WRL,1 ∗Rws + BRL,1)

R = Rws,1 + F1

, (5)

where SRL denotes the weighted-sum layer; WRL,1 and BRL,1 represent the kernel and bias, respectively,
of the convolutional layer; D1 to Dd represent the outputs of the d DRU successively; and Rws, Rws,1

and R denote the outputs of the weighted-sum layer, the convolutional layer and the element-wise
sum layer in the part of residual learning, respectively.
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The difference between LRL and GRL in the part of residual learning is that LRL is acquired
between the DRU and the weighted-sum layer, while GRL is implemented between the input image IL

and the element-wise sum layer, as shown in Figure 5. The weighted-sum layer SRL is used to extract
the hierarchical features obtained from the previous DRUs through LRL and to decide their proportions
in the ensuing features. We define the operation of SRL in the part of residual learning as the global
decision function compared to Sp,1 to Sp,3 in DRUp. The convolutional layer WRL,1 is employed to
further exploit features, and the element-wise sum layer aims for the GRL. The combination of LRL
and GRL improves the performance of the GN and is less prone to over-fitting.

3.1.4. Image Reconstruction

Inspired by ESPCN, we adopted a sub-pixel convolutional layer for image upscaling and
reconstruction in addition to a convolutional layer. The whole function of the part of image
reconstruction can be formulated as follows:{

I1 = g(WIR,1 ∗R + BIR,1)

ISR = I = WIR,sc ∗ I1
, (6)

where WIR,1 and BIR,1 represent the kernel and bias, respectively, of the convolutional layer; WIR,sc

denotes the sub-pixel convolutional layer; ∗ denotes the operation of sub-pixel convolution; I1 and
I denote the outputs of the convolutional layer and the sub-pixel convolutional layer in the part of
image reconstruction; and I is the final SR image obtained, ISR.

The sub-pixel convolution layer WIR,sc can be conceptually separated into two steps, and the
conceptual graph is shown in Figure 6:

1) Convolution. Similar to the previous convolution layers in the GN, this step is used to extract
features. The difference between them is that there are s2 feature maps according to the upscaling
factor s.

2) Arrangement. Arrange all the pixels in the corresponding position of s2 feature maps in a
predetermined order in order to combine them into a series of areas. The size of each area is s× s.
Each area corresponds to a mini-patch in the final SR image ISR. In this manner, we rearrange
the final feature maps of size s2

× (m/s) × (n/s) into ISR of size 1×m× n. This implementation
equals the rearrangement of the image without convolution operations, and thus, requires very
little time.
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3.2. Structure of the DN

According to the theory of GANs, there is a DN in addition to the GN, which forms the adversarial
networks: the GN produces the reconstructed image ISR, while the DN is used to distinguish between
the ground-truth image IG and ISR. That is to say, we should optimize the parameters θDN in the
DN along with the parameters θGN in the GN in an alternating manner to solve the adversarial
min-max problem:

min
θDN

max
θGN

EIG∼PD [logθDN(IG)] + EIHR∼PG [1− logθGN(IHR)]. (7)

where PD is the distribution of the ground-truth image and PG is the distribution of the
reconstructed image.

With the advantages of the GAN, we can recover ISR that is highly similar to the ground-truth
image IG and difficult to distinguish via the DN.

However, differently from the DN in SRGAN, as shown in Figure 2, we make modifications in terms
of two aspects. First, we replace the last sigmoid layer with a Leaky ReLU layer referring to WGAN-GP.
The discriminator in SRGAN mainly aims for the task of true and binary classification, while the
purpose of the DN in DRGAN is fitting the distance of Wasserstein approximately. Second, we remove
the BN layers in the DN. We apply a gradient penalty for each sample individually. However, BN layers
in the DN will have undesirable effects on the gradient penalty for the reason that BN layers may
introduce interdependent relationships among different samples in the same batch. Thus, we omit the
BN layers. The final architecture of the DN is shown in Figure 7.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 25 
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3.3. Loss Function

In SRGAN, the perceptual loss function lSRGAN was proposed, and it was the weighted sum of a
content loss lcon and an adversarial loss ladv. The conceptual process of training SRGAN is shown in
Figure 8. lSRGAN is formulated as follows:

lSRGAN = lcon + 10−3ladv. (8)

