
remote sensing  

Article

Hyperspectral Anomaly Detection via Dictionary
Construction-Based Low-Rank Representation and
Adaptive Weighting

Yixin Yang , Jianqi Zhang *, Shangzhen Song and Delian Liu *

School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China;
yxyang618@163.com (Y.Y.); szsong118@163.com (S.S.)
* Correspondence: jqzhang@mail.xidian.edu.cn (J.Z.); dlliu@xidian.edu.cn (D.L.);

Tel.: +86-135-7259-1055 (J.Z.); +86-133-8921-2012 (D.L.)

Received: 13 December 2018; Accepted: 17 January 2019; Published: 19 January 2019
����������
�������

Abstract: Anomaly detection (AD), which aims to distinguish targets with significant spectral
differences from the background, has become an important topic in hyperspectral imagery (HSI)
processing. In this paper, a novel anomaly detection algorithm via dictionary construction-based
low-rank representation (LRR) and adaptive weighting is proposed. This algorithm has three main
advantages. First, based on the consistency with AD problem, the LRR is employed to mine
the lowest-rank representation of hyperspectral data by imposing a low-rank constraint on the
representation coefficients. Sparse component contains most of the anomaly information and can be
used for anomaly detection. Second, to better separate the sparse anomalies from the background
component, a background dictionary construction strategy based on the usage frequency of the
dictionary atoms for HSI reconstruction is proposed. The constructed dictionary excludes possible
anomalies and contains all background categories, thus spanning a more reasonable background
space. Finally, to further enhance the response difference between the background pixels and
anomalies, the response output obtained by LRR is multiplied by an adaptive weighting matrix.
Therefore, the anomaly pixels are more easily distinguished from the background. Experiments on
synthetic and real-world hyperspectral datasets demonstrate the superiority of our proposed method
over other AD detectors.

Keywords: anomaly detection; hyperspectral imagery; low-rank representation; dictionary
construction; HSI reconstruction; sparse coding; adaptive weighting

1. Introduction

In contrast to color and multispectral imagery, hundreds of narrow and contiguous spectral bands
covering a wide range of wavelengths contained in hyperspectral imagery provide abundant spatial
and spectral information about Earth observations [1,2]. Since each material has unique electromagnetic
reflection characteristics at different wavelengths, their spectral information can be used for target
detection [3]. According to the availability of prior knowledge about the target signatures, target
detection can be divided into two categories: supervised and unsupervised [4]. Unsupervised target
detection, known as anomaly detection (AD), has attracted a lot of attention over the last 20 years
because it does not require any prior information about the spectral characteristics of targets that
are usually difficult to obtain [5]. Moreover, it does not need radiation calibration and atmospheric
absorption compensation [6].

Anomalies refer to the small objects with low probability of occurrence and whose spectra are
significantly different from the main background. AD can be regarded as a binary classification
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problem designed to separate the background class and the anomaly class automatically [7]. In recent
years, many AD methods have been proposed, and among them, the Reed-Xiaoli (RX) detector
is the most well-known method based on statistical modeling [8]. It uses the probability density
functions of the multivariate normal distribution to measure the probability of the detected pixel to
be background, and its solution is the Mahalanobis distance between the spectrum of the detected
pixel and the background. It has two versions: global RX (GRX) and local RX (LRX). Specifically,
GRX estimates background statistics from the full image scene, whereas the background in LRX
is estimated from the local neighborhood of the detected pixel using a dual-window strategy [9].
However, the background composition of HSI is usually complicated and nonhomogeneous in
practical, so a single multivariate normal distribution is generally unsuitable for describing the
background [10]. Moreover, the anomaly contamination in background statistics (background mean
and covariance matrix) is another potential problem with RX. Based on these two shortcomings, several
improved RX-based AD methods have been proposed. For example, the Gaussian mixture model-based
detector [11] uses a mixture of multivariate Gaussian distributions to model the multimode background
to capture the complexity of the background. The cluster-based anomaly detector (CBAD) [12] applies
a clustering technique to divide the dataset into some homogeneous clusters and then implements
RX on each cluster. The subspace RX (SSRX) [13] performs RX on a finite number of principal
components obtained by principal component analysis (PCA), thereby reducing computational cost
and improving the separability of background and anomalies. Due to the rich nonlinear information
among the inter-bands of HSI, kernel-RX (KRX) [14] and support vector data description (SVDD) [15]
are applied to project the original data into an infinite high-dimensional space through a kernel function.
Cluster KRX (CKRX) [16], as an improved version of KRX, groups background pixels into clusters
and then applies a fast eigendecomposition algorithm to generate anomaly indexes. It significantly
reduces computation time by replacing each pixel with its cluster center. There are some AD methods
trying to mitigate anomaly contamination for a pure estimation of the background. For example,
the random-selection-based anomaly detector (RSAD) [17] applies a selection procedure several times
to choose some representative background pixels. The blocked adaptive computationally efficient
outlier nominator (BACON) detector [18] uses the subsets of the entire HSI to iteratively update a
stable and robust background to suppress anomaly contamination in the background estimation.

