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Abstract: The application of hyperspectral imaging technology for plant disease detection in the field
is still challenging. Existing equipment and analysis algorithms are adapted to highly controlled
environmental conditions in the laboratory. However, only real time information from the field scale
is able to guide plant protection measures and to optimize the use of resources. At the field scale,
many parameters such as the optimal measurement distance, informative feature sets, and suitable
algorithms have not been investigated. In this study, the hyperspectral detection and quantification
of yellow rust in wheat was evaluated using two measurement platforms: a ground-based vehicle
and an unmanned aerial vehicle (UAV). Different disease development stages and disease severities
were provided in a plot-based field experiment. Measurements were performed weekly during
the vegetation period. Data analysis was performed by three prediction algorithms with a focus
on the selection of optimal feature sets. In this context, the across-scale application of optimized
feature sets, an approach of information transfer between scales, was also evaluated. Relevant
aspects for an on-line disease assessment in the field integrating affordable sensor technology, sensor
spatial resolution, compact analysis models, and fast evaluation have been outlined and reflected
upon. For the first time, a hyperspectral imaging observation experiment of a plant disease was
comparatively performed at two scales, ground canopy and UAV.

Keywords: feature selection; spectral angle mapper; support vector machine; support vector
regression; hyperspectral imaging; UAV; cross-scale; yellow rust; spatial resolution; winter wheat

1. Introduction

Today’s demands of agricultural cropping systems are high. Agroecosystems have to be
highly productive, while the undesirable impact on the environment has to be as low as possible.
Resource-conserving methods with a minimum of chemical input are in favor. One vision able to
approximate this goal is the use site-specific cropping measures. Site-specific management has the
potential to lead to a higher or constant productivity with a constant or reduced input of resources [1].
One group of for site-specific applications are plant protection measures [2].

The spatial occurrence of plant diseases in the field, especially in the early season, is often
heterogeneous, while in most cases, plant protection compounds are applied homogeneously onto the
crop. This spatial heterogeneity of disease occurrence might lead to diverse fungicide demands that
are often not considered. Many diseases first occur in patches before they start spreading in the field.
One approach for a site-specific application of plant protection measures might be the application of
fungicides to patches of disease occurrence [3–5]. This could prevent or stop disease spreading without
applying a fungicide to the whole field [1].
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Spectral sensors might be tools able to contribute to site-specific disease management [6,7].
Spectral sensors measure the light reflected from the crop canopy [1]. During pathogen attack and
disease development on the crop leaf, diseases establish a spectral fingerprint in the reflected leaf
signature [8–10]. These shifts of the signature can be detected using spectral sensors, particularly in the
electromagnetic spectrum from 400–2500 nm [11]. Spectral sensors can be divided into hyperspectral
and multispectral sensors, depending on their spectral resolution. The number and width of measured
wavebands mainly characterize the spectral resolution [11].

Non-imaging hyperspectral sensors average the spectral information over a certain area,
while imaging sensors contain the spectral information for each pixel [7]. Hyperspectral imaging
sensors (HSIs) provide spectral information in a spatial resolution. Multispectral sensors typically
cover the RGB range with an additional NIR band. These sensors are less cost-intensive and the
generated data are less complex, but do not cover the broad spectral range like a hyperspectral sensor.

Spectral sensors have been applied on different scales [12]. For field approaches, a hyperspectral
camera can be mounted to a ground based vehicle or to a UAV [1,3,11,13]. Depending on the
interrogation and measuring setup, each scale can have advantages and disadvantages. On the ground
scale, it is possible to detect small features of a few mm through high resolution on close range, while
the throughput on the UAV scale is much higher, with still higher resolution compared to satellite
imagery [5,14–16]. For field applications of spectral sensors, depending on the scale, the resolution
or the measurement time can become a limiting factor. Most field applications for disease detection
focused on the calculation of vegetation indices (VIs) [17–19] using multispectral sensors. VIs are
developed by accounting certain band ratios to highlight one factor and reduce the impact of another
factor [20]. Depending on the wavelength, these indices can be indicators for crop vitality, general
crop stress, pigment content, or a specific plant disease [18,21]. Few works have demonstrated an
approach for disease detection using imaging hyperspectral sensors under field conditions [10]. This
might be because spectral measurements under field conditions are challenging and the complexity
of hyperspectral data is higher than multispectral data [1]. The features of multispectral sensors
might result in lower image acquisition durations and lower susceptibility to environmental factors
during measurements. The image quality of field data in general is influenced by various factors.
Beside suitable weather conditions, the field crop species and the disease symptom type are of high
relevance for successful measurements. The leaf architecture and disease occurrence on the plant
mainly determine the detectability of the disease. Disease presence on lower plant and leaf levels
results in a decreased reflected signal. Disturbing weather conditions such as wind and rain can
easily obscure spectral images obtained in the field. One elusive and eminently important factor is
the illumination. Changing illumination conditions over time, caused by clouds or solar altitude,
can lead to uninterpretable data, because spectra of different images cannot be compared with one
another anymore [1,3,22]. The detection of diseases on different leaf levels is also challenging because
of inhomogeneous illumination conditions through the leaf altitude in the crop stand and upper leaves
that cast shadow. These leaves might also be in different developmental stages, and a senescent leaf has
to be differentiated from a healthy green or a diseased leaf. The leaf angle to the camera influences the
spectral signal. Not least, the image quality is essentially determined by the spatial resolution of the
sensor system used. Small symptoms of a disease can only be visualized when the spatial resolution in
combination with the measurement distance is appropriate for the desired data quality.

So far, various field measurements on the ground canopy scale of cereal crops have focused on the
detection of biotrophic diseases such as yellow rust [3,10,13,23–25], brown rust [18,26], and powdery
mildew of wheat [19]. This might be due to the fact that biotrophic diseases are more likely to appear
on the upper leaf layers because of wind distribution and a preference for fresh and healthy leaf
tissue [27]. Necrotrophic diseases are most severe on lower leaf levels, and therefore more difficult to
detect with remote sensors. A detection and quantification of septoria tritici blotch with a hyperspectral
radiometer has been demonstrated in the field [28].
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The analysis and interpretation of sensor data is crucial for future implementation. Algorithms
from machine and deep learning, in combination with suitable sensors and measurement platforms
are promising techniques. These methods are particularly able to cope with the number of wavebands
provided in hyperspectral data, and can be used for the detection of plant diseases [7,29–32].

This work presents a new approach for field trial studies using innovative and machine learning
for a pixel wise detection of crop diseases. A winter wheat trial was conducted in the vegetation period
of 2018. The crop was infected with Puccinia striiformis, the causal agent of yellow rust (YR). Weekly
hyperspectral measurements were performed on the ground-canopy and the UAV scale to monitor the
spectral dynamic of crop stands during the vegetation period. Measurements were performed using a
mobile field platform with a distance of 50 cm to the crop canopy and with a UAV drone at 20 m height
over the plots to work on and compare different scales. Hyperspectral images were captured using
a line scanner attached to a linear stage in a measurement booth and a frame-based hyperspectral
camera for UAV applications. Field data were preprocessed and normalized, and then analyzed using
the supervised classification methods spectral angle mapper (SAM) and support vector machine (SVM)
to detect yellow rust of wheat. Additionally, a feature selection was performed on the hyperspectral
data to verify the potential for a waveband reduction from hyperspectral to multispectral data for
disease detection.