Specifically, lcon is defined as the Euclidean distance between the feature maps of the recovered
image θGN(IL) and the corresponding ground-truth image IG in VGG, and it is formulated as

lcon =
1

w j,kh j,k

w j,k∑
x=1

h j,k∑
y=1

[
f j,k(IG)x,y − f j,k(θGN(IL))x,y

]2
, (9)

where f j,k is the feature map acquired from the k-th convolutional layer before the j-th pooling layer in
the VGG, and w j,k and h j,k denote the dimensions of the respective feature maps.
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VGG is taken as a universal feature extractor to extract high-level features. lcon is equal to the
MSE between the high-level features extracted by VGG. With the advantage of lcon, the reconstructed
images become more realistic and full of abundant details.
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Figure 8. The conceptual process of training the adversarial networks. The IG and ISR obtained from the
GN are fed into the DN and VGG simultaneously, and we can acquire the content loss and adversarial
loss, respectively. Then, we update the parameters in the adversarial networks according to the result
and repeat the process until the optimization is finished.

Besides the content loss, SRGAN also introduced the adversarial loss in order to promote the
network to favor solutions that reside on the manifold of ground-truth images by aiming to fool the
DN. The adversarial loss is obtained from the result of θDN(θGN(IL)) overall training samples as

ladv = − logθDN(θGN(IL)), (10)

where θDN(θGN(IL)) denotes the probability of judging the recovered image θGN(IL) as the corresponding
IG. Furthermore, Equation (10) is transformed into Equation (11) for better gradient behavior.

ladv = log[1− θDN(θGN(IL))] (11)

However, in this paper, according to WGAN-GP, we modify the loss function lDRGAN of the
proposed DRGAN to solve the problems of unstable training, gradient disappearing or exploding and
mode collapse. The method of WGAN-GP was used to train our model, thereby solving the problem of
gradient explosion during training via a new Lipschitz continuous limit method, the gradient penalty.
For this reason, we omit the BN layers in the DN, as mentioned above. BN layers may introduce the
interdependent relationships among different samples in the same batch. Moreover, the loss function
based on the MSE of pixel space is supplemented, and the DN is used to discriminate the feature maps
of ISR and IG extracted via VGG. In this manner, we can not only achieve convincing reconstructed
images with abundant details but also acquire results with high PSNRs. The corresponding process of
training the proposed DRGAN is shown in Figure 9.

Let lGN represent the loss function of GN and lDN denote the loss function of DN. Different from
lcon in SRGAN, lGN is formulated as

lGN =
1

mn

m∑
x=1

n∑
y=1

[
(IG)x,y − (θGN(IL))x,y

]2
, (12)

where lGN is the MSE between the reconstructed image ISR and the corresponding ground-truth image
IG in VGG. Because of the content loss, the MSE loss provides solutions with the highest PSNR values,
which are, however, perceptually rather smooth and less convincing than results achieved with a loss
component that is more sensitive to visual perception.
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Figure 9. The conceptual process of training DRGAN. The loss function based on mean square
error (MSE) is computed between the ground-truth image IG and ISR is obtained from the GN.
Then, the modified DN is used to distinguish the feature maps extracted by VGG, and the adversarial
loss is also obtained.

How lDN differs from ladv in SRGAN, as shown in Equation (10), is reflected in three aspects.
First, the DN is no longer used to distinguish the reconstructed image ISR and the corresponding
ground-truth image. VGG extracts the high-level feature maps of ISR and IG, which need to be
distinguished by the DN in our DRGAN. Second, the result of θDN(θGN(·)) is acquired without
logarithm operations. The reason for this choice is that the probability of distinguishing the fake from
the real data is replaced with the Wasserstein distance between the distributions of ground-truth images
and reconstructed images. The DN in DRGAN removes the last sigmoid layer. Third, the gradient
penalty is supplemented to keep the gradient steady in the process of back-propagation. The loss
function lDN of DN can be formulated as

lDN = θDN( f (θGN(IL))) − θDN( f (IG)) + λ[‖∇zθDN(z)‖2 − 1]2 (13)

where f (θGN(IL)) and f (IG) represent the feature maps of ISR and IG extracted by VGG;
[‖∇zθDN(z)‖2 − 1]2 is the gradient penalty according to WGAN-GP; λ is the coefficient set to 10
based on several comparative experiments; and ∇z indicates the operation of partial derivatives for z,
which can be formulated as

z = β f (IG) + (1− β) f (θGN(IL)), β ∼ uni f orm[0, 1]. (14)

The whole process of training the proposed DRGAN can be divided into five steps:

1) Feed the LR image IL into the GN, obtain the corresponding reconstructed image ISR and compute
the content loss lGN based on the MSE.

