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Abstract: Urban expansion is one of the most dramatic forms of land transformation in the world and
it is one of the greatest challenges in achieving sustainable development in the 21st century. Previous
studies analyzed urbanization patterns in areas with rapid urban expansion while urban areas with
low to moderate expansion have been overlooked, especially in developed countries. In this study,
we examined the spatiotemporal dynamics of urban expansion patterns in South Florida, United
States (US) over the last 25 years (1992–2016) using Remote Sensing and GIS techniques. The main
goal of this paper was to investigate the degree and spatiotemporal patterns of urban expansion
at different administrative level in the study area and how spatiotemporal variance in different
explanatory factors influence urban expansion in this region. More specifically, this research quantifies
the rates, types, intensity, and landscape metrics of urban expansion in Miami-Fort Lauderdale-Palm
Beach, Florida Metropolitan Statistical Area (Miami MSA) which is the 7th largest MSA and 4th
largest urbanized area in the US using remote sensing (satellite imageries) data from National Land
Cover Datasets (NLCD) and Coastal Change Analysis Program (C-CAP) at 30 m spatial resolution.
We further investigated the urban growth patterns at the county and city areas that are located within
this MSA to portray the local ‘picture’ of urban growth in this region. Urban expansion in this
region can be divided into two time periods: pre-2001 and post-2001 where the former experienced
rapid urban expansion and the later had comparatively slow urban expansion. Results suggest
that infilling was the dominant type of urban expansion followed by edge-expansion and outlying.
Results from landscape metrics represent that newly developed urban lands became more aggregated
and simplified in form as the time progressed in the study region. Also, new urban lands were
generated away from the east coast and historic cities which eventually created new urban cores.
We also used correlation analysis and multiple linear stepwise regression to address major explanatory
factors of spatiotemporal change in urban expansion during the study period. Although the influence
of factors on urban expansion varied temporally, Population and Distance to Coast were the strongest
variables followed by Distance to Roads and Median Income that influence overall urban expansion
in the study area.

Keywords: urban expansion; remote sensing and GIS; expansion types and rates; major explanatory
factors; Miami metropolitan area

1. Introduction

The level of urbanization went up by almost 80 percent in some parts of the world in 2003 including
North America, Europe, and Australia and more than half of the world’s population lives in urban
areas today [1]. This number is expected to increase even more in the coming years. Urbanization is
more intense and complex in the coastal areas given that they are more densely populated with higher
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rate of urban expansion than surrounding areas [2]. According to United Nations (2018) [1], about
66% of total population is projected to be living in urban areas by 2050. As the total urban and coastal
population is expected to increase at an alarming rate, urban growth and urbanization have become a
crucial issue among the city planners, policymakers, and scientific community.

Urbanization or urban expansion mainly characterized by population change from rural to urban
areas and conversion of urban lands from non-urban lands [3] which presents both prospects to the
society by enhancing economic development and challenges by bringing different social, cultural, and
environmental problems, which may affect the overall living quality of people [3–8]. Also, the physical
growth of urban land is considered to be one of the most radical and unalterable forms of land
alterations on the planet [9,10]. Most often, the impacts of urban expansion exceed its boundary [6,11]
and include landscape change [12,13], loss of agricultural land [9], biodiversity [14,15], air and water
pollution [4,16,17], biogeochemical cycles [18,19], and local and regional climate change [4,20,21] at
different scales.

The population in Florida (FL) increased from 12 million in 1990 to almost 21 million in 2018.
South Florida is not an exception. During the past two decades, South Florida experienced a moderate
but noticeable urban expansion, especially in the urban region. The economic development in this
region had a boost-up during the start of the nineteenth century by involving the private-sector
induced tourism and urban land conversion from natural land was accounted for more than 50% of
the total natural land conversion between the period 1973–1995 [22]. The south Florida region consists
of one of the largest Metropolitan Statistical Area (MSA) in the United States named ‘Miami-Fort
Lauderdale-Palm Beach, FL MSA’. This region is our study area of this paper and will be referred to as
‘Miami MSA’ in the rest of the paper.

Remote sensing is an important source of data when it comes to land use land cover (LULC)
change analysis with high spatial and temporal accuracy [23–25]. With the help of Geographical
Information Systems (GIS), remote sensing improved the evaluation and examination of the urban
growth process [26]. Landscape metrics have been widely used to analyze landscape patterns of urban
expansion [24,27–29].

Many studies have been conducted utilizing the remote sensing data and landscape
metrics combined with GIS techniques to quantify the spatiotemporal dynamics of urban
expansion [3,13,26,30–35]. Among them, most of the studies concentrated on developing countries
like China considering their rapid urbanization over the last few decades. Zhao et al. (2015) [31]
studied urbanization processes in two moderately developed cities in China by quantifying and
comparing dynamics of urban expansion between those two cities and analyzing the trend of landscape
metrics and growth types. Shi et al. (2018) [35] examined the dynamics of urban expansion over the
15 years’ period in southeastern China by utilizing Nighttime Light Data from National Oceanic and
Atmospheric Administration (NOAA). Sun et al. (2014) [26] studied spatiotemporal pattern of urban
expansion in northeast China over the last three decades by quantifying the urban expansion rates
and their spatial extent, different types of urban expansion, urban expansion intensity, and landscape
metrics in their study region. Li et al. (2016) [34] studied the change of urban land areas at regional
scale over the last two decades in 15 metropolitan areas in the southeastern United States. Chen et al.
(2018) [36] quantified the urban expansion pattern in northeast China over 25 years using the Landsat
imageries and analyzed the influence of socioeconomic factors on urban expansion between that time
period. Yu and Zhou (2017) [37] analyzed spatiotemporal patterns of urban land expansion at regional
and city scale and examined how geographical location, city size, and expansion rate influence overall
urban expansion at different scales. However, there is still not enough research done that concentrates
on the urban expansion process in the moderately growing urban areas in an already developed region
like south Florida. Most of the previous research studied areas where rapid urban expansion occurred.
Moreover, many of those studies only quantified spatiotemporal patterns of urban expansion in a
single administrative boundary (e.g., city, metropolitan area, province, etc.).
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Generally, urban expansion patterns are analyzed by examining the explanatory factors of urban
growth. Previous studies have found that urban expansion is driven by socioeconomic factors like
population and economy [36,38,39]. In most cases, a qualitative approach was taken to describe
those guiding factors due to a lack of data where quantitative analysis would be more effective [36].
Furthermore, it is not only socioeconomic factors that drive urban expansion in an area but physical
factors like elevation [40,41] and proximity factors like distance to river and water [42,43] and distance
to major roads [44,45] also influence urban expansion. Physical factors influence urban expansion in
two ways: they may provide a spatial direction of urban land development (e.g., a mountain) or may
serve as limiting factors for urban development such as extreme slope, unsuitable soils for development,
etc. However, quantitative analysis of urban expansion patterns that incorporate various explanatory
factors (socioeconomic, physical, and proximity factors) has been inadequate. Additionally, the spatial
and temporal variation of those factors of urban expansion were hardly studied [46].