2. Materials and Methods

2.1. Field Trial Layout

In the vegetation period 2017/2018, a field trial with winter wheat was conducted at trial station
Campus Klein-Altendorf 50◦37′31.00′’N, 6◦59′20.54′’E (Rheinbach, Germany). In 2016/2017, a first field
trial was performed to specify the measuring setup and routine (data are not shown). The cultivars JB
Asano (Limagrain GmbH, Edemissen, Germany) and Bussard (KWS SAAT SE, Einbeck, Germany)
were sown on 26.10.2017 with 320 kernels/m2. Field emergence was on 14th November 2017, while
harvest took place on 24.07.2018. JB Asano was chosen because of its susceptibility to YR. The field
trial was designed in 10 treatments per cultivar with two repetitions, resulting in 40 plots (plot size:
3 × 7 m). The plot design was randomized within each cultivar. With a change of the cultivar after each
plot, the direct proximity of plots with the same cultivar was avoided. This was designed to arrange
the field trial into two long rows of plots with cultivars alternating one after another in 20 plots per
repetition (Figure 1). The treatments within one cultivar were randomized. Two fertilizer intensities
(160 kg N/ha and 30 kg N/ha) were applied per cultivar. For cultivar Asano, two treatments were used
for additional inoculation with YR. The whole field trial was aligned from northwest to southeast.

2.1.1. Inoculations

Additional inoculations of Puccinia striiformis were performed in April and May (25 April 2019;
12 May 2019). To establish high disease infections, the inoculations were repeatedly performed by
applying a spore suspension to the plants immediately after rainfall incidences. Inoculations were
timed to forecasted infection risks after the xarvio field manager (BASF Digital Farming GmbH,
Münster, Germany). The spore suspension was applied with a garden pump sprayer and contained
8 × 104 spores/mL. Two liters of spore suspension were homogeneously applied over one plot.

2.1.2. Visual Disease Ratings

Visual disease ratings were performed weekly from calendar week 17–23. One plot was rated
two times at the same locations where hyperspectral measurements took place. Disease incidence was
assessed by the eye of a human rater. The diseased leaf area (%) was rated on 15 leaves per leaf level.
Additionally, the growing stage and the visible leaf area of each leaf level in the hyperspectral image
(from top view) was ascertained.
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Figure 1. Field trial layout (RGB stitch from unmanned aerial vehicle (UAV) images) at the research 
station Campus Klein-Altendorf (Rheinbach, Germany) of winter wheat varieties Bussard and Asano 
in 2018, with treatment declaration and measurement strategy. The trial was designed in two long 
rows of plots to reduce the number of turns and keep continuous measurements. 

2.1.3. Crop Stand and Disease Development 

The vegetation in 2018 started late in March and was denoted by a drought that especially 
affected the length of the growing season and led to an early harvest in July (Figure 2). Septoria tritici 
blotch, tan spot, and powdery mildew were insignificant throughout the growing season. YR could 
establish a significant infection on cultivar Asano, and measurements were not aggravated due to 
mixed infections. The first YR symptoms were found in mid of April and were based on natural 
infection incidences. Until the beginning of May (BBCH 31), a serious increase of YR was rated. Warm 
days and cold nights seemed to favor infection incidences through dew formation. Until the middle 
of May (BBCH 37-39), YR was the dominating disease. 

 
Figure 2. Schematic overview of the course of the 2018 vegetation period. For each calendar week, the 
actions are presented and disease occurrence of yellow rust (YR) is shown. Weekly assessments and 
measurements were performed during the vegetation period (CW = calendar week; BBCH = growing 
stage). 

Figure 1. Field trial layout (RGB stitch from unmanned aerial vehicle (UAV) images) at the research
station Campus Klein-Altendorf (Rheinbach, Germany) of winter wheat varieties Bussard and Asano
in 2018, with treatment declaration and measurement strategy. The trial was designed in two long
rows of plots to reduce the number of turns and keep continuous measurements.

2.1.3. Crop Stand and Disease Development

The vegetation in 2018 started late in March and was denoted by a drought that especially affected
the length of the growing season and led to an early harvest in July (Figure 2). Septoria tritici blotch, tan
spot, and powdery mildew were insignificant throughout the growing season. YR could establish a
significant infection on cultivar Asano, and measurements were not aggravated due to mixed infections.
The first YR symptoms were found in mid of April and were based on natural infection incidences.
Until the beginning of May (BBCH 31), a serious increase of YR was rated. Warm days and cold nights
seemed to favor infection incidences through dew formation. Until the middle of May (BBCH 37-39),
YR was the dominating disease.
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Figure 2. Schematic overview of the course of the 2018 vegetation period. For each calendar
week, the actions are presented and disease occurrence of yellow rust (YR) is shown. Weekly
assessments and measurements were performed during the vegetation period (CW = calendar week;
BBCH = growing stage).



Remote Sens. 2019, 11, 2495 5 of 20

2.2. Measurement Platforms

2.2.1. Field Platform Phytobike

The measurement platform, based on a square steel construction with four wheels and provided
by Forschungszentrum Jülich (Jülich, Germany), covered a 3 m wide experimental plot (Figure 3).
Sensors for reflectance characteristics, localization systems, power supply, and control of the sensors
via a control laptop were mounted to the steel frame. All sensors were variable in height by a moveable
aluminum profile construction. In this way, the sensor platform could be adapted to the growth stages
of the plants and a constant distance between sensors and crop canopy was enabled. With a weight of
around 150 kg, the construction approached the limit of the platforms without steering, and could still
be moved by the physical strength of two people.
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Figure 3. Construction plan of the Phytobike (top left) and the final appearance in the field including
the cotton diffuser (top right). The UAV system used, consisting of a DJI Matrice 600 and a Rikola
hyperspectral camera (bottom left). Normalization was performed using a 50% grey reference panel
(bottom right).

As a hyperspectral sensor, the Specim V10E line camera (Specim Oy, Oulu, Finland) was used.
The motion required for the Specim V10E camera was realized by a linear stage (Velmex, Bloomfield,
USA). Measurements were triggered via the control computer, allowing a flexible reaction to changing
light situations by an adapted integration time. The Specim V10E camera measured the electromagnetic
spectrum in a range from 400 to 1000 nm with a spectral resolution of 2.73 nm. Sunlight was used as a
natural light source. A canvas measuring cabin was constructed to avoid shadows cast by the sensors
and equipment of the Phytobike.

2.2.2. UAV Measurements

The UAV allowed overview images of whole experiments or at least of parts of the experiment to
be collected. Recent technologies have enabled hyperspectral imaging at UAV scale. We combined a
UAV DJI Matrice 600 (Da-Jiang Innovations Science and Technology Co., Shenzen, China) with a Rikola
hyperspectral camera (Senop Oy, Oulu, Finland) (Figure 3). The Rikola camera measured the reflected
light in a range from 500 to 900 nm. The measured wavebands were selectable and spectral resolution
was set to 7 nm using 55 wavebands. With flight times of around 20 min, the whole experiment was
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captured within one battery capacity. For plot observations, a 20 m flight height was selected and the
UAV hovered over each plot center for a duration of 10 s. Sunlight was used as a natural light source.