2) Import the reconstructed image ISR and the corresponding ground-truth image IG into VGG,
and extract the respective high-level features.

3) Feed the extracted feature maps into the DN and obtain the adversarial loss. The final loss is
computed as the weighted sum of the content loss lGN and the adversarial loss lDN.

4) Implement the backward process of the network and compute the gradients of each layer.
Optimize the network iteratively by updating the parameters in the DN and GN according to the
training policy.

5) Repeat the above steps until reaching the minimum loss of the network, and then the work of
training the network is finished.

In this paper, the loss function that we proposed can show the training situation better than an
ordinary GAN. Moreover, the gradient penalty can be reversed to the GN and the DN to minimize the
loss of the generated network lGN and maximize the loss of the discriminating network lDN.



Remote Sens. 2019, 11, 2578 12 of 24

4. Experiments

In this section, we first describe the preparation for the experiments. Then, we illustrate the details
of the implementation and introduce two quality evaluation indexes for images that are commonly
used in the related literature.

4.1. Dataset

NWPU-RESISC45 [48] is a classical scene classification data set consisting of remote sensing
images 256 × 256 pixels in size. NWPU-RESISC45 contains 45 types of ground features in total,
with 700 images per type. In this study, we chose the series of airplane images as targets and selected
500 airplane images as the objective training sample, while leaving 100 images for validation images
and the rest as test images.

4.2. Training Details

Referring to WGAN-GP, we adopt RMSprop [49] rather than Adam [50] to optimize our model;
the weight matrices W are updated as

(vt)q =

 (vt−1)q + δ,
(vt−1)q·(1− δ),

(∇L(Wt))q(∇L(Wt−1))q > 0
else

, (15)

(Wt+1)q = (Wt)q − ε(vt)q, (16)

where δ is initialized to 0.02, W denotes the weights in the network, q denotes the order of the element
in W, v represents an adaptive moment estimation, t denotes the iteration time and the learning rate ε
is initialized to 0.0001.

Before training, we augment the remote sensing images by horizontally flipping and rotating.
Then, we down-sample the ground training images IG by the required upscale factor s to obtain the LR
images IL. For each mini-batch, we cropped 16 random sub images from LR training samples of size
64 × 64 and sub images from ground-truth training samples of size 256 × 256. Taking considerations of
both training time and complexities of the network, we employed eight dense recursive units in the
GN described in Section 3.1. Each convolutional layer in the GN owns a 3 × 3 kernel and 64 feature
maps. Moreover, we adopted zero padding in each convolutional layer to make sure the outputs had
the same sizes as the original inputs.

We implemented the experiments in TensorFlow [51] and accelerated them using a single NVIDIA
GTX1080TI GPU with 11 GB of memory. Specifically, we first trained the GN with only the loss function
based on lGN, as formulated in Equation (12), and then we initialized the entire DRGAN network with
it to avoid undesirable local optima. The whole process of training required approximately four days.

lMSE =
1

mn

m∑
x=1

n∑
y=1

[
(IG)x,y − (θGN(IL))x,y

]2
. (17)

4.3. Quantitative Evaluation Factors

4.3.1. Peak Signal-To-Noise Ratio (PSNR)

The PSNR [52] was adopted in this paper as the quality evaluation index of the reconstructed HR
image. It is dependent on the MSE between the ground-truth images X = {Xi} and the reconstructed
HR images H = {Hi}. The formulas for MSE and PSNR can be expressed as follows:

MSE =
1

mn

m∑
a=1

n∑
b=1

(Xi(a, b) −Hi(a, b))2, (18)
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PSNR = 10lg
2552

MSE
, (19)

where m and n denote the height and width of images Xi and Hi; a and b represent the horizontal and
vertical axes.

4.3.2. Structural Similarity Index (SSIM)

The SSIM [52] is commonly used for the evaluation of the quality of the reconstructed HR images,
and it is calculated as follows:

SSIM(Xi, Hi) = c(Xi, Hi)d(Xi, Hi)e(Xi, Hi), (20)

where c(Xi, Hi) denotes the brightness contrast, d(Xi, Hi) denotes the comparison of contrast, e(Xi, Hi)

represents the contrast of pixel structure and
c(Xi, Hi) =

2µXiµHi+C1

µ2
Xi
+µ2

Hi
+C1

d(Xi, Hi) =
2σXiσHi+C2

σ2
Xi
+σ2

Hi
+C2

e(Xi, Hi) =
σXiHi+C3

σXiσHi+C3

, (21)

where σ2
Xi

and σ2
Hi

denote the variance of images Xi and Hi; σXiHi refers to the covariance between Xi
and Hi; µXi and µHi indicate the average values of Xi and Hi; and C1, C2 and C3 are constants.