In this study, we quantified and analyzed urban expansion and its spatiotemporal patterns in
Miami MSA for the last 25 years (1992–2016) at a 5-year temporal scale using the National Land Cover
Datasets (NLCD) and NOAA (under the Coastal Change Analysis Program (C-CAP)) combined with
landscape metrics. We then further examined the urban expansion process at the county level and
compared and analyzed the spatiotemporal pattern of urban growth in the three counties (Miami-Dade,
Broward, and Palm Beach) in Miami MSA. Additionally, to get the local representation of urban
expansion in this region for the last 25 years, we further explored the urban expansion scenario at the
city level in the study area. We also examined the influence of spatiotemporal variations in guiding
factors on urban expansion in the study area. The explanatory/guiding factors were chosen based on the
previous literature and local knowledge. The objectives of this study were to (1) analyze and compare
the extent of urban expansion at metropolitan, county, and city level, (2) illustrate the spatiotemporal
patterns of urban expansion at different administrative levels, (3) analyze and compare the landscape
metrics of urban expansion and their types at those administrative levels, and (4) quantify the influence
of major explanatory factors on urban expansion.

2. Materials and Methods

2.1. Study Area

The study area of this research is the Miami Metropolitan Area which is also known as the
Greater Miami Area or South Florida. It is the 73rd largest metropolitan area in the world and the
seventh-largest metropolitan area in the United States. It is located in the most southern part of the
State of Florida and is the most populous region in the State of Florida.

The Miami Metropolitan Area is defined by the Office of Management and Budget as the
Miami-Fort Lauderdale-West Palm Beach, FL MSA, which consists of Miami-Dade, Broward, and Palm
Beach Counties. Miami-Dade, Broward, and Palm Beach county are the first, second, and third most
populous counties in Florida, respectively. This MSA consists of 15,895 km2 of land area (US Census
Bureau, 2017). The major cities in the MSA include Miami, Fort Lauderdale, Miami Beach, West Palm
Beach, Jupiter, and Boca Raton which are also known collectively as ‘Gold Coast’ (Figure 1). There are
362 metropolitan statistical areas and 560 micropolitan areas in the United States and Miami-Fort
Lauderdale-Palm Beach, FL MSA is the seventh-largest MSA in the US.

Miami-Fort Lauderdale-Palm Beach, FL MSA is surrounded by the Atlantic Ocean to the east
and south, lake Okeechobee to the north, Everglades and Atlantic Ocean to the west. The climate in
this region is tropical monsoon where most of the rainfall is in summer and winter is typically dry.
The average rainfall is about 1500 mm per year in this region. The temperature during the summer
ranges between 24–39 °C and during the winter ranges between 15–24 °C. The highest elevation is 16.2
m and the lowest elevation is 0 m in this region. Due to the geographical location (surrounded by
Atlantic Ocean), south FL is often hit by deadly hurricanes. Hurricane season runs from June 1st to
November 30th while the most dangerous period is from mid-August to end of September. This region
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is known as one of the most dangerous areas likely to hit by hurricanes. Major hurricanes that hit this
region in the recent period are Hurricane Andrew (1992), Irene (1999), Katrina and Wilma (2005), and
Irma (2017).
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Figure 1. Location of the Florida Metropolitan Statistical Area (Miami MSA), three counties, major
cities, along with coastline in 2013 and major roads in 1990 within the study area.

This MSA is about 161 km long and 32.2 km wide which makes it the second-longest urbanized
area in an MSA after New York. The urbanized area in Miami-Fort Lauderdale-Palm Beach, FL MSA
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consists of 2,890 km2 with a population of 4,919,036 and a population density of 1702.1 per km2 in
2000. The total population in Miami MSA in 2000 was 5,007,564 and the estimated population in this
area in 2018 is 6,198,782. The population increased by about 23.8% from 2000 to 2018. The urbanized
area in Miami MSA was the fourth largest urbanized area in the US in 2010 census.

2.2. Data

2.2.1. LULC Data

LULC data were obtained from the Multi-Resolution Land Characteristics Consortium (MRLC,
https://www.mrlc.gov/) [47,48]. MRLC provides NLCD for the year 1992, 2001, 2006, 2011, and
recently released (May 2019) 2016 in ArcGIS grid format [49]. NLCD data products are derived from
Landsat imageries, geometrically and radiometrically corrected, and uses unsupervised classification
method for the LULC classification. The LULC data provided by NLCD contains land cover and
land cover change data for the entire United States with a 30 m spatial resolution. Land covers in
NLCD are classified into several classes but the 8 broad categories are water, developed, barren, forest,
shrubland, herbaceous, planted/cultivated, and wetlands. The overall accuracy of these datasets is 80%
or more [50–54].

To be consistent with the temporal resolution of the dataset and keep it at a roughly 5-year
temporal scale, we have also used land cover data sets for the year 1996 provided by the National
Oceanic and Atmospheric Administration (NOAA) under the Coastal Change Analysis Program
(C-CAP). This dataset covers the coastal portion of the NLCD datasets that contains LULC data with a
30 m spatial resolution and are based on Landsat imageries like NLCD. C-CAP data is also classified
into several categories. The overall accuracy of these datasets is 85% or more [55]. Since the focus
of this research is to examine the spatiotemporal change of the urban expansion in the study area,
the NLCD and C-CAP data were re-classified into two land covers namely urban and non-urban using
‘Raster Reclassification’ tool in ArcGIS. Every land cover that is not urban was reclassified as non-urban.
Table 1 shows a detailed description of different classes in NLCD and C-CAP datasets and the classes
that were used in this research to define urban areas.

Table 1. Land cover classes in National Land Cover Datasets (NLCD) and Coastal Change Analysis
Program (C-CAP) datasets and land covers used to define urban areas in this research.

Datasets Classes in the Original Dataset Classes Used to Define Urban
Area in this Research

Overall Accuracy of
the Datasets

NLCD (1992, 2001, 2006,
2011, 2016)

Open Water; Perennial Ice/Snow; Developed, Open Space;
Developed, Low Density; Developed, Medium Density;
Developed, High Density; Barren Land; Deciduous Forest;
Evergreen Forest; Mixed Forest; Dwarf Scrub; Shrub/Scrub;
Grassland/Herbaceous; Sedge/Herbaceous; Lichens; Moss;
Pasture/Hay; Cultivated Crops; Woody Wetlands; Emergent
Herbaceous Wetlands

Developed, Open Space;
Developed, Low Density;
Developed, Medium Density;
Developed, High Density

≥80%

C-CAP (1996)

Developed, High Intensity; Developed, Medium Intensity;
Developed, Low Intensity; Developed, Open Space;
Cultivated Crops; Pasture/Hay; Grassland/Herbaceous;
Deciduous Forest; Evergreen Forest; Mixed Forest;
Scrub/Shrub; Palustrine Forested Wetland; Palustrine
Scrub/Shrub Wetland; Palustrine Emergent Wetland; Estuarine
Forested Wetland; Estuarine Scrub/Shrub Wetland; Estuarine
Emergent Wetland; Unconsolidated Shore; Bare Land; Open
Water; Palustrine Aquatic Bed; Estuarine Aquatic Bed

Developed, High Intensity;
Developed, Medium Intensity;
Developed, Low Intensity;
Developed, Open Space

≥ 85%

2.2.2. Major Explanatory Factors of Urban Expansion

In this study, we considered socioeconomic, proximity, and physical factors that affect urban
land expansion based on previous studies and local knowledge. Not all these factors act as drivers or
facilitators of urban land expansion. Some of the factors act as limiting factors of urban growth as well.
For socioeconomic factors, we selected population and median household income as the explanatory
factors of urban land expansion. For proximity factors that affect urban land expansion, we considered

https://www.mrlc.gov/
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distance to major roads and distance to coastal boundary, and for physical factors, we selected elevation
of the study area. Table 2 shows a detailed description of these variables and their data sources.