2.3. Data Preprocessing

This study focused on the information about relevant wavebands as the central outcome. We used
a data flow to assess the ability to transfer this information between observation scales (Figure 4).
We built two data sets for yellow rust prediction—a classification data set on field scale and a regression
data set on UAV scale. Multiple prediction models and feature selection results were derived. In the
final step, models were optimized using the selected features, and feature selection information was
also exchanged. The resulting four classification models with selected features, two on the field scale
(features selected on the field scale and on the UAV scale) and two on the UAV scale (features selected
on the field scale and on the UAV scale), were evaluated. This allowed the values of feature selection
and, more specifically, the values of feature information obtained at a different observational scales to
be evaluated.
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2.3.1. Spectral Preprocessing

The derivation of the physical surface property reflectance from observed intensity values is an
essential part of hyperspectral image processing. The normalization procedure has to be adapted to
the measurement platform and is based on a spectral reference panel with a known homogeneous
reflectance in the observed wavelengths. At all scales, the following equation was applied to calculate
the reflectance R from the observation Im, reference Imref, and the corresponding dark currents DCIm
and DCref. In the field, the additional DCref was omitted for practical reasons.

R =
=−DC=
=re f −DCre f

, (1)

On the ground canopy scale, a 50% spectral reference panel was measured within each image of
the line scanner. A separate dark current was observed for the Specim V10E camera before every image.
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For practical reasons, UAV flight sequences were started with the acquisition of a single dark current,
and one image of the reference panel immediately before and after flying the frame-based Rikola
camera over the wheat plots. Image quality always suffers from motion of the object to be measured or
motion of the sensor. To avoid this, images were taken in conditions as calm as possible on the ground
canopy scale. The Rikola camera was hovered for at least 10 images over the reference panel to ensure
that image quality was sufficient for data normalization. The use of cross-sensor normalization, e.g.,
by using a separate spectrometer that continuously logs the incoming light intensity, was tested but
was not successful due to a deviating response characteristic between the different sensors.

To remove high frequency noise at the spectral border regions of the Specim V10e, the bands
1–20 (400–450 nm) and 181–211 (910–1000 nm) were excluded from further analysis, resulting in 161
used spectral bands. In addition, a Savitzky–Golay filter using 15 centered points and a polynomial of
degree 3 smoothed the data of the Specim V10e.

2.3.2. Data Normalization

Plant geometry can present severe distortions due to varying leaf angles, leaf distances to
the camera, and specular reflections on particular parts of the leaves. To compare the reflectance
characteristics, omitting the additive and multiplicative factors, the standard normal variate (SNV) has
been developed [33]. It is able to remove scaling factors due to varying distance or leaf angle, as well
as additional factors like specular reflection, e.g., on leaf tips. The normalization was performed on
both the ground canopy and field data. The SNV representation was calculated per spectrum S and
focuses the shape of the spectral curve:

SNV =
S−mean(S)

std(S)
, (2)

2.4. Prediction Algorithms

Multiple algorithms can perform predicting a class or continuous value based on features of a
sample. In general, they use a vector representation as input. In this study, the classifiers spectral
angle mapper (SAM) and support vector machine (SVM), as well as the regression algorithm—support
vector regression (SVR)—were applied to the ground canopy data (taken with the phytobike). To train
and evaluate the models, four images of one measuring day were annotated to be used as training data
and four images were annotated to be used as test data. The number of annotated pixels differed in the
different images due to natural heterogeneity in the crop stand. Pixel numbers were at least several
thousand for each class, up to several hundred thousand pixels for all classes in one image. Based on
the huge number of annotated pixels, models were trained on a subsampled data set, to make them
trainable and to rebalance the classes. With the exception of the water class, all classes were trained
with 1000 samples per class after subsampling of training data. The SAM was used because it has
been described in the literature to work resiliently under inhomogeneous light conditions [34]. The
development of the classification model was easy and fast. The SVM was used because, in theory, it is
trained on the whole data set and considers the spectrum of each pixel as training data. Vegetation
indices (VIs) were used because various published works have focused on VIs as tool for disease
detection. VIs can be seen as established representatives for optical measurements of plant parameters.
The models were trained using three data representations: full spectra, SNV normalization, and
20 spectral VIs. The results were compared to a SAM that represented the base line accuracy. The
comparison was performed on the YR test data from 23 May 2018. The evaluation of different feature
representations showed a small advantage of SNV normalizations, whereas it was treated as standard
representation in the following. As performance measures, we applied the overall accuracy using
six classes for the model, combining the background and the old leaves/straw class. Furthermore,
we evaluated the F1 score (Table 1) for the class disease, providing a homogenized combination of
precision and recall. The F1 score declares the number of pixels of one class that are correctly classified
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into this class after the formula 2 × (precision × recall) ÷ (precision + recall)). The two performance
measures corresponded in tendency; however, the F1 score decreased faster as the large number of
background pixels stabilized the overall accuracy.

Table 1. Comparison of evaluation parameters obtained on test data for different data representations
and prediction algorithms on the ground scale for the support vector machine (SVM) and the spectral
angle mapper (SAM).

SVM Raw SVM SNV SVM Indices SAM

Accuracy 91.9% 92.9% 90.2% 81.4%
F1 disease score 83.2% 84.0% 76.4% 48.3%

2.4.1. Spectral Angle Mapper

The SAM is a prediction algorithm developed for the efficient classification of high- dimensional
spectral data. The assignment uses the angle between the spectra to classify and reference spectra,
treating a spectrum as high-dimensional vector [34]. The spectrum to be classified was assigned to the
reference spectrum/class with the smallest angular distance. In addition, a threshold prohibited the
assignment of spectra with a large angular distance.

2.4.2. Support Vector Algorithms

The SVM andSVR are established machine learning methods that have been proven to deal well
in situations with many features but a very limited number of samples [35]. This is a common situation
in hyperspectral data analysis, and following it is a suitable approach for hyperspectral remote sensing
as well as close range imaging. A critical point for the application of SVM and SVR is the selection
of the hyper parameters Cost C, kernel parameter γ (SVM) or C, and complexity control ν (ν-SVR).
They were selected by grid search combined with a cross validation. Grid points were 10−5 . . . 1010

for C, 10−8 . . . 102 for ν and 0.05 . . . 0.50 for n. The optimization algorithm was the sequential minimal
optimization SMO, and LIBSVM 3.18 with Matlab was used for as implementation [36].

2.5. Vegetation Indices

On hyperspectral images of ground canopy data, 20 VIs were tested to visualize crop heterogeneity
and to detect yellow rust in the field. The composition was used because it has previously been
successfully tested as an indicator for crop vitality [37]. The composition of VIs was chosen according
to Behmann et al. [37]. Due to the limitation of available bands of the Rikola camera, only 16 VIs were
used for UAV data and the ARVI, mRESR, mRENDVI, and SIPI were excluded.

2.6. Model Evaluation

To compare the performance of the different models on the respective data sets, different measures
were applied depending on the model type. All measures were calculated on a test set that was not
used in training. For classification models that determined the discrete classes y as a function f(X) of
the data X, the accuracy was defined as the percentage of correctly classified data points. The F1 score,
in contrast, was based on the precision and recall of each class. In regression tasks with continuous
target variables, the coefficient of determination R2, correlation, and root mean square error (RMSE)
were applied. Due to the limited number of data, we applied leave-one-out cross validation to generate
the test predictions. This procedure learns a model on the whole data set except for one sample.
This was repeated for all samples in the data set.