4.3.3. Normalized Root Mean Square Error (NRMSE)

The normalized root mean square error (NRMSE) used in [53] measures the distance between the
data predicted by the mapping model and the original data observed from the environment. It can be
computed as follows, and the smaller the value of NRMSE is, the better quality the reconstructed HR
image has.

NRMSE(X, H) =

√
MSE(X, H)

255
(22)

4.3.4. Erreur Relative Globale Adimensionnelle De Synthese (ERGAS)

The erreur relative globale adimensionnelle de synthese (ERGAS) [54] was put forward to measure
the quality of reconstructed HR images by taking the scaling factor into consideration, and it can be
formulated as:

ERGAS(X, H) =
100

s

√√
1
c


√

MSE(X, H)

µX

2

(23)

where s represents the scale factor, c denotes the channel number of the image, and µX is the mean
value of X. The smaller the value of ERGAS, the better the quality of the reconstructed HR image.

5. Results

To test the performance of the proposed SR method via DRGAN, we implement tests in public
datasets and compared the results of DRGAN with those of several state-of-the-art methods. In addition,
we selected the results of bicubic interpolation as the baseline reference. For SISR methods based on
DL, DRGAN was compared with SRCNN [20], FSRCNN [22], ESPCN [21], VDSR [42], DRRN [44] and
SRGAN [34]. The publicly available testing codes from the corresponding authors were employed.
For fair comparison, we cropped the pixels in the boundary before evaluation like the operation in
SRCNN [20].

Tables 1–5 show the summarized results of PSNR, SSIM, NRMSE, ERGAS and test time, respectively,
for three chosen images and the whole test datasets with three different upscaling factors (×2, ×3
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and ×4). The proposed DRGAN outperforms all of the methods listen, in all scales, regardless of which
metric is considered. At scale factors of ×2, ×3 and ×4, DRGAN boosts the second-best method by
0.23, 0.22 and 0.21 dB in PSNR, 0.0134, 0.0198 and 0.0175 in SSIM, 0.0004, 0.0006 and 0.0008 in NRMSE,
and 0.0451, 0.0660 and 0.0234 in ERGAS. Moreover, although SRGAN can generate convincing results,
the objective indicators of SRGAN do not compare well with those of other methods for the reason that
its loss function is dependent on the feature space, not the pixel space.

Table 1. Peak signal to noise ratio (PSNR) (dB) metric results for the NWPU dataset using different methods.

Title Scale Bicubic SRCNN FSRCNN ESPCN VDSR DRRN SRGAN DRGAN
(ours)

airplane
_001

×2 29.99 32.85 33.72 33.23 34.14 34.34 -/- 34.62
×3 26.95 28.84 29.59 29.21 30.29 30.45 -/- 30.69
×4 25.21 26.45 26.94 26.68 27.66 27.88 26.25 28.11

airplane
_035

×2 30.36 32.75 33.22 32.92 33.45 33.63 -/- 33.91
×3 27.36 29.02 29.21 29.15 29.78 29.94 -/- 30.16
×4 25.78 27.20 27.69 27.32 28.02 28.19 27.03 28.48

airplane
_095

×2 27.98 29.86 30.36 30.08 30.69 30.86 -/- 30.15
×3 25.34 26.54 26.95 26.80 27.31 27.54 -/- 27.80
×4 24.02 24.87 25.11 25.00 25.36 25.53 24.69 25.83

Test
dataset

×2 32.20 34.37 34.96 34.63 35.12 35.33 -/- 35.56
×3 29.09 30.59 31.15 30.87 31.47 31.70 -/- 31.92
×4 27.42 28.43 28.92 28.68 29.31 29.55 27.99 29.76

Table 2. Structural similarity index (SSIM) metric results for the NWPU dataset using different methods.