Table 2. Selected variables of major explanatory factors of urban expansion.

Variable Category Description Variable Sources

Socioeconomic factors

People (103 per km2) Population

Population grid datasets from NASA’s Socioeconomic Data and Applications
Center (SEDAC) website
(https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 and
https://sedac.ciesin.columbia.edu/data/collection/grump-v1) for the year 1990,
1995, 2000, 2005, 2010, and 2015 as raster surface at 1 km resolution.

Median Household
Income (103 per km2) Median Income

Median household income data were derived at the block group level from
National Historical GIS (NHGIS) website (https://www.nhgis.org/) [56] for the
year 1990, 2000, 2010, 2011, and 2016 which were later converted to raster layers
at 1 km resolution.

Proximity factors

Distance to Major
Roads (km)

Distance to
Roads

Major road data for the years 2007, 2011, and 2016 were derived from
TIGER/Line Shapefiles website (https://www.census.gov/geographies/mapping-
files/time-series/geo/tiger-line-file.html) and for the year 1990, 1993, and 2000
were derived from Florida Geographic Data Library (FGDL) website
(https://www.fgdl.org/metadataexplorer/about.html). Nearest distance to major
roads for above years was calculated using the Euclidean Distance tool in
ArcMap at a 1 km resolution.

Distance to Coastal
Boundary (km)

Distance to
Coast

Coastal boundary data were derived from the TIGER/Line Shapefiles website
(https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-
file.html) for the year 2013 and 2016. Nearest distance to coastline was calculated
using the Euclidean Distance tool in ArcMap at a 1 km resolution.

Physical factors Elevation (km) DEM

Digital Elevation Data at 30 m resolution were derived from USGS National
Elevation Dataset
(https://catalog.data.gov/dataset/usgs-national-elevation-dataset-ned) and
calculated using the Zonal Statistics tool in ArcMap at 1 km resolution.

Based on available data, datasets for selected influential factors of urban expansion were derived
for the study period (1992–2016) from different data sources. Population and income are important
factors as part of the socioeconomic factors of urban expansion. 1 km gridded population datasets
were derived for the years 1990, 1995, 2000, 2005, 2010, and 2015 and used for subsequent study years
(1990 data for study year 1992, 1995 data for study year 1996, and so on). Median household income
data were derived at the block group level for the years 1990, 2000, 2010, 2011, and 2016. For the study
year 1992 we used the 1990 data, 1996 we used the average of 1990 and 2000 data, 2001 we used 2000
data, 2006 we used the average of 2000 and 2010 data. Population and economic development (in this
case, median income) are commonly used as a driving factor that facilitates urban expansion [46].

Urban expansion near the major roads is considered one of the most common patterns of urban
expansion that guides urban growth [46]. As a result, it is expected that distance to major roads will
have a negative effect on urban expansion. Both the primary and secondary roads were considered as
major roads in this research. Major road data for the years 1990, 1993, 2000, 2007, 2011, and 2016 were
derived. We used 1990 data to represent the year 1992, 1993 data to represent the year 1996, 2000 data
to represent the year 2001, 2007 data to represent the year 2006, and 2011 and 2016 data to represent the
year 2011 and 2016, respectively.

Since the study area is a coastal area, we considered distance to the coastal boundary as one of
the proximity factors to urban expansion. Proximity to water, or in this case, the coast, affect urban
expansion in two different ways: while urban expansion could be restricted by the presence of a water
body (Atlantic Ocean for this study), it could also advance water resources and waterborne advantages
to facilitate urban development at the same time [46]. Generally, people tend to live near the coast due
to the high recreational value, which is evident in south Florida. Therefore, it is expected that distance
to coastal boundary will have a negative impact on urban expansion in the study area. Based on the
available data, coastal boundary in 2013 and 2016 were derived. Coastal boundaries in 2013 were used
to represent the study years between 1992 and 2011, and 2016 were used to represent the study year in
2016. Since the factors like coastal boundary and elevation do not change much over time, we kept
elevation constant for each year.

https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://sedac.ciesin.columbia.edu/data/collection/grump-v1
https://www.nhgis.org/
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.fgdl.org/metadataexplorer/about.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://catalog.data.gov/dataset/usgs-national-elevation-dataset-ned
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2.3. Methods

2.3.1. Annual Urban Expansion Rate

Annual urban expansion rate (AUEa) was calculated for the study area to examine the annual
expansion rate of an urban area over the last 25 years. AUEa shows the temporal patterns of urban
expansion in Miami MSA and the tri-county area distinctly. Along with AUEa, standardized annual
urban growth rate (AUEs) was also calculated. AUEs can be useful to compare the urban expansion
rate between the three counties as it does not consider the impact of initial sizes of the counties [26].
The indexes that were used to calculate the AUEa and the AUEs are given below:

AUEa (km2 year−1) = UAn+i − UAn/i (1)

AUEs (%) = ((UAn+i/UAn)1/i
− 1) × 100% (2)

where AUEa and AUEs are the annual urban expansion rate (km2 year−1) and standardized annual
urban expansion rate (%) from the year n to n + i, respectively. UAn+i and UAn are the total area of
urban land (km2) at the year n + i and n, respectively, and i is the difference between year n + i and
n (years).

2.3.2. Annual Expansion Type

It is really important to identify the different types of urban expansion in an area to successfully
analyze the patterns of urban expansion [26]. According to Xu et al. (2007) [30], there are three types of
urban expansion that can be identified including outlying, edge-expansion, and infilling. Outlying
urban expansion happens when the newly developed urban patch has no spatial connection with
existing urban land, edge-expansion type denotes the new urban land that spreads out from the
border of existing urban land, and infilling urban expansion occurs when the non-urban land that is
surrounded by existing urban land converts to urban land [32]. However, outlying urban expansion
could either follow a scattered or random development or it could be directed or guided by features
like roads and canals. This pattern of outlying urban expansion with major roads in the study area
was also explored in this research. Following Xu et al. (2007) [30], an E index was created to identify
different types of urban expansion in the study area using the following equation:

E = Lcom/Pnew (3)

where E means the type of urban expansion, Lcom is the length of the common edge between newly
developed urban land and existed urban land, and Pnew is the perimeter of a newly developed urban
land. The value of E ranges between 0 to 1. Urban expansion type is outlined as outlying when E = 0,
edge-expansion when 0 < E ≤ 0.5 and infilling when E > 0.5.