With the development of representation theory in recent years, some representation-based
methods have been successfully applied to AD. They sidestep the difficulty of modeling the
complicated distribution of background in statistics-based methods. The sparse representation-based
detector (SRD) [19] assumes that the spectrum of a pixel can be sparsely represented by a linear
combination of a few sparse coefficients with respect to a background dictionary, and the reconstruction
error is used to measure the anomaly response. The collaborative representation-based detector
(CRD) [20] is based on the fact that background pixels can be well approximated by their spatial
neighborhoods, whereas anomalies cannot. In addition to CRD, there are some other methods to
incorporate spatial or feature information into detection and classification. In [21], during the recovery
of sparse vector in sparse representation, two different approaches are proposed to incorporate the
contextual information of HSI to improve the classification performance. In [22], the joint sparsity
model is extended to a feature space induced by a nonlinear kernel function for improving the
discrimination between background and targets. In this case, the spectral, spatial, and feature
information are jointly used.

Recently, low-rank-based methods have drawn much attention and been applied to AD. It exploits
the intrinsic low-rank property of background and the sparse property of anomalies [23]. It also
does not require modeling the distribution of complex background. For instance, robust principal
component analysis (RPCA) [24] performs detection by decomposing HSI data into a low-rank
background matrix and a sparse anomaly matrix. However, the sparse matrix obtained is always
contaminated by isolated noise, thus causing some false alarm points [25]. As an improvement,
low-rank and sparse matrix decomposition (LRaSMD) [26] extracts noise from the valuable signals,
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and then further separates the low-rank background and sparse anomalies. The anomaly detector
in [27] first extracts some source components by using the unmixing operation, and then identifies
the components that are sparse and have the largest accumulated distance from other components.
The optimization problem is converted to a low-rank matrix decomposition problem and can be
solved. Low-rank representation (LRR) [28] assumes that the HSI data lie in multiple subspaces
and requires a dictionary to span the data space to separate the background and anomalies. Due
to the mixed property of real-world datasets, the pixels of an HSI are usually drawn from multiple
subspaces. Therefore, compared with RPCA and LRaSMD, LRR is theoretically more suitable for
real HSI datasets by imposing l21 constraint on the sparse component [25]. In addition, the l21

constraint makes the background component unaffected by the column-wise sparse anomalies [29].
Some advanced LRR-based AD methods have been proposed in recent years and they improve the
detection performance of LRR from different aspects. For example, the anomaly detector based
on low-rank and learned dictionary (LRALD) in [23] constructs a dictionary from the whole image
with a random selection process and then performs LRR. The abundance- and dictionary-based
low-rank decomposition (ADLR) in [25] applies spectral unmixing to obtain some abundance maps
that contains more distinctive features, and then constructs a dictionary based on the mean shift
clustering, and finally performs LRR. The low-rank and sparse representation-based detector (LRASR)
in [28] improves LRR through a sparsity-inducing regularization term and a cluster-based dictionary
construction strategy. It can be found that all these methods build a reasonable dictionary and try
to make the anomalies easier to be recognized. Dictionary construction is an important process in
many HSI problems and there are many ways to implement it. [30] proposes an AD method based on
sparse presentation through constructing multiple dictionaries to learn discriminative features. In each
category, the representative spectra that can significantly enhance the difference between background
and anomalies are selected.