Title Scale Bicubic SRCNN FSRCNN ESPCN VDSR DRRN SRGAN DRGAN
(ours)

airplane
_001

×2 0.9160 0.9489 0.9539 0.9515 0.9563 0.9583 -/- 0.9661
×3 0.8350 0.8768 0.8893 0.8826 0.9013 0.9089 -/- 0.9196
×4 0.7681 0.8035 0.8187 0.8111 0.8422 0.8512 0.8063 0.8622

airplane
_035

×2 0.9401 0.9645 0.9697 0.9655 0.9709 0.9745 -/- 0.9811
×3 0.8693 0.9074 0.9210 0.9101 0.9381 0.9396 -/- 0.9460
×4 0.8053 0.8494 0.8676 0.8477 0.8950 0.9012 0.8554 0.9143

airplane
_095

×2 0.8750 0.9152 0.9217 0.9190 0.9273 0.9338 -/- 0.9432
×3 0.7708 0.8151 0.8307 0.8243 0.8444 0.8522 -/- 0.8628
×4 0.7005 0.7369 0.7519 0.7460 0.7711 0.7802 0.7378 0.7908

Test
dataset

×2 0.9042 0.9346 0.9397 0.9372 0.9435 0.9497 -/- 0.9631
×3 0.8232 0.8582 0.8692 0.8644 0.8810 0.8904 -/- 0.9102
×4 0.7623 0.7918 0.8045 0.7995 0.8240 0.8369 0.7933 0.8544

It can be observed from Table 5 that when the number of convolutional layers of the network
is relatively deep, such as in the models of VDSR, DRRN, SRGAN and the proposed DRGAN,
the reconstruction time of the test image under our method is far less than that of other approaches.

In addition to the quantitative comparisons, we also performed visual comparisons among our
method and above-listed methods. We show the reconstructed HR results with different scale factors
in Figures 10–12, and the ground-truth images are also provided for reference. For clearer contrast,
we selected an area marked with a green rectangle to zoom in and placed the close-up below the
corresponding whole image.
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Table 3. Normalized root mean square error (NRMSE) metric results for the NWPU dataset using
different methods.

Title Scale Bicubic SRCNN FSRCNN ESPCN VDSR DRRN SRGAN DRGAN
(ours)

airplane
_001

×2 0.0317 0.0211 0.0206 0.0218 0.0196 0.0192 -/- 0.0186
×3 0.0450 0.0362 0.0355 0.0346 0.0306 0.0300 -/- 0.0292
×4 0.0549 0.0476 0.0449 0.0464 0.0414 0.0404 0.0487 0.0393

airplane
_035

×2 0.0304 0.0230 0.0218 0.0226 0.0213 0.0208 -/- 0.0201
×3 0.0429 0.0354 0.0334 0.0349 0.0324 0.0318 -/- 0.0310
×4 0.0514 0.0437 0.0413 0.0431 0.0397 0.0389 0.0445 0.0377

airplane
_095

×2 0.0399 0.0321 0.0303 0.0313 0.0292 0.0286 -/- 0.0311
×3 0.0541 0.0471 0.0449 0.0457 0.0431 0.0420 -/- 0.0407
×4 0.0629 0.0571 0.0555 0.0563 0.0539 0.0529 0.0583 0.0511

Test
dataset

×2 0.0273 0.0215 0.0201 0.0209 0.0195 0.0171 -/- 0.0167
×3 0.0382 0.0323 0.0304 0.0314 0.0293 0.0260 -/- 0.0254
×4 0.0459 0.0408 0.0387 0.0398 0.0371 0.0333 0.0399 0.0325

Table 4. Erreur relative globale adimensionnelle de synthese (ERGAS) metric results for the NWPU
dataset using different methods.

Title Scale Bicubic SRCNN FSRCNN ESPCN VDSR DRRN SRGAN DRGAN
(ours)

airplane
_001

×2 3.6583 2.6447 2.3910 2.5311 2.2697 2.1977 -/- 2.0831
×3 3.4587 2.7844 2.5551 2.6733 2.3535 2.2882 -/- 2.1940
×4 3.1679 2.7466 2.5948 2.6816 2.3907 2.3011 2.6216 2.2354

airplane
_035

×2 4.5529 3.4659 3.2829 3.3995 3.1908 3.1116 -/- 2.9958
×3 4.3017 3.5533 3.3545 3.5144 3.2527 3.1998 -/- 3.0587
×4 3.8641 3.2866 3.1039 3.2488 2.9900 2.8045 3.0587 2.7582

airplane
_095

×2 4.0629 3.2816 3.0968 3.2021 2.9791 2.9877 -/- 2.8653
×3 3.6805 3.2110 3.0617 3.1190 2.9353 2.9122 -/- 2.8800
×4 3.2179 2.9187 2.8388 2.8827 2.7590 2.6654 2.8252 2.6029

Test
dataset

×2 3.1608 2.5015 2.3451 2.4345 2.2666 2.2081 -/- 2.1630
×3 2.9462 2.4996 2.3551 2.4379 2.2613 2.2475 -/- 2.1815
×4 2.6522 2.3634 2.2415 2.3107 2.1469 2.0998 2.2973 2.0764

Table 5. Test time (s) results on NWPU dataset using different methods.