2.7. Feature Selection

There are multiple approaches for feature selection, feature subset selection, and feature weighting.
Filter approaches like Relief are very fast and provide a weight for each feature. In contrast, wrapper
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approaches have the big advantage of dealing well with high levels of redundancy and selecting the
best subset with minimal size [38]. A major drawback is the high computational load. Feature selection
at all scales (on ground-canopy and UAV images) was performed using a wrapper approach comprising
a SVM or SVR, respectively. A sequential forward feature selection (Statistics Toolbox, Matlab2013a)
was used, and the called criterion function minimizing the prediction error was implemented based on
LIBSVM 3.18. For the SVM, the accuracy was maximized and for the SVR, the RMSE was minimized.
Due to the limited number of samples in the UAV data set, a leave-one-out cross-validation was
performed to generate the test predictions to calculate the criterion.

2.8. Spatial Resolution as a Key Parameter for Disease Detection

Besides the relevant wavelengths, the required spatial resolution or ground sampling distance
(GSD) is highly important for the definition of a sensor capable of detecting different wheat diseases in
the field. Based on the test and training data sets, simulations were performed where the test data
were extracted from subsampled spectra by a factor of 2, 10, 20, and 100. A knn and an aggressive
subsampling approach were compared to visualize the effects of different annotation strategies on the
F1 score for the detection of YR.

3. Results and Discussion

3.1. Supervised Classification of Hyperspectral Pixels at the Ground Canopy Scale

One approach used to analyze hyperspectral data on the field scale is the pixel-wise classification
into usual pixel (background, straw, healthy leaf tissue) and in disease specific symptoms. In the field
experiment 2018, YR had a significant disease severity and classifiers for this disease were derived.

The use of 16 VIs reached a reasonable but not competitive performance. However, it has to
be noted that we compared 161 features to 16, meaning a significant reduction in dimensionality.
The results can be integrated in a later discussion of the various feature sets obtained by feature selection.

Based on these results, SVM SNV (Table 1) was selected as most appropriate approach. A visual
comparison of the SAM results and the SVM SNV result is shown in Figure 5. Significant differences
were apparent. The SVM detected many more senescent leaves, e.g., all leaves from the lower leaf
levels, whereas the SAM assigned these to the background or the healthy leaves. The SVM was
more sensitive for ear detection, which caused major problems in the SAM image, where they were
partly assigned to YR. Overall, both approaches were sensitive to YR, but the SVM was much more
accurate in the very bright image parts as well as the darker background parts, while the class YR was
overrepresented in the SAM classification. The visually most significant aspect was the large number
of blue pixels in the visualization of the SVM result. YR disease was present at all leaf levels and led to
early senescence in lower leaf levels.

The classification models were validated via two approaches: (1) pixel-wise classification of
the hold-out test data set consisting of manually annotated pixels of new images of separate plots,
and (2) prediction of pixel classes of all images obtained on a respective day and comparing the total %
disease class from all plant pixels to the visual assessment done by the expert (Figure 6). Approach 1
resulted in a confusion matrix allowing the calculation of multiple performance measures such as the
overall accuracy, the sensitivity, and the recall, whereas Approach 2 provided the R2value, correlation
coefficient, and a regression plot. Table 1 shows the overall accuracy and the F1 score for the different
classification methods.

Presumably, due to light reflections and transmission or a deviating weighting of the different
canopy levels, the SVM prediction overestimated the ratio of diseased pixels. To compensate for this,
a linear regression model was applied. However, deviations between the predicted disease severity
and the visual assessment could have various reasons, e.g., the section of the plot observed by the
sensor did not represent the true status that was evaluated by the visual assessment. The viewing
angle produced a variable composition of different leafs and leaf layers in the field of view of the
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human and the sensors. Furthermore, the visibility of the lower leaf levels was low for imaging system
from the top, and more accurate if the human rater could go deep into the crop stand for individual
leaf disease rating. Further points are that the visual assessment produced a single value averaging
the affected leaf area. From repeated disease assessments with multiple experts, different deviations
have been observed depending on the literature [39,40]. The method of disease detection is subjective
to the individuals performing the assessment. Another prime factor for deviations and classification
inaccuracies is the biological heterogeneity. This has to be considered as highly dynamic within one
field, one plot, and one location, and even on different leaf layers and single leaves. The biological
heterogeneity can be affected by many factors, e.g., the leaf color and status, stem elongation (distance
of leaf layers), the density of the canopy, and other biological growth processes.
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Figure 5. Visual comparison of the representative spectral angle mapper (SAM) classification (top
left) and the support vector machine standard normal variate (SVM SNV) classification (top right)
with the original RGB visualization of the corresponding ground-based image of one representative
measurement location of a plot inoculated with YR (bottom left). The image is captured with the
hyperspectral camera Specim V10. The classes (bottom right) were generated from manual annotation
of train and test data.
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Figure 6. Scatter plot of the relation between visual assessment and predicted disease ratios for
yellow rust on 23 May 2018 before (left) and after the application of a linear calibration model (right).
The calibration model had the purpose of compensating for scale differences in the prediction values.

3.2. Evaluation of Hyperspectral UAV Observations Using a Filter-System Hyperspectral Camera

To characterize the reflectance characteristics of the field plots, the spectra of the central 4 × 2 m
of each plot were averaged. Intra-plot variations were neglected. Multiple traits were predicted with
reasonable accuracy based on SVM and SVR analysis of the 55 recorded bands from 500–900 nm.
Table 2 shows the obtained performance parameters based on a SNV representation and the integration
of all 55 bands.
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Table 2. Performance values for different SVM and SVR models predicting the treatments of the wheat
field experiment based on UAV observations.

Trait/Treatment Performance

Fertilizer level Accuracy = 82.3%
Fungicide Accuracy = 91.5%

Fungicide + fertilizer level (four classes) Accuracy = 71.4%
Disease detection (severity > 0) Accuracy = 90.0%

Disease severity estimation Correlation = 70.6%

Using the SVR approach, a prediction of the disease severity in percent was possible with
reasonable accuracy (Figure 7). The interpretation of this result has to take into account that a value
from the visual assessment might not represent the average plot value because diseases may occur at
zoned locations in the plot, and assessment locations may or may not be in these spots.

3.3. Selection of Relevant Features at Different Scales

One of the main motivations for the application of hyperspectral imaging technology is the
potential to find the most relevant wavelength for a specific task, and to subsequently design a specific
sensor. Reference [41] showed that specific wavelengths might be useful to identify certain leaf
diseases in sugar beet. In wheat, VIs have been described that are capable of detecting brown rust [18].
This shows that a selection of specific wavelengths can be specific for one disease. We applied the
introduced technique to the data sets on the ground-canopy and UAV scale and derived important
wavelength for the detection of disease symptoms as well as the prediction of disease severity.

3.3.1. Ground Scale

Feature selection on the field scale was performed for the detection of YR. The models were trained
on a homogenized sample of training data and validated by a five-fold cross-validation. The final
accuracy was determined by the hold-out test set. To reduce the computational complexity, the feature
was regularly subsampled by a factor of 5. The resulting 33 bands were ranked and an optimal band
number was selected (Figure 8).