2.3.3. Urban Expansion Intensity

Urban expansion intensity was calculated to examine the spatial distribution of urban expansion
in the study area at 5-year temporal resolution using the index created by Sun et al. (2014) [26], which
is as follows:

UIIi, t to t+n = (UAi,t+n - UAi,t/n) × (100/TAi) (4)

where UIIi, t to t+n is the urban expansion intensity for spatial unit i between the time period t and t+n,
UAi,t+n and UAi,t refer to the total urban land area of spatial unit i at the time t+n and t, respectively,
and TAi denotes the total area of spatial unit i. In this research, the spatial unit is a 2 km × 2 km
grid. The urban expansion intensities were classified into five groups by a custom standard including
standard <10%, 10–20%, 20–40%, 40–70%, and 70–100%, which refer to the urban expansion intensity
level of very low, low, moderate, rapid, and highly rapid, respectively.
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2.3.4. Landscape Metrics

Four different metrics at class and landscape levels were calculated to see the impacts of urban
growth in the study area. FRAGSTATS version 4.2 was used to calculate these metrics. Since the main
objective of this research is to examine the spatiotemporal pattern of urban expansion over the last
25 years in the study area and there are a lot of metrics available, we chose four metrics to identify the
shape, landscape and distribution of urban patches including Number of Patches (NP), Largest Patch
Index (LPI), Landscape Shape Index (LSI), and Area-weighted Mean Shape Index (SHAP_AM) [28].
NP was calculated using the 8-cell neighborhood rule in FRAGSTATS version 4.2. An increase in
NP means a more fragmented urban surface while decrease in NP suggests opposite [57]. Similarly,
increase in LPI means the increase in urban center, increase in LSI suggests a more complicated and
irregular shape of urban patches, increase in SHAP_AM represents increasing complexity of urban
land, and vice-versa [26]. NP, LSI, and SHAP_AM were calculated at class level and LSI was calculated
at landscape level for urban land. Table 3 below shows the detailed description of these metrics.

Table 3. Landscape metrics based on McGarigal and Marks (1995) [28].

Landscape Metric Abbreviation Description Range

Number of Patches NP Total number of urban land cover patches surrounded by
non-urban land cover types NP ≥ 0

Largest Patch Index LPI The proportion of total area occupied by the largest patch of a
land cover type 0 < LPI ≤ 100

Landscape Shape Index LSI A modified perimeter-area ratio of the form that measures the
shape complexity of the urban land cover type LSI > 0

Area-weighted Mean
Shape Index SHAP_AM

The shape index weighted by relative patch area which
measures the average shape complexity of individual patches
for the urban land cover type

SHAP_AM > 0

2.3.5. Urban Expansion Direction

Identifying urban expansion directions helps to understand the spatiotemporal pattern of urban
development. In this study, we used weighted mean center via ArcMap to depict the change in
direction of urban expansion in each study year. In calculating the mean center of urban lands for each
year, we used area (km2) of urban patches as the weight. As a result, urban patches with larger areas
get higher weight in calculating the mean center.

2.3.6. Factors Influencing Urban Area

A linear correlation between the urban area and each of the five explanatory/independent variables
was calculated. Then a regression model was created for each of the six study years. Urban area was
considered as the dependent variable and variables of urban expansion with statistically significant
relationship with urban area were considered as explanatory/independent variables. In doing this,
1 km × 1 km grids were created over the urban land areas of each year and the total urban area for
each grid in each year was calculated to be consistent with the datasets used. Then the values from
each influential factor of urban expansion were extracted for each grid each year using ArcMap.

Correlation Analysis

The Pearson Correlation Coefficient (r) was calculated between the urban land area and the
explanatory factors of urban expansion using SPSS (version 26) at a 95% confidence interval. The value
of r ranges from -1 to 1. The value 0 means no linear correlation between urban land area and
explanatory factors of urban expansion, value above 0 means positive linear correlation and value
below 0 means negative linear correlation. The value of r was considered statistically significant when
the p-value is below 0.05.
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Regression Analysis

A multiple linear regression analysis was performed in SPSS (version 26) for each study year
where the urban land area was the dependent variable and explanatory factors of urban land expansion
were independent variables. Independent variables with statistically significant positive or negative
correlation with the urban areas were considered only in the regression analysis. The stepwise method
was chosen while running the multiple linear regression analysis since the stepwise regression method
is a method of fitting regression models where the independent variables are automatically chosen and
the influence of each independent variable to the model can be easily determined. Multicollinearity
between the independent variables was also tested in each regression model using the Tolerance and
Variance Inflation Factors (VIF) in correlation matrix. Generally, if the tolerance value is high (close to 1
and greater than 0) and VIF value is low (smaller than 4 but greater than 1), it is considered as low
degree of multicollinearity [58]. Before running the multiple linear stepwise regression, the dependent
and independent variables were normalized using the below equation to remove the effect of factor
dimension and magnitude [36,59]:

x’i = (xi − xmin)/(xmax − xmin) (5)

where x’i is the normalized value of the ith cell of variable x, xi is the value of ith cell of variable x, xmax

is the maximum value of variable x, and xmin is the minimum value of variable x. After normalization,
the value of the dependent and independent variables ranges from 0 to 1. The regression model is
acceptable when the p-value is below 0.05 and a high Adjusted R2 value means a better model fit.
Figure 2 illustrates the methodology of this study below.
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3. Results

3.1. Urban Expansion Rate

The Miami MSA has gone through a moderate but noticeable urban expansion over the last
25 years (Figure 3 and Appendix A) where the proportion of urban land increased and non-urban land
decreased. From the period 1992 to 2016, the urban land increased from 2308.28 km2 to 3167.78 km2
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which is 859.5 km2 of newly developed urban land in total in the last 25 years. The AUEa in this period
was 34.38 km2 year−1. To get the sense of urban expansion in the study area more locally, we then
looked into the urban expansion in the last 25 years in the three counties (Palm Beach, Broward, and
Miami-Dade) individually. The urban land in Palm Beach County (PBC) increased substantially where
the total urban land in 1992 was 780.01 km2 and it increased to 1183.77 km2 in 2016 with an average
annual growth rate of 16.15 km2 year−1. Urban land expanded with an average growth rate of just
over 9 km2 year−1 in both Broward County (BC) and Miami-Dade County (MC) (Figure 3).

However, these urban expansions were not the same across different time periods. In Miami
MSA, the AUEa was 45.7 km2 year−1 from 1992 to 1996 and 96.57 km2 year−1 between 1996 and
2001. After 2001, there was a sharp decrease in urban land growth in this area. The rate decreased
to 18.41 km2 year−1 from 2001 to 2006 and continued to decrease till 2011 when it was found as
8.91 km2 year−1. It then again increased to 11.45 km2 year−1 between the period 2011–2016 (Table 4).