Title Scale Bicubic SRCNN FSRCNN ESPCN VDSR DRRN SRGAN DRGAN
(ours)

airplane
_001

×2 0.0000 0.1297 0.0369 0.0319 1.7643 0.2157 -/- 0.1638
×3 0.0000 0.1277 0.0189 0.0170 1.7264 0.2153 -/- 0.1619
×4 0.0000 0.1287 0.0109 0.0120 1.7762 0.2154 0.7515 0.1610

airplane
_035

×2 0.0000 0.1267 0.0339 0.0309 1.7513 0.2389 -/- 0.1820
×3 0.0000 0.1316 0.0180 0.0170 1.7234 0.2374 -/- 0.1816
×4 0.0000 0.1297 0.0100 0.0120 1.7563 0.2365 0.7550 0.1814

airplane
_095

×2 0.0000 0.1316 0.0329 0.0299 1.7982 0.2268 -/- 0.0410
×3 0.0000 0.1267 0.0160 0.0159 1.7254 0.2070 -/- 0.0382
×4 0.0000 0.1466 0.0100 0.0100 1.7663 0.2099 0.7587 0.0394

Test
dataset

×2 0.0000 0.1303 0.0337 0.0300 1.7961 0.2386 -/- 0.1621
×3 0.0000 0.1278 0.0158 0.0156 1.7442 0.2173 -/- 0.1657
×4 0.0000 0.1371 0.0096 0.0102 1.7689 0.2102 0.7647 0.1539
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Figure 10. Comparisons of the reconstructed results of ‘airplane_001.jpg’ with a scale factor of ×2 for 
different methods; the values of PSNR and SSIM are given: (a) original, (b) bicubic (29.99 dB/0.9160), 
Figure 10. Comparisons of the reconstructed results of ‘airplane_001.jpg’ with a scale factor of ×2 for
different methods; the values of PSNR and SSIM are given: (a) original, (b) bicubic (29.99 dB/0.9160),
(c) SRCNN (32.85 dB/0.9489), (d) FSRCNN (33.72 dB/0.9539), (e) ESPCN (33.23 dB/0.9515), (f) VDSR
(34.14 dB/0.9563), (g) DRRN (34.34 dB/0.9583) and (h) DRGAN (34.62 dB/0.9661).

We show the SR results of ‘airplane_001.jpg’ with an upscaling factor ×2 in Figure 10. DRGAN
accurately reconstructed straight lines and obtained clearer and sharper results than the other methods.
It can be observed that the edges reconstructed by DRGAN are the clearest among all the approaches.

Figure 11 provides the reconstructed HR results of ‘airplane_095.jpg’ with a scale factor of ×3
and zoomed-in close-ups of the airplane wings. We can clearly observe that the edges of airplane
wings in the images reconstructed by the other deep-learning-based methods are vaguer, relatively,
or more distorted, while DRGAN achieves more convincing results with fewer artifacts. The edges
resulting from the proposed DRGAN method are sharper and the contrasts are clearer than those of
other state-of-the-art methods.
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Figure 11. Comparisons of the reconstructed results of ’airplane_095.jpg’ with a scale factor of ×3 for
different methods; the values of the PSNR and SSIM are given: (a) original, (b) bicubic (25.34 dB/0.7708),
(c) SRCNN (26.54 dB/0.8151), (d) FSRCNN (26.95 dB/0.8307), (e) ESPCN (26.80 dB/0.8243), (f) VDSR
(27.31 dB/0.8444), (g) DRRN (27.54 dB/0.8522) and (h) DRGAN (27.80 dB/0.8628).

The reconstructed HR results of ‘airplane_035.jpg’ with a scale factor ×4 are shown in Figure 12.
We also enlarged the area around the aircraft tail. We also display the results of SRGAN in Figure 12g.
It is obvious that the reconstructed HR image obtained with DRGAN, which is shown in Figure 12h, is
the best result that is closest to the ground-truth HR image shown in Figure 12a. We can see from the
comparison that for a large-scale factor of ×4, the aircraft tail is reconstructed cleanly and vividly when
using SRGAN and DRGAN, whereas it is blurred or distorted when using other methods, and DRGAN
is better than SRGAN.
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different methods; the values of PSNR and SSIM are given: (a) original, (b) bicubic (25.78 dB/0.8053), 
(c) SRCNN (27.20 dB/0.8494), (d) FSRCNN (27.69 dB/0.8676), (e) ESPCN (27.32 dB/0.8477), (f) VDSR 
(28.02 dB/0.8950), (g) SRGAN (27.03 dB/0.8554) and (h) DRGAN (28.48 dB/0.9143). 