For YR, an optimal number of 16 features reached 91% accuracy. However, to allow a comparison
with the UAV scale selection, we selected the best 10 features, providing an accuracy of 88%.
The waveband of 780 nm in the NIR was the most important for YR detection. The next two
bands were also in in the NIR, followed by a band in the blue/green spectral region. Less important
was the NIR wavebands > 800 nm and the red part of the spectrum. Various works have shown that
VIs using wavelengths out of these spectral regions can be successfully used to detect rust diseases of
wheat [17,18,25], or even for necrotrophic diseases of other crop plants such as groundnuts [42]. In the
literature, it has been described that pigments and water influence the absorbance and reflectance
of light with plant interactions [43–45]. The measured reflectance signal is always a mixed signal
and the result of complex biochemical interactions [43,46,47]. The visible region is mainly influenced
by the light absorption of leaf pigments [48]. Healthy wheat canopies appear dark green because of
high amounts of chlorophyll in the leaves [10]. With YR infection in the leaf tissue, a degradation of
chlorophyll happens, while the urediniospores of rust fungi are pigmented through the formation
of carotenoids [49]. This could explain the importance of certain absorption or reflection bands of
pigments for YR detection in the visible range. The effect of chlorophyll degradation and the formation
of chlorosis, and a resulting detectability for the disease has also been described for Septoria tritici
blotch [28]. The NIR region is strongly influenced by the leaf and cell structures, the architecture of
the canopy, and water absorption bands [43,50]. High YR incidence leads to an early senescence of
leaves in the upper, but particularly in the lower leaf levels. This changes the appearance of the crop
architecture, reduces the vitality of leaves and water content, and could explain the importance of
specific wavebands for YR detection.
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Figure 8. Results of the feature selection for the relevant wavebands for the classification of YR
in the field on the ground (top) and UAV (bottom) scales. The accuracy reached for the different
numbers of features (left) and the ranking of the inclusion within the feature subset (right) is displayed.
RMSE = root mean square error.

3.3.2. UAV Scale

For the feature selection on the UAV scale, the detection and quantification of YR infections was
investigated. Using the UAV and the filter-system Rikola hyperspectral camera, the mean spectrum
of the central part of each plot was measured at multiple days. The first four dates were used, as a
suitable disease estimation was not possible later due to the beginning of senescence.

The optimal number of features was 11 features, reaching an RMSE of 17.9 (i.e., to the visual
assessment at the ground of around 70%) (Figure 8). Here, the most important bands were 830 nm
and 510 nm, followed by NIR bands. Without significance were the red region 630–700 nm and the
beginning of the NIR at 700–800 nm. The selection of the spectral border band would be a sign of
fitting to noise if the Specim V10E line scanner had been used, but here, the Rikola camera was used
without an increased noise at the spectral border regions.

Feature selection results for further traits are shown in Table 3. Important bands were also found
in the green and NIR regions, which might have been triggered by the same biochemical reactions as
on the ground scale. However, for the fertilizer, fungicide, and the combined treatment the spectral
region 600–750 nm had a higher relevance.
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Table 3. The six most important bands for selected plot traits at the UAV scale and ranking of the
wavebands (in nm) for the importance of feature selection, beginning with the highest. Selected
traits: fertilizer (Fert), fungicide (Fung), fungicide + fertilizer (Fert+Fung), yellow rust (YR) detection,
yellow rust regression.

Ranking Fert Fung Fert + Fung YR Detection YR Regression

1 767 727 734 797 832
2 725 804 887 881 510
3 648 762 545 601 867
4 557 648 559 706 874
5 627 594 517 874 587
6 704 767 748 594 594

3.3.3. Cross-Scale Interpretation

The cross-scale interpretation revealed significant inconsistencies but also some parallels.
The inconsistencies were related to sensor characteristics, as the same sensor had not always been
applied. Furthermore, additional factors at the different scales (leaf geometry, mixed pixels with
background) were included at the higher scales that may have relied on further bands to be regarded
properly by the prediction model.

The number of required features varied at the different scales. In a separate experiment (data
not shown) with fixed leaves in the laboratory, a perfect differentiation was possible using two bands.
Geometry was also not relevant, as the leaves were fixed in a horizontal position. The highest number
required on the field scale was 18 on average, as the complex geometry and complex scattering effects
in the canopy affected the recorded signal. At the UAV scale, the geometry was the same, but due to
the physical smoothing by blur and high pixel size, the signal was simplified again. There, an optimum
was reached at 11, omitting the spectral region 620–820 nm.

The red region had a low relevance for the classification of YR on the field and UAV scales.
This might have been due to the fact that urediniospores P. striiformis appear more yellow than red
(due to carotenoid composition) and do not show strong reflection in the red region. The NIR region
had an increased relevance on the UAV scale. Presumably this was related to simple separability based
on pigments on the lower scale, whereas in the field, the leaf geometry distorted this signal and the
NIR region was required to compensate for this effect.

The differences and parallels of the different feature sets motivated the cross-scale application of
feature sets. It was assumed that information about optimal feature sets could also be an advantage
at a different scale. Therefore, the feature sets for the assessment of YR were exchanged between the
ground scale with the Specim V10, and the UAV scale with the Rikola hyperspectral camera. To allow a
comparison of the different feature sets, the number of included features was fixed to 10, based on the
previous feature selection runs (Figure 8). Evaluation at the ground and UAV scales was performed
following the same principle as for the feature selection. Table 4 shows the performance of multiple
feature sets. The highest accuracy was reached by the full data set, followed by the 16 VIs. The feature
sets with 10 features reached a slightly lower, but in direct comparison, very similar accuracy. The
results indicate that the complex situation in the wheat canopy required more than 10 features. The
good performance of the equidistant feature set can be explained by the resemblance to the 10 selected
features that were nearly equidistantly distributed over the spectral range. Both feature sets applied
wavebands out of the same spectral regions. Furthermore, the performance of the field-selected feature
set points to the heterogeneity of reflectance characteristics even within the same treatment group.
The test and training data were extracted from separate image sets. Following, this feature set was
optimized on the training data, but had no advantages compared to the equidistant feature set on the
test data.
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Table 4. Performance of the different feature sets for the YR detection based on ground observations.

Ground Class. All UAV Select Field Select Equidistant VI

# feature 210 10 10 10 16
Acc. 92.9% 87.4% 88.9% 89.2% 90.2%

F1 disease 0.84 0.694 0.751 0.732 0.764

The comparison of different feature sets showed the potential positive results of feature selection
to a higher degree. The highest accuracy was obtained by the feature set optimized at the UAV scale,
whereas the feature set from the ground scale obtained an even lower performance than the equidistant
feature set (Table 5). For the UAV data set, a separation of test and training data was not possible
due to the much smaller data base. Here, a leave-one-out cross validation was applied to obtain R2

and correlation coefficients. The obtained feature set may have been more adapted to the evaluation
procedure at the UAV scale compared to the ground scale. The UAV evaluation shows that it was
possible to slightly increase the accuracy by feature selection compared to the full data set, and also
that uninformed subsampling did not lead to optimal results.

Table 5. Performance of the different feature sets for the YR regression based on UAV observations.