Similarly, PBC experienced rapid urban expansion between the periods 1992–1996 and 1996–2001
where the AUEa were 23.64 and 48.39 km2 year−1. After 2001, it had a steep decrease in AUEa until 2011
when the rate was 3.56 km2 year−1. After 2011, it again had a slight increase with 4.02 km2 year−1. AUEa

in MC between 1992 –1996 and 1996 –2001 were the lowest among three counties when the rate was
found as 9.63 and 20.82 km2 year−1, respectively. After 2001, it experienced a sharp decrease until 2016.
However, between the period 2001–2006 and 2011–2016, MC had the highest AUEa in the tri-county
region where the rate was 8.34 and 5.38 km2 year−1, respectively. In BC, AUEa was 12.31 km2 year−1

between 1992–1996 and 27.28 km2 year−1 between 1996–2001. Following the same pattern as other
counties, it then continued to decrease till the end when the rate was only 1.72 km2 year−1 in the
period 2011–2016 (Table 4). PBC had the highest rate of overall (1992–2016) AUEa (16.15 km2 year−1)
among these three counties and MC and BC had almost same overall AUEa (9.08 and 9.04 km2 year−1,
respectively).
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Table 4. Annual urban expansion rate (AUEa) (km2 year−1) and AUEs (%) in Miami MSA and three
counties during 1992–2016.

1992–1996 1996–2001 2001–2006 2006–2011 2011–2016 1992–2016

AUEa AUEs AUEa AUEs AUEa AUEs AUEa AUEs AUEa AUEs AUEa AUEs

Miami-MSA 45.7 1.92 96.57 3.61 18.41 0.61 8.91 0.29 11.45 0.37 34.38 1.27

PBC 23.64 2.90 48.39 5.01 5.89 0.52 3.56 0.31 4.02 0.34 16.15 1.68

BC 12.31 1.71 27.28 3.40 4.21 0.47 2.35 0.26 1.72 0.19 9.08 1.13

MC 9.63 1.14 20.82 2.29 8.34 0.84 2.96 0.29 5.38 0.52 9.04 0.97

The overall AUEs in Miami MSA between the period 1992–2016 was found as 1.27%. Again, in the
beginning, between 1992–1996, the rate was almost 2%. Then it increased to 3.61% between 1996–2001.
After 2001, it experienced a sharp decrease till the end (2011–2016) where the AUEs were below 1% in
this area. The AUEs in PBC were almost 3% between 1992–1996 which accounts for the highest rate
of standardized annual urban expansion between the three counties in this period. It then increased
to 5% between 1996–2001. After 2001, it had a sharp decrease till 2016 where the AUEs were below
1% in all the period making the overall average AUEs in PBC as 1.68%. In BC and MC, the AUEs

were 1.71% and 1.14% respectively between the period 1992–1996. It then increased to 3.4% and 2.29%
respectively in the following period (1996–2001). After 2001, BC experienced a steep decrease in AUEs

as it went below 1% for the rest of the periods. MC also experienced a noticeable decrease in AUEs

as it was 0.84% in the period (2001–2006), 0.29% between 2006–2011, and increased to 0.52% again
between 2011–2016. Interestingly, both the BC and MC had almost the similar overall average AUEs

including 1.13% and just below 1%, respectively, over the last 25 years considering the AUEa in MC
was substantially lower than that of BC (Table 4).

3.2. Urban Expansion Types

Figure 4 shows the percentages of urban expansion types for the newly developed urban lands in
Miami MSA, PBC, BC, and MC area over the five different time periods. Infilling was found as the
leading urban expansion type (more than 50%) and outlying as the least dominant expansion type in
all the time periods for all the areas. In Miami MSA, the infilling expansion type accounts for 65.06%
in 1992–1996. Then it continues to increase till 2006 when the infilling type accounts for over 87%
of the total proportion of extension types. During 2006–2011, it decreased to 57.65% and then again
increased to 64.42% during 2011–2016 making the overall average of infilling type as 84.4% in Miami
MSA. The outlying type in Miami MSA during 1992–1996 was 13.44%. It then started to decrease
until 2011 when the proportion of outlying type was below 1%. During 2011–2016, it again increased
to 2.14% in this area. The proportion of edge-expansion ranges from 12.53% (2001–2006) to 41.36%
(2006–2011) in Miami-MSA.

All three counties (PBC, BC, and MC) more or less follow the same trend as the overall study
area (Miami MSA) as infilling was the dominant expansion type over all the study periods. Outlying
was the least dominant type of expansion in PBC as it was 15.9% during 1992–1996. Then it started
to decrease in the following periods until 2006 when it was almost zero (0.13%). During 2006–2011,
it increased to almost 1% and then between 2011–2016 it increased to 2.14%. During 1992–1996, the
infilling expansion type accounted for 65.06% of the total expansion types. It then increased to 87.34%
during 2001–2006. The lowest proportion of infilling type was during 2006–2011 (56.68%). It then
again increased to almost 65% during the following period (2011–2016). In BC, the highest proportion
of infilling type (93.37%) and the lowest proportion of outlying type (0.06%) was during 2001–2006.
Outlying was the highest during 1992–1996 (7.35%) and infilling was the lowest during the period
2006–2011 (70.6%). In MC, infilling was also the highest during 2001–2006 (almost 83%). However,
during 2006–2011, edge-expansion was the very dominant type of expansion type as it accounted for
almost 47% of the total proportion and infilling was the lowest (51.82%). Edge-expansion was 38.62%
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during 2011–2016 in MC and outlying was the highest at the beginning (1992–1996) as it accounted for
almost 15% of the total proportion.
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Figure 4. Proportion of Urban Expansion Types in the Study Area over the last 25 Years.

3.3. Urban Expansion Intensity Index

Urban expansion intensity has been examined to evaluate the spatial distribution of urban
expansion over the study area from 1992 to 2016 in a five-year interval. To understand the pattern
of urban expansion intensity more locally, we overlayed the county boundary over the MSA map
(Figure 5) and boundaries of most historical and populous cities over the county map (Figure 6).
Figure 5 shows that urban expansion mainly occurred on the east coast of the study area. Most of the
rapid and highly rapid urban expansion grids are between 1992–2001 in Miami MSA (Figures 5 and 7).
More specifically, rapid and highly rapid expansion grids account for over 3% in the periods 1992–1996
and 1996–2001. After 2001, rapid and highly rapid urban expansion grids decreased significantly.