6. Discussion 

6.1. The Effect of Adding MSE into the Loss Function 

SRGAN’s perceptual loss, which consists of an adversarial loss and a content loss, can help the 
model generate convincing reconstructed results, but the objective indicators of SRGAN do not 
perform well against other methods because its loss function is dependent on the feature space, not 
the pixel space. To address this drawback, MSE loss was introduced in our proposed method to 
ensure the similarity between the output image and the target image.  

To assess the effect of adding MSE loss, we compared the PSNR and SSIM values of 
reconstructed HR images obtained through the networks with and without MSE in the loss function 
with a scale factor of ×3 for the test set. The results indicate that the network with MSE loss added 

Figure 12. Comparisons of the reconstructed results of ‘airplane_035.jpg’ with a scale factor of ×4 for
different methods; the values of PSNR and SSIM are given: (a) original, (b) bicubic (25.78 dB/0.8053),
(c) SRCNN (27.20 dB/0.8494), (d) FSRCNN (27.69 dB/0.8676), (e) ESPCN (27.32 dB/0.8477), (f) VDSR
(28.02 dB/0.8950), (g) SRGAN (27.03 dB/0.8554) and (h) DRGAN (28.48 dB/0.9143).

6. Discussion

6.1. The Effect of Adding MSE into the Loss Function

SRGAN’s perceptual loss, which consists of an adversarial loss and a content loss, can help the
model generate convincing reconstructed results, but the objective indicators of SRGAN do not perform
well against other methods because its loss function is dependent on the feature space, not the pixel
space. To address this drawback, MSE loss was introduced in our proposed method to ensure the
similarity between the output image and the target image.

To assess the effect of adding MSE loss, we compared the PSNR and SSIM values of reconstructed
HR images obtained through the networks with and without MSE in the loss function with a scale
factor of ×3 for the test set. The results indicate that the network with MSE loss added has superior
performance relative to that without MSE constraint, and an improvement of approximately 0.36 dB in
PSNR and 0.0085 in SSIM can be achieved using our new loss function.
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Figure 13 compares the reconstructed HR images of ‘airplane_633.jpg’ obtained through the
networks both excluding and including MSE in the loss function. It can be observed from the close-ups
of the head of the airplane that the edges of the reconstructed image obtained from the network without
the MSE constraint (as shown in Figure 13a) are much vaguer than those obtained from the network
adding MSE loss (as shown in Figure 13b). Through testing on the whole test set, we found that the
results obtained without MSE being constrained are more likely to generate artifacts, which proves
that adding MSE loss can achieve more subjectively realistic visual effects.
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Figure 13. Comparisons of the reconstructed images of “airplane_633.jpg” with scale factor ×3 for the
network we proposed when MSE loss is and is not included: (a) omitting MSE from the loss function
(28.66 dB/0.7969) and (b) including MSE in the loss function (29.04 dB/0.8044).

6.2. The Impact of Using Lgan or Lwgan on Our SR Model

As is known, it is usually difficult to decide when to suspend the training of the generator or
discriminator for traditional GAN-based approaches. GAN-based methods often suffer from the
situation of gradient vanishing. As mentioned in Section 3, we referred to the key idea of WGAN-GP
instead of using an ordinary GAN in our model.

For comparison, we drew the loss convergence curves of the generator of our model under the
conditions of using Lgan or Lwgan. We selected hyper parameter ‘epoch’ values of 100 and 200 and
have displayed the experimental results. As shown in Figure 14, the red curves represent the trend
of loss convergence under Lwgan, while the blue curves represent the results of using Lgan. It can be
clearly observed from Figure 14a,b that the loss is difficult to converge (the blue curves) when using
ordinary Lgan to train the model regardless of the hyper parameter ‘epoch’; after training for a period
of time, the loss instead increases, which is called mode collapse and often occurs in GANs. Obviously,
Lwgan can overcome this drawback very well. The curves of loss convergence of our model under
Lwgan (the red curves) show that the loss is always decreasing until convergence is accomplished.
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6.3. Robustness of the Model