UAV Regression All UAV Select Field Select Equidistant

# feature 55 10 10 10
R2 0.63 0.69 0.57 0.61

Corr. 79.4% 83.0% 75.5% 78.1%

However, the data characteristics at the ground canopy and the UAV scale were so disparate that
an advantage of feature set transfer is doubtful. The transferred feature set had a lower performance
even compared to the uninformed equidistant sampling. There were multiple factors contributing
to the deviating data characteristics expressed by different demands to the feature sets. One of the
main points was the use of different sensors with different measurement principles, each adapted to
its measurement scale. The noise characteristics of the ground camera showed an increased noise
level at the spectral border regions and a noise optimum in the red range. The UAV camera showed a
homogenous measurement quality for the whole range, despite some artifact bands around 630 nm,
where optical refractions seem to occur at a beam splitter. The suitability of a spectral region can
be significantly reduced by such sensor characteristics, but if the effect occurs only at one sensor,
the optimal feature set changes. Further points regard the implicit spatial smoothing if a larger area is
captured by a single pixel. At the ground scale, the feature set will directly point to the reflectance
characteristics of the spores, whereas at the UAV scale, the reduced vitality and even morphological
changes have to be taken into account. In contrast, the close-range observations at the ground scale
were dominated by the leaf geometry, and more specifically by leaf angle and position within the crop
stand. Therefore, the analysis model had to integrate these factors to enable predictions as robust as
possible against the plant geometry. At the UAV scale, most of the pixels provided a mixed signal of
multiple leaves and, in addition, the analysis was performed on the mean spectra of each plot. Most of
the geometric effects averaged out as the characteristics of hundreds of leaves were averaged.

In general, there is no single waveband for individual diseases, but broad regions (blue, green,
red, NIR I (700–800), NIR II 800–1000) with varying relevance for the different diseases. This is tightly
coupled with the sensor characteristics. The Rikola camera was not able to measure the blue and NIR
(900–1000 nm), but provided stable noise conditions over the whole measurement region. The Specim
V10E camera had a larger measurement region (400–1000 nm), but the spectral border regions had a
much higher noise level.
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3.3.4. Spatial Resolution as Key Parameter for Disease Detection

The un-sampled data had a GSD of approximately 0.4 mm (for Specim as well as Rikola). The UAV
observations (20 m flight height) had a GSD of approximately 8 mm (Figure 9).

This approach did not regard the adaptation of the model to the new classification scale.
By retraining the prediction, the accuracy may be improved, as the smoothing here also affected the
data characteristics. However, even then, the disease-specific information will vanish at a certain level.
We omitted this evaluation as the performance measures of the retrained models were not comparable
anymore as the number of training data declined drastically, e.g., to around 100 samples for YR at
higher subsampling scales.
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(images) and the effect of scale on accuracy and F1 score for the two different approaches knn (nearest
neighbor) and an aggressive for subsampling the annotation.

The investigations allowed the definition of a minimal sampling distance at which the mixed
information no longer allowed the prediction of plant diseases. Without retraining the model,
the accuracy decreased at subsampling factors of 10 and 20. A low subsampling of 2 seems to have had
no negative effects. Presumably, the included smoothing removed border cases and outliers which are
hard to classify correctly. At higher subsampling levels, more and more mixed pixels occurred where
the aggressive label subsampling tended to extend the image regions assigned to a class. Subsequently,
the effect was more severe here. The accuracy of more than 50% at the final state was related to the
dominant background, which provided a significant majority of test data at the high subsampling
levels. It was not related to the ability to predict the presence of YR. This was demonstrated by the F1
score, a measure to quantify the performance of a multi-class prediction model on class level.

In this performance measure, the quality also decreased at subsampling factor of 10. Surprisingly,
the F1 score increased to nearly optimal numbers at a subsampling factor of 100. Discussing this fact, it
has to be noted that at the highest subsampling factor, only 119 YR samples were included in the data
set, which are all correctly classified. Maybe this was related to the accuracy on the UAV scale, where
the majority of geometric effects were averaged out. This point remains to be evaluated in further
investigations, but it seems that subsampling by a factor of 100 removed the leaf structure completely,
whereas at a lower subsampling factor, the leaf structure was still apparent but more and more effects
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of mixture become present. Without any leaf structure, the classification problem is simplified to the
presence of YR within this part or even within the image. At low level disease severities, this will cause
major problems, but here, the test data has been selected to show clear disease symptoms.

3.4. Optimal Sensor System for Plant Disease Detection

Two sensor systems were evaluated, both showing strengths and weaknesses. In direct comparison,
the flying sensor system had strong advantages in usability, throughput, and commercial viability.
The ground sensing system was much more sensitive, as a single symptom with a diameter of a few
mm could be recorded. Such a spatial resolution could only be obtained by the flying system at a flight
altitude of around 1 m above the canopy. However, with the used system this was not possible, as the
downstream from the rotors would have strongly moved the canopy. Alternatively, an optical zoom
could be applied, presumably reducing the light flux as well as the throughput of the overall system.
This could be compensated for by an increased spatial resolution of the sensing array.

Summarizing, based on the experiments conducted during the presented study, we propose a
focus on a UAV flying at low height in combination with a frame-based spectral camera sensing in
around 15 equally distributed bands. A tunable band configuration would be an alternative that could
use bands optimized for every single disease scenario, e.g., crop species, crop developmental stage,
assumed disease setting, assumed symptom maturity. The spatial resolution should be set at around
1 mm GSD, a value that allows the detection small symptoms but neglects the high-frequency noise
caused by the complex surface structure of plants [29,51].

4. Conclusions

This study investigated the detection of plant diseases using hyperspectral cameras at ground
and UAV scales. In this context, the appropriate data analysis was decisively able to reach suitable
results. Supervised classification has the advantage of separating disease-related signals from a huge
amount of natural biological, geometrical, and sensor-related variability within a hyperspectral image
of a crop canopy in the field. We proved that hyperspectral imaging in combination with supervised
classification and regression showed good accordance to visual assessment at the ground. This allows
questions to be addressed regarding the transfer of information between different scales and sensors.
We showed that a feature selection was able to increase the prediction accuracy if it was performed on
the analyzed data set. In contrast, scale or sensor transfer of selected feature sets was not successful,
and was even less predictive than an uninformed regularly sampled feature set. This highlighted the
importance of a precise specification of a prediction task by representative data samples. Deviations in
data characteristics can significantly impair the performance of a data analysis pipeline or a tailored
sensor in real-life applications.

This study sets a basis for ongoing research. New, upcoming sensors fulfilling the demands
defined in this study might also cope with the current disadvantages. Consequently, there is a high
probability that the defined flying sensor system with high resolution spectral camera, computing
capabilities, and self-localization will be realized. Adapted legal conditions would allow an integrated
system of field managing software, remote sensing based predictions, and current observations from
the field using an automatized UAV.

Author Contributions: Conceptualization, D.B., J.B. and A.-K.M.; methodology, D.B. and J.B.; software, D.B.
and J.B.; validation, D.B. and J.B.; formal analysis, D.B. and J.B.; investigation, D.B., J.B. and A.-K.M.; resources,
D.B., J.B. and A.-K.M.; data curation, D.B., J.B. and A.-K.M.; writing—original draft preparation, D.B. and J.B.;
writing—review and editing, D.B., J.B. and A.-K.M.; visualization, D.B., J.B. and A.-K.M.; supervision, J.B. and
A.-K.M.; project administration, A.-K.M.; funding acquisition, A.-K.M.

Funding: This work was funded by BASF Digital Farming.

Acknowledgments: The authors would like to thank Onno Muller (Research Center Jülich, Germany) for providing
the basic Phytobike frame, Thorsten Kraska for general support at Campus Klein-Altendorf and Winfried Bungert
(Campus Klein-Altendorf, Germany) for implementation of cultivation measures during the vegetation period.



Remote Sens. 2019, 11, 2495 18 of 20

Conflicts of Interest: The authors declare no conflict of interest.