The proportion of rapid and highly rapid grids in the following periods and there were no rapid
and highly rapid expansion grids overall (1992–2016) in this region (Figure 7). Very low and low urban
expansion grids account for over 85% of the total proportion over all the study periods in this region.
There are some ‘hotspots’ of rapid and highly rapid urban expansion grids during 1992–1996 and
1996–2001 (Figure 5). In PBC, rapid and highly rapid urban expansion grids are clustered together in
the south-eastern part of the county which is near the coast during 1992–1996. During 1996–2001, the
‘hotspots’ of rapid and highly rapid urban expansion grids were moved away from the coast and can
be seen in the northern part of the county. In BC, rapid and highly rapid expansion grids are dispersed
during the period 1992 to 1996. During 1996–2001, there is clearly a cluster of the grids of such kinds at
the southern part of the county which is further away from the east coast. In MC, most of the rapid
and highly rapid expansion grids are located in the northern part of the county during 1992–1996 and
they are away from the coast. During 1996–2001, that cluster is no longer available, and the grids of
rapid and highly rapid expansions are rather dispersed. After 2001, the cluster of rapid and highly
rapid urban expansion grids started to diminish in this county like the other two counties. However,
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during 2001–2006, there were still some rapid and highly rapid dispersed grids in this county which
completely disappeared after 2006.
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Figure 6 shows the spatial pattern of urban expansion intensity at the city level. In PBC, most of
the rapid and highly rapid expansion grids are located within or around some major city areas like
Boca Raton during 1992–1996. Interestingly, during 1996–2001, most of these grids were shifted away
from the major city areas. Since all these major cities are adjacent to the east coast of the study area,
it means that most of these grids were shifted away from the beach as well. The same happens in
the cities in BC. Although the rapid and highly rapid expansions in this county are dispersed during
1992–1996, it was still within or around the major cities in the county (e.g.,: Fort Lauderdale). However,
during 1996–2001, there was a clustered pattern of these grids which was further away from the major
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cities and the coast. This dispersed pattern of rapid and highly rapid urban expansion grids suggests
that high-intensity urban expansion was occurring outside the major city areas in the study area. Cities
in the MC follows the same pattern as well. After 2001, rapid and highly rapid urban expansion grids
are no longer visible in this region.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 32 
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3.4. Landscape Metrics

To further examine the patterns of urban expansion in the study area, three class-level metrics
including NP, LPI, and SHAP_AM and one landscape-level metric (LSI) are calculated at the MSA and
County level (Figure 8). To minimize the size effect, NP and LPI were divided by the respective MSA
and County area. NP decreased from 1992 to 2001 and then it was stable for the Miami MSA. The three
counties (PBC, BC, and MC) follows the same pattern. However, the highest value of NP was different
for the three counties. PBC had the highest value of NP among these three counties followed by MC,
and then BC. LPI increased rapidly from 1992 until 2001 in Miami MSA which means rapid urban
expansion in this period. After 2001, LPI increased very slowly in this area. Although all the counties
followed this pattern more or less exactly, BC among the three counties had the highest percentages of
LPI in all the time periods. PBC had the lowest percentage of LPI at the beginning (1992). After 1996,
it had higher percentages of LPI than MC. SHAP_AM, which measures the mean shape complexity of
discrete patches, decreased from 1996 to 2001 in Miami MSA. After 2001, it was almost stable till 2011.
From 2011 to 2016, it increased rapidly (Figure 8). In PBC, it shows a noticeable increase from 1992 to
1996, then decreased rapidly till 2001. During 2001–2011, it was stable and then increased again in the
last period (2011–2016). In BC, SHAP_AM decreased right after 1992 till 2011. After 2001, it shows
almost a flat line, which means that it was stable till 2016. In MC, it was slowly decreasing from 1996
until 2001. From 2001 to 2011, it was stable and had a rapid increase in the last period (2011–2016).

LSI shows a rapid decreasing pattern from 1992 to 2011 in Miami MSA where LSI decreased in
almost half (from almost 200 to 100). After 2001, it was stable till the end (2016) which indicates patch
shape was becoming complex. PBC and BC follow the same exact pattern as Miami MSA. In MC,
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LSI was still decreasing during 1992–2001, but it was rather a slow decrease compared to other two
counties. After 2011, it shows a slight increase in LSI also.
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The decreasing number of NP throughout the study period suggests that newly developed urban
lands became more aggregated after 1992 in Miami MSA and in all three counties. After a sharp
decrease until 2001, the rate of decrease in NP slowed down till the end (2016). Unlike NP, LPI
increased during the entire study period at all administrative levels (MSA and County) which indicates
an increase in urban centers in the study area. The decreasing trend in LSI and SHAP_AM leads to
simplified form of urban patches and land areas in the study area.

3.5. Urban Expansion Direction

Figure 9 shows the shift in the mean center of the urban areas in Miami MSA from 1992 to 2016.
There is a northward shift in the mean center of urban areas from 1992 to 2001. During this period
(1992–2001), the mean center first turned towards the east in 1992–1996 and then towards west in
1996–2001. After 2001, the mean center displays a slightly inverse shift from north to south in 2001–2016
while turning towards further west. Although the mean center in the entire study period remained
almost stable, there is clearly a westward turn in the mean center in this period. We then further
explored the change in mean center of urban areas at the county level. Figure 10 shows the mean
center change from 1992–2016 in PBC, BC, and MC. In PBC, the mean center of urban areas shifted
towards southeast in 1992–1996. After 1996, there is a significant opposite turn in the mean center
in 1996–2001 when it shifted towards a northwest direction. The period 2001–2011 remained steady
until 2016 when the mean center in PBC shows a slight turn towards southeast direction. Unlike PBC,
BC shows a southwest shift in mean center of urban areas overall (1992–2016). Although after 2001,
the mean center remained almost stable in BC while turning towards further west. In MC, urban area
means center shifts towards north in 1992–1996. After 1996, it experienced a reverse change towards
southwest until 2016.
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3.6. Statistical Analyses

The results of the correlation and regression analysis are portrayed in Table 5. Six multiple linear
stepwise regression models were built, one for each study year from 1992 to 2016. Each model explained
more than half (Adjusted R2 is above 0.5) of the total variation in urban land. The population was
found as the variable that explains most of the variance in urban land area in each year except at the end
(year 2016). In 2016, variable Distance to Coast was the most significant variable in explaining the total
variance. In 1992 and 1996, Distance to Coast entered in the model as the second explanatory variable
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followed by Distance to Roads. Median Income was not an entry variable in the first two years’ model
(1992 and 1996) and last year’s model (2016). From 2001 to 2011, Distance to Coast was the second entry
variable in each year’s model followed by Distance to Roads and Median Income, respectively. In 2016,
Population was the second entry variable in the model and Distance to Roads was the last to enter the
model. Elevation (DEM) did not have any statistically significant strong correlation with urban land
and therefore, elevation was not selected as one of the independent factors in the models. Since the
land surface is mostly flat in the south Florida region and elevation does not change very frequently,
our findings of elevation not having any strong relationship with urban land area are admissible.