In the original model of LRR, the entire input dataset is used as the dictionary to span the data
space. However, due to the anomaly contamination in this dictionary, sparse anomalies cannot be
effectively separated from the background component [23]. In addition, the heavy computational
burden caused by large data size is also an important issue. In the LRR model based on randomly
selected dictionary, there is no guarantee that the selected dictionary atoms contain all background
categories. In this paper, taking into account the above issues, a novel AD algorithm via dictionary
construction-based LRR and adaptive weighting is proposed. To better represent the background
subspace and separate the anomaly component from the background, a background dictionary
construction strategy based on the usage frequency of each dictionary atom for HSI reconstruction
is adopted in LRR. To cover all background classes in the dictionary, the K-means clustering is first
executed to divide the data into several clusters. Then, we estimate the background pixels in each
cluster. It is based on the observation that if an atom has a high usage frequency for HSI reconstruction,
it is more likely to be a background pixel [31]. Therefore, from the perspective of the usage frequency of
the dictionary atoms used for HSI reconstruction in each cluster, we can obtain a reasonable estimation
of the background dictionary, which can exclude anomaly contamination and contain all background
categories. Furthermore, for further enhancing the response difference between the anomaly pixels
and the background pixels, an adaptive weighting method based on the reconstruction residual of the
entire data with respect to the background dictionary constructed above is proposed. The final anomaly
response of each pixel is calculated by multiplying the value obtained through LRR by the weight.
Compared with the existing LRR-based detectors, our proposed algorithm avoids the randomness
brought by the random selection process (compared with LRALD), does not damage the physical
structure of HSI (compared with ADLR), and needs less computation time than LRASR, which adds a
sparsity-inducing regularization term to LRR. In addition, the distinction between background and
anomalies can be significantly improved by our adaptive weighting method, which has not been
used in other LRR-based algorithms. The main contributions of our proposed algorithm for AD can
summarized as follows:



Remote Sens. 2019, 11, 192 4 of 26

(1) Use of the LRR model. First, the LRR model is highly consistent with the hyperspectral
AD problem and is therefore used in this paper. Second, the real-world HSIs are usually lying in
multiple subspaces due to the presence of mixed pixels caused by insufficient sensor resolution [25].
The LRR model assumes that the data are in multiple subspaces by imposing l21 constraint on the
sparse component, so it is suitable for real data. Third, the l21 constraint also makes the background
unaffected by the column-wise sparse anomalies [29].

(2) Background dictionary construction strategy. To better separate the sparse anomalies from
the background component and reduce the computational burden, a novel background dictionary is
constructed by analyzing the usage frequency of the dictionary atoms for HSI reconstruction in each
cluster. The dictionary is an excellent representation of the background subspace since it excludes
anomaly contamination and covers all background categories. Therefore, the sparse component
containing most of the anomaly information is extracted accurately.

(3) Adaptive weighting method. To further enhance the diversity between the background pixels
and the anomaly pixels, an adaptive weighting method is introduced in our proposed algorithm by
reusing the constructed background dictionary. By multiplying the results of LRR by the weights,
the background and anomalies are more easily distinguished in the final detection map.

The rest of this paper is organized as follows. In Section 2, we briefly review the LRR model and
its solution. In Section 3, the background dictionary construction strategy and adaptive weighting
method in our proposed algorithm are described in detail. In Section 4, experimental results and
analysis based on synthetic and real-world HSI datasets are provided. Finally, Section 5 concludes
this paper.

2. Low-Rank Representation and Its Solution

In this section, we briefly introduce the consistency of the LRR model and the hyperspectral AD
theory. Then the solution of LRR is provided. It plays a significant role in our proposed algorithm.

2.1. LRR Model for AD

There are several typical characteristics in HSIs. (1) Unlike anomaly pixels, there are strong
correlations among the background pixels, i.e., the spectrum of a background pixel can be represented
as a linear combination of some other background pixels [32]. (2) Anomalies occupy only a few pixels
with a low probability of occurrence, that is, they are sparse spatially [33]. (3) Due to the limitation of
the resolution of hyperspectral