References

1. West, J.; Bravo, C.; Oberti, R.; Lemaire, D.; Moshou, D.; McCartney, A. The potential of optical canopy
measurement for targeted control of field crop diseases. Ann. Rev. Phytopathol. 2003, 41, 593–614. [CrossRef]
[PubMed]

2. Hillnhütter, C.; Mahlein, A.K.; Sikora, R.A.; Oerke, E.C. Remote sensing to detect plant stress induced by
Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crops Res. 2011, 122, 70–77. [CrossRef]

3. Bravo, C.; Moshou, D.; West, J.; McCartney, A.; Ramon, H. Early disease detection in wheat fields using
spectral reflectance. Biosyst. Eng. 2003, 84, 137–145. [CrossRef]

4. Mewes, T.; Franke, J.; Menz, G. Spectral requirements on airborne hyperspectral remote sensing data for
wheat disease detection. Precis. Agric. 2011, 12, 795–812. [CrossRef]

5. Mirik, M.; Jones, D.C.; Price, J.A.; Workneh, F.; Ansley, R.J.; Rush, C.M. Satellite remote sensing of wheat
infected by wheat streak mosaic virus. Plant Dis. 2011, 95, 4–12. [CrossRef]

6. Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [CrossRef]
7. Mahlein, A.K.; Kuska, M.T.; Behmann, J.; Polder, G.; Walter, A. Hyperspectral sensors and imaging

technologies in phytopathology: State of the art. Ann. Rev. Phytopathol. 2018, 56, 535–558. [CrossRef]
8. Wahabzada, M.; Mahlein, A.K.; Bauckhage, C.; Steiner, U.; Oerke, E.C.; Kersting, K. Plant phenotyping

using probabilistic topic models: Uncovering the hyperspectral language of plants. Sci. Rep. 2016, 6, 22482.
[CrossRef]

9. Whetton, R.; Hassall, K.; Waine, T.W.; Mouazen, A. Hyperspectral measurements of yellow rust and fusarium
head blight in cereal crops: Part 1: Laboratory study. Biosyst. Eng. 2017, 166, 101–115. [CrossRef]

10. Whetton, R.; Waine, T.; Mouazen, A. Hyperspectral measurements of yellow rust and fusarium head blight
in cereal crops: Part 2: On-line field measurement. Biosyst. Eng. 2018, 167, 144–158. [CrossRef]

11. Mahlein, A.K. Plant disease detection by imaging sensors—Parallels and scientific demands for precision
agriculture and plant phenotyping. Plant Dis. 2016, 100, 241–251. [CrossRef] [PubMed]

12. Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.K.
Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J.
Plant Dis. Prot. 2018, 125, 5–20. [CrossRef]

13. Bravo, C.; Moshou, D.; Oberti, R.; West, J.; McCartney, A.; Bodria, L.; Ramon, H. Foliar disease detection in
the field using optical sensor fusion. Agric. Eng. Int. 2004, 6.

14. Franke, J.; Menz, G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis. Agric.
2007, 8, 161–172. [CrossRef]

15. Huang, W.; Lamb, D.W.; Niu, Z.; Zhang, Y.; Liu, L.; Wang, J. Identification of yellow rust in wheat using
in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 2007, 8, 187–197.
[CrossRef]

16. Lan, Y.B.; Chen, S.D.; Fritz, B.K. Current status and future trends of precision agricultural aviation technologies.
Int. J. Agric. Biol. Eng. 2017, 10, 1–17.

17. Devadas, R.; Lamb, D.W.; Simpfendorfer, S.; Backhouse, D. Evaluating ten spectral vegetation indices for
indentifying rust infection in individual wheat leaves. Precis. Agric. 2009, 10, 459–470. [CrossRef]

18. Ashourloo, D.; Mobasheri, M.R.; Huete, A. Developing two spectral indices for detection of wheat leaf rust
(Puccinia triticina). Remote Sens. 2014, 6, 4723–4740. [CrossRef]

19. Cao, X.; Luo, Y.; Zhou, Y.; Fan, J.; Xu, X.; West, J.S.; Duan, X.; Cheng, D. Detection of powdery mildew in two
winter wheat plant densities and prediction of grain yield using canopy hyperspectral reflectance. PLoS
ONE 2015, 10. [CrossRef]

20. Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2007, 58, 855–867. [CrossRef]
21. Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll,

carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [CrossRef]
22. Roosjen, P.P.J.; Suomalainen, J.M.; Bartholomeus, H.M.; Clevers, J.G.P.W. Hyperspectral reflectance anisotropy

measurements using a pushbroom spectrometer on an unmanned aerial vehicle—Results for barley, winter
wheat and potato. Remote Sens. 2016, 8, 909. [CrossRef]

http://dx.doi.org/10.1146/annurev.phyto.41.121702.103726
http://www.ncbi.nlm.nih.gov/pubmed/12730386
http://dx.doi.org/10.1016/j.fcr.2011.02.007
http://dx.doi.org/10.1016/S1537-5110(02)00269-6
http://dx.doi.org/10.1007/s11119-011-9222-9
http://dx.doi.org/10.1094/PDIS-04-10-0256
http://dx.doi.org/10.1126/science.1183899
http://dx.doi.org/10.1146/annurev-phyto-080417-050100
http://dx.doi.org/10.1038/srep22482
http://dx.doi.org/10.1016/j.biosystemseng.2017.11.008
http://dx.doi.org/10.1016/j.biosystemseng.2018.01.004
http://dx.doi.org/10.1094/PDIS-03-15-0340-FE
http://www.ncbi.nlm.nih.gov/pubmed/30694129
http://dx.doi.org/10.1007/s41348-017-0124-6
http://dx.doi.org/10.1007/s11119-007-9036-y
http://dx.doi.org/10.1007/s11119-007-9038-9
http://dx.doi.org/10.1007/s11119-008-9100-2
http://dx.doi.org/10.3390/rs6064723
http://dx.doi.org/10.1371/journal.pone.0121462
http://dx.doi.org/10.1093/jxb/erl123
http://dx.doi.org/10.1029/2006GL026457
http://dx.doi.org/10.3390/rs8110909


Remote Sens. 2019, 11, 2495 19 of 20

23. Moshou, D.; Bravo, C.; West, J.; Wahlen, T.; McCartney, A.; Ramon, H. Automatic detection of ‘yellow rust’ in
wheat using reflectance measurements and neural networks. Comput. Electron. Agric. 2004, 44, 173–188.
[CrossRef]

24. Zhang, J.; Pu, R.; Huang, W.J.; Yuan, L.; Luo, J.; Wang, J. Using in-situ hyperspectral data for detecting and
discriminating yellow rust disease from nutrient stresses. Field Crop Res. 2012, 134, 165–174. [CrossRef]

25. Zheng, Q.; Huang, W.; Cui, X.; Dong, Y.; Shi, Y.; Ma, H.; Liu, L. Identification of wheat yellow rust using
optimal three-band spectral indices in different growth stages. Sensors 2019, 19, 35. [CrossRef]

26. Azadbakht, M.; Ashourloo, D.; Aghighi, H.; Radiom, S.; Alimohammadi, A. Wheat leaf rust detection at
canopy scale under different LAI levels using machine learning techniques. Comput. Electron. Agric. 2019,
156, 119–128. [CrossRef]