In all models, Population, Distance to Coast, and Distance to Roads are accounted for approximately
90% of the total variation of urban land explained. Median Income was not found influential to the
variation of urban land areas explained in 1992, 1996, and 2016. For the rest of the years (2001–2011),
Median Income had a weak positive correlation with urban land areas and limited influence in
explaining the variance in urban land areas. The population had a strong positive correlation with
urban land areas and positive model coefficients in all the study areas indicating that higher population
increases urban land areas in each of the study periods. Additionally, Distance to Coast and Distance to
Roads had strong negative correlations with urban land areas and negative model coefficients in each
year indicating that shorter distances from coast and major roads increase urban land areas regardless
of the study year. High tolerance value (close to 1) and low VIF values (1<VIF>3) in the correlation
matrix in each year’s model suggest that there was a very low degree of multicollinearity among the
independent variables.

Table 5. Summary of the multiple linear stepwise regression models. For each of the six models,
the dependent variable (urban land area in 1 km2 grid) was explained by four variables. The
sequence of the explanatory variables in each model is the order these variables entered the regression
models. S-coefficient means standardized coefficients, which could be used to determine the relative
significance of explanatory variables. r means Pearson Correlation Coefficient, which indicates the state
(positive/negative) and the level (weak/strong) of correlation of dependent variable and explanatory
variables. All the values are statistically significant at 0.001 level (two-tailed).

1992 Model Population Distance to Coast Distance to Roads Adjusted R2

r 0.691 −0.605 −0.409
0.605

S-coefficient 0.521 −0.360 −0.065

1996 Model Population Distance to Coast Distance to Roads

r 0.681 −0.578 −0.319
0.590

S-coefficient 0.522 −0.360 −0.084

2001 Model Population Distance to Coast Distance to Roads Median Income Adjusted R2

r 0.606 −0.587 −0.367 0.106
0.538

S-coefficient 0.438 −0.365 −0.132 0.095

2006 Model Population Distance to Coast Distance to Roads Median Income Adjusted R2

r 0.611 −0.599 −0.376 0.144
0.560

S-coefficient 0.436 −0.376 −0.137 0.124

2011 Model Population Distance to Coast Distance to Roads Median Income Adjusted R2

r 0.611 −0.602 −0.379 0.162
0.564

S-coefficient 0.434 −0.374 −0.139 0.130

2016 Model Distance to Coast Population Distance to Roads Adjusted R2

r −0.617 0.596 −0.412
0.554

S-coefficient −0.422 0.381 −0.161

4. Discussion

4.1. Spatiotemporal Patterns of Urban Expansion

The results portrayed above show the spatiotemporal changes of urban expansion in Miami MSA
and the three counties (PBC, BC, and MC) within this metropolitan area (Figure 11) over the last
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25 years (1992–2016). The urban land area expanded around 1.37 times in 2016 than the initial land area
in 1992 in Miami MSA (Section 3.1). However, urban expansion at the county level was different. Urban
land in PBC expanded almost 1.52 times in 2016 than the initial size in 1992. Urban land expansion in
BC and MC were comparatively slower than PBC but almost like each other (1.32 and 1.28 respectively)
in this period. Urban land expanded rapidly during the period 1992 to 2001 in the Miami MSA and
at the county level, especially between 1996–2001 when urban land expansion almost doubled than
the previous study year (1992–1996), but decreased dramatically afterward (2001–2016) in this region
(Figure 3). In late 1980s, this region experienced a rapid population growth due to industrial and
economic development, which generated lavish job opportunities and attracted migrants from other
parts of the country. These intra-national migrants along with booming tourism sector resulted thriving
housing sector, and hotel and recreational facilities development. All these factors contributed to rapid
urbanization in 1990s in the study area. However, population growth started to decline considerably
since the beginning of 2000s. The population growth rate was found 23.5% between 1990 and 2000 in
this region. However, between 2000 and 2010, this population growth rate declined to 11.4% in this
area. Although the rate of population growth slowed down after 2000, it is estimated that population
will still continue to increase in this region and therefore urban land expansion will further increase
considerably after 2016 in the study area.

The types of urban expansion varied between the study periods in the study area (Section 3.2).
While the urban expansion was isolated at the beginning (1992–1996), it became more aggregated and
showed clusters of urban lands in the following periods which might be related to the formation of
infilling and edge-expansion types of urban growth [26,30]. This compactness in urban expansion
continued to increase with the increase of infilling expansion type in the Miami MSA and the three
counties (Figures 12 and 13). Interestingly, most of these urban expansions occurred outside of the
most prominent and historic city boundaries in the study area (Figure 13). Additionally, major roads
of the ending year in each study period (e.g., 2016 roads for period 2011–2016) were used to see if
the outlying expansion types were influenced/guided by roads (Figure 12). Figure 12 shows that
the outlying expansion types were rather dispersed/scattered in pattern than following or guided by
the road networks in each year in Miami MSA. Similarly, most of the rapid and highly rapid urban
expansion intensity grids were found between the years 1992 and 2001 (Section 3.3). After 2001,
rapid and highly rapid expansion grids decreased dramatically as urban expansion rate slowed down
substantially after 2001. Additionally, most of the moderate-highly rapid expansion grids were outside
of the major city boundaries which are in line with above results. Urban expansion in the developed
region causes a few problems including extreme land price increase, environmental pollution, and
rapid rising of living costs which make people move outside of the city area to the suburban region [35]
and eventually construct new urban cities/cores. Results from the landscape metrics are consistent
with these findings (Section 3.4). The decreasing trend of NP, LSI, and SHAP_AM indicates that
urban lands are becoming more aggregated and less complex than the past with their expansion as
evidenced in previous studies [26] while continuous increase in LSI represents an increase in the
urban center. This also suggests that many non-urban patches initially located in the urban areas
might have been transformed into urban patches which are also evident in previous studies [57].
Additionally, a decrease in NP and increase in LPI is an indication of infilling expansion type along
with aggregated development [57]. Since infilling expansion type is dominant during the whole study
period, along with a continuous decreasing trend in NP and increasing trend in LPI, our results of a
more aggregated form of urban expansion process with simplified form of urban lands are reasonable.

Furthermore, urban land expansions are moving away from the east coast of the study area and
directed towards the west (Section 3.5), which is evident in mean center of urban lands from 1992–2016
(Figures 9 and 10). Although very slowly, this westward turn of mean center of Miami MSA and the
three counties proves our previous hypothesis that urban lands are expanding towards suburb region
(west side) of the study area since the east part of the study area are already developed. Being very
near to the coastline which poses high recreational value and better transportation access, demands on
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land parcels are extremely high on the east side of the study region and eventually the land prices
are skyrocketing. All these reasons might be responsible for the urban lands expanding toward west
part of the study area and away from the east coast. With the increasing conversion of nonurban
lands to urban land, it will be extremely difficult to protect the environment and biodiversity in the
coming years [14,15,60].
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4.2. Major Explanatory Factors of Urban Expansion

Four of the five selected variables of urban expansion had strongly statistically significant
relationships with the urban land areas during the study period (Section 3.6). Elevation, which was
preliminarily selected as a physical factor of urban land expansion did not have significant relationship
with urban land area in any study year (1992–2016). Since the land surface is almost flat throughout the
study region and there is not much change in elevation from mean sea level in this region, this result
was not surprising. The population had a very strong positive relationship with urban land in all
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six study years since it is found as one of the most important socio-economic factors driving urban
expansion in previous studies [36,46]. Surprisingly, median household income did not have a very
strong relationship with urban land expansion except in 2011 and did not even enter the regression
models in year 1992, 1996, and 2016. This suggests that median income had very little to do in
guiding urban expansion in this region. Unlike developing countries, people here in the US with high
median household income tend to live outside of the urban core which might cause a weak statistical
relationship with urban lands and median income. However, previous studies found other factors like
gross domestic product (GDP), secondary and tertiary industry product, gross output of construction
industry as factors of economic development that influence urban expansion [36,46]. However, based
on available data and spatial scale of the study area, median household income was selected as one of
the socioeconomic factors that influence urban expansion in this study. Distance to Coast and Distance
to Roads both had strong negative relationships with urban land in all the years which suggest that
urban land area expanded within proximity to major roads and coastal boundary.