To further test the performance of proposed SR reconstruction model, the DRGAN was tested
using several natural image datasets (Set5 [55], Set14 [56], BSD100 [57], Urban100 [58]) and other types
of remote sensing images besides those of airplanes. Table 6 shows the summarized results of PSNR
and SSIM with three different upscaling factors (×2, ×3 and ×4). The proposed DRGAN outperforms
Bicubic, SRCNN and SRGAN in all scales, regardless of whether PSNR or SSIM, even though there is a
difference in the data distribution between the test set composed of natural images and the training
set composed of remote sensing images. We also compared the subjective effects of the test images.
Figures 15 and 16 give the results of the reconstructed HR images obtained through several methods
for ‘rectangular_farmland_008.jpg’ of the NWPU-RESISC45 dataset and ‘img_001.png’ of the BSD100
dataset. By comparing the close-ups of the reconstructed HR images obtained through various methods,
it is clear that results which are not bad are obtained after image reconstruction with our DRGAN,
which proves that our model is relatively robust.

Table 6. Objective metric results of several different methods using several natural datasets.

Title Scale BicubicPSNR/SSIM SRCNNPSNR/SSIM SRGANPSNR/SSIM DRGANPSNR/SSIM

Set5
× 2 33.66/0.9299 36.66/0.9542 -/- 36.98/0.9602
× 3 30.39/0.8682 32.75/0.9090 -/- 33.11/0.9130
× 4 28.42/0.8104 30.49/0.8628 29.40/0.8472 30.86/0.8712

Set14
× 2 30.23/0.8687 32.45/0.9067 -/- 32.81/0.9118
× 3 27.54/0.7736 29.30/0.8215 -/- 29.65/0.8286
× 4 26.00/0.7019 27.50/0.7513 26.02/0.7397 27.89/0.7655

BSD100
× 2 29.56/0.8431 31.36/0.8879 -/- 31.91/0.8936
× 3 27.21/0.7385 28.41/0.7863 -/- 28.77/0.7951
× 4 25.96/0.6675 26.90/0.7101 25.16/0.6688 27.22/0.7268

Urban100
× 2 26.88/0.8403 29.50/0.8946 -/- 30.02/0.9024
× 3 24.46/0.7349 26.24/0.7989 -/- 26.56/0.8031
× 4 23.14/0.6577 24.52/0.7221 23.98/0.6935 24.90/0.7356
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Figure 15. Comparisons of the reconstructed results of ‘rectangular_farmland_008.jpg’ of NWPU-RESISC45
with a scale factor of ×4 for different methods; the values of PSNR and SSIM are given. (a) Original,
(b) bicubic (27.95 dB/0.7015), (c) SRCNN (28.51 dB/0.7070) and (d) DRGAN (30.60 dB/0.7524).
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Figure 16. Comparisons of the reconstructed results of ‘img_001.png’ of BSD100 with a scale factor of×3
for different methods; the values of PSNR and SSIM are given. (a) Original, (b) bicubic (24.74 dB/0.7861),
(c) SRCNN (26.65 dB/0.8495) and (d) DRGAN (27.33 dB/0.8606).

6.4. Future Work

SR of remote sensing images based on DL is faced with more problems than natural images.
Training through DL is based on the premise of the sufficiently qualified training samples. However, it is
not easy to collect a large amount of remote sensing images of high quality that satisfy the requirements.
Therefore, transferring knowledge from an external dataset attracts a lot of attention with the continuous
development of DL. Generally, it is easy to collect a nature image dataset that has higher resolution
than remote sensing images and contains more detailed information. The performance of the proposed
DRGAN method can probably be improved by pretraining the model with abundant natural images as
the training data, and then fine-tuning the model with remote sensing images. Transfer learning is a
potential solution for the issue that will be studied in future work.

7. Conclusions

In this paper, we propose a novel SISR method named DRGAN to promote the resolution of remote
sensing images. We tried to improve the performance of the GAN by enhancing the ability of the GN to
reconstruct images. In particular, we introduced the design of dense residual network into the GN and
utilized the memory mechanism to extract hierarchical features for better reconstruction. Furthermore,
we added MSE into the loss function and modified the model of the DN and the loss function referring
to WGAN-GP, which resulted in improving the accuracy of reconstruction and avoiding gradient
vanishing. In addition to the aircraft images, we also used other types of remote sensing images and
several natural image datasets to verify the robustness of our model. The experimental results for a
publicly available dataset demonstrate that our proposed method can achieve the best performance
in terms of the accuracy and visual performance. In future work, other techniques will be applied,
such as the transfer learning technique, which can be used to borrow high-frequency information
from natural image datasets that contain images with very high resolution, to further improve the
performance of the new method.
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