27. Chen, W.; Wellings, C.; Chen, X.; Kang, Z.; Liu, T. Wheat stripe (yellow) rust caused by Puccinia striiformis f.
sp. tritici. Mol. Plant. Pathol. 2014, 15, 433–446. [CrossRef]

28. Yu, K.; Anderegg, J.; Mikaberidze, A.; Petteri, K.; Mascher, F.; McDonald, B.A.; Walter, A.; Hund, A.
Hyperspectral canopy sensing of wheat Septoria tritici blotch disease. Front. Plant Sci. 2018, 9, 1195.
[CrossRef]

29. Behmann, J.; Mahlein, A.K.; Rumpf, T.; Romer, C.; Plümer, L. A review of advanced machine learning
methods for the detection of biotic stress in precision crop protection. Precis. Agric. 2015, 16, 239–260.
[CrossRef]

30. Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification:
Earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 2014, 31, 45–54. [CrossRef]

31. Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and
classification of the early onset of plant disease and stress. Plant Methods 2017, 13, 80. [CrossRef] [PubMed]

32. Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine learning for high-throughput stress
phenotyping in plants. Trends Plant Sci. 2016, 21, 110–124. [CrossRef] [PubMed]

33. Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared
diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [CrossRef]

34. Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The
spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer
data. Remote Sens. Environ. 1993, 44, 145–163. [CrossRef]

35. Cortes, C.; Vapnik, V. Support-Vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
36. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011,

2, 27. [CrossRef]
37. Behmann, J.; Steinrücken, J.; Plümer, L. Detection of early plant stress responses in hyperspectral images.

ISPRS 2014, 93, 98–111. [CrossRef]
38. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3,

1157–1182.
39. Parker, S.R.; Shaw, M.W.; Royle, D.J. The reliability of visual estimates of disease severity on cereal leaves.

Plant Pathol. 1995, 44, 856–864. [CrossRef]
40. Nutter, F.W.; Gleason, M.L.; Jenco, J.H.; Christians, N.C. Assessing the accuracy, intra-rater repeatability, and

inter-rater reliability of disease assessment systems. Phytopathology 1993, 83, 806–812. [CrossRef]
41. Mahlein, A.K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plümer, L.; Steiner, U.; Oerke, E.C. Development of spectral

indices for detectiong and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30. [CrossRef]
42. Chen, T.; Zhang, J.; Chen, Y.; Wan, S.; Zhang, L. Detection of peanut leaf spots disease using canopy

hyperspectral reflectance. Comput. Electron. Agric. 2019, 156, 677–683. [CrossRef]
43. Gates, D.M.; Keegan, H.J.; Schelter, J.C.; Weidner, V.R. Spectral properties of plants. Appl. Opt. 1965, 4, 11–20.

[CrossRef]
44. Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [CrossRef]
45. Heim, R.H.J.; Jurgens, N.; Große-Stoltenberg, A.; Oldeland, J. ; The effect of epidermal structures on leaf

spectral signatures of ice plants (Aizoaceae). Remote Sens. 2015, 7, 16901–16914. [CrossRef]
46. Carter, G.A.; Knapp, A.K. Leaf optical properties in higher plants: Linking spectral characteristics to stress

and chlorophyll concentrations. Am. J. Bot. 2001, 88, 677–684. [CrossRef]
47. Pandey, P.; Ge, Y.; Stoerger, V.; Schnable, J.C. High throughput in vivo analysis of plant leaf chemical

properties using hyperspectral imaging. Front. Plant Sci. 2017, 8, 1348. [CrossRef]

http://dx.doi.org/10.1016/j.compag.2004.04.003
http://dx.doi.org/10.1016/j.fcr.2012.05.011
http://dx.doi.org/10.3390/s19010035
http://dx.doi.org/10.1016/j.compag.2018.11.016
http://dx.doi.org/10.1111/mpp.12116
http://dx.doi.org/10.3389/fpls.2018.01195
http://dx.doi.org/10.1007/s11119-014-9372-7
http://dx.doi.org/10.1109/MSP.2013.2279179
http://dx.doi.org/10.1186/s13007-017-0233-z
http://www.ncbi.nlm.nih.gov/pubmed/29051772
http://dx.doi.org/10.1016/j.tplants.2015.10.015
http://www.ncbi.nlm.nih.gov/pubmed/26651918
http://dx.doi.org/10.1366/0003702894202201
http://dx.doi.org/10.1016/0034-4257(93)90013-N
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1016/j.isprsjprs.2014.03.016
http://dx.doi.org/10.1111/j.1365-3059.1995.tb02745.x
http://dx.doi.org/10.1094/Phyto-83-806
http://dx.doi.org/10.1016/j.rse.2012.09.019
http://dx.doi.org/10.1016/j.compag.2018.12.036
http://dx.doi.org/10.1364/AO.4.000011
http://dx.doi.org/10.1016/0034-4257(89)90069-2
http://dx.doi.org/10.3390/rs71215862
http://dx.doi.org/10.2307/2657068
http://dx.doi.org/10.3389/fpls.2017.01348


Remote Sens. 2019, 11, 2495 20 of 20

48. Gay, A.; Thomas, H.; James, C.; Taylor, J.; Rowland, J.; Ougham, H. Nondestructive analysis of senescence
in mesophyll cells by spectral resolution of protein synthesis-dependent pigment metabolism. New Phytol.
2008, 179, 663–674. [CrossRef]

49. Bohnenkamp, D.; Kuska, M.T.; Mahlein, A.K.; Behmann, J. Hyperspectral signal decomposition and symptom
detection of wheat rust disease at the leaf scale using pure fungal spore spectra as reference. Plant Pathol.
2019, 68, 1188–1195. [CrossRef]

50. Elvidge, C.D. Visible and near infrared reflectance characteristics of dry plant materials. Int. J. Remote Sens.
1990, 11, 1775–1795. [CrossRef]

51. Kuska, M.; Wahabzada, M.; Leucker, M.; Dehne, H.W.; Kersting, K.; Oerke, E.C.; Steiner, U.; Mahlein, A.K.
Hyperspectral phenotyping on the microscopic scale: Towards automated characterization of plant-pathogen
interactions. Plant Methods 2015, 11, 28. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1469-8137.2008.02412.x
http://dx.doi.org/10.1111/ppa.13020
http://dx.doi.org/10.1080/01431169008955129
http://dx.doi.org/10.1186/s13007-015-0073-7
http://www.ncbi.nlm.nih.gov/pubmed/25937826
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Field Trial Layout 
	Inoculations 
	Visual Disease Ratings 
	Crop Stand and Disease Development 

	Measurement Platforms 
	Field Platform Phytobike 
	UAV Measurements 

	Data Preprocessing 
	Spectral Preprocessing 
	Data Normalization 

	Prediction Algorithms 
	Spectral Angle Mapper 
	Support Vector Algorithms 

	Vegetation Indices 
	Model Evaluation 
	Feature Selection 
	Spatial Resolution as a Key Parameter for Disease Detection 

	Results and Discussion 
	Supervised Classification of Hyperspectral Pixels at the Ground Canopy Scale 
	Evaluation of Hyperspectral UAV Observations Using a Filter-System Hyperspectral Camera 
	Selection of Relevant Features at Different Scales 
	Ground Scale 
	UAV Scale 
	Cross-Scale Interpretation 
	Spatial Resolution as Key Parameter for Disease Detection 

	Optimal Sensor System for Plant Disease Detection 

	Conclusions 
	References