Population and Distance to Coast had the strongest relationship with urban land in all the six
models followed by Distance to Roads and Median Income except in 1992. In 1992, the population was
the least strong variable. This is due to the increase in population in this area. According to US Census
Bureau, the total population in Miami MSA was about 4,056,100 in 1990. In 2000, total population
increased to 5,007,564 which is about 23.5% increase from 1990. In 2010, total population increased to
5,564,635 which is about 11.1% increase from 2000. In 2018, it is estimated that the total population is
6,198,782 which is 11.4% increase from 2010 in this region.

In previous studies, factors of urban expansion were analyzed either very briefly [61,62] or
using only socioeconomic factors [36]. In this research, we quantified the influence of socioeconomic,
proximity, and physical factors on urban land expansion. However, these factors explained over 50%
of the variation in urban land during the study period (1992–2016) and inclusion of other factors like
urban planning and zoning, policies, hydrological factors, neighborhood impacts, etc., might improve
the results.

4.3. Limitations of the Study and Future Work

To retrieve information about urban land and urban expansion at a finer scale, high spatial
resolution imagery like QuickBird and Lidar could be used in the future. Due to the unavailability
of those high spatial resolution imageries for the entire study year (1992–2016) in our study area,
we used moderate resolution (30 m) land cover maps in this study. This research is limited to the
horizontal expansion of urban lands only. However, previous studies found that urban expansion is not
necessarily limited to horizontal dimension and urban areas could also be expanded vertically [63,64].
Investigating the vertical expansion of urban areas in the study area could help understand the
urban growth dynamics more profoundly in future. To understand the effects of urban expansion
on non-urban lands, analyzing the relationship between urban expansion and the loss of agriculture,
protected and reserved areas would be useful for this region. Since the physical factor used in this
research does not have any statistically significant relationship with urban land area, other physical
factors like soil characteristics, flood risk zones, physical features like schools and entertainment
facilities, etc., could be used in future for a comprehensive analysis of influential factors of urban
expansion in the study area. Besides, other factors of urban expansion like hydrological factors, policy,
and building codes, development control zones, etc. should be used in explanatory factor analysis in
future. Additionally, since the study area region has always been a target of hurricanes over the past
few decades, analyzing the impact of hurricane damages on urban land expansion in this area could
be advantageous.

5. Conclusions

Urban expansion is one of the most irretrievable land transformation processes in the world
and poses major impacts on the environment and challenges for the entire world at global, regional,
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and local scale. There is still a lack of research that focuses on urban expansion process at local
scale in the US. Being a developed country, less attention has been paid on the dynamics of urban
expansion in this region than necessary and timely monitoring and evaluation of urban land expansion
is extremely important.

In this study, we used NLCD data and C-CAP data combined with urban growth type and
landscape metrics analysis to quantify the dynamics of the spatiotemporal pattern of urban expansion
in the moderately developed Miami MSA. We then further extended our analysis to examine the
spatiotemporal patterns of urban growth at the county level and compared the results between the
three counties (PBC, BC, and MC) that are located within the MSA area. More specifically, we analyzed
and compared the spatial and temporal distribution of urban expansion rate, pattern, expansion types,
urban expansion intensity, and landscape metrics. Results suggest that this region experienced a
moderate but noticeable urban expansion over the last 25 years. Urban expansion in this region can
be divided into two phases: pre-2001 phase when urban expansion rate was very rapid in this MSA
and post-2001 phase when urban expansion rate was moderate/slow. Urban expansion at the county
level was almost the same as the MSA where the overall annual urban expansion rate in PBC was
the highest (16.15 km2 year−1) followed by BC and MC (9.08 and 9.04 km2 year−1, respectively). The
standardized annual urban growth rate for PBC, BC, and MC are 1.68%, 1.13%, and 0.97%, respectively,
which suggests a moderate urban expansion overall in these counties.

Similarly, infilling was the dominant expansion type in all the study periods in the MSA and in all
three counties. Additionally, they all followed the same pattern of decreasing amount of NP and LSI
from the beginning of the study period (1992) which suggests that as the urban land expanded and time
progressed in this region, they became more aggregated and simplified. Another interesting finding
from the analysis was that the newly developed urban lands were generated away from the east coast
in this region over the entire study period which was further corroborated by mean center analysis.

As per the cities were concerned, it was evident that the newly developed urban lands were
moving away from the major historical and prominent cities in this region. As urban growth creates
pressure on the existing population and increases the cost of living and environmental pollution,
people might have forced to move away from the city areas to sub-urban areas and eventually created
new ‘urban cores’. Statistical analysis of the major explanatory factors of urban expansion reveals that
Population and Distance to Coast had strongest relationships with urban lands where the former had a
positive relationship and latter had a negative relationship. Distance to Roads was another variable
that had a strong relationship with urban lands followed by Median Household Income in this region.
With continuous population growth and economic development, dealing with urban expansion and
environment and biodiversity protection in this region would be perplexing in the coming years. Future
research should emphasize the improvement of the spatial and spectral resolution of remote sensing
data in order to more accurately portray the urban expansion patterns and should include additional
factors of urban expansion including that are used in this research to explain the urban expansion
characteristics comprehensively. Finally, the methods and techniques utilized in this research could be
applied in future studies focusing on the urban expansion patterns in other metropolitan areas.
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Appendix A

Table A1. Changes of Urban Land Covers in last 25 years (in km2) in Miami MSA and three counties.

Urban Area Non-Urban Area

1992 1996 2001 2006 2011 2016 1992 1996 2001 2006 2011 2016

Miami-MSA 2308.28 2491.09 2973.93 3065.99 3110.55 3167.78 11848.94 11666.13 11183.29 11091.23 11046.67 10989.97

PBC 780.01 874.58 1116.52 1145.85 1163.67 1183.77 4982.09 4887.52 4645.58 4616.25 4598.43 4578.33

BC 699.60 748.83 885.22 906.26 917.99 926.6 2470.23 2421.0 2284.61 2263.57 2251.84 2243.23

MC 828.67 867.19 971.3 1013.0 1027.8 1054.69 4396.62 4358.1 4253.99 4212.29 4197.49 4170.6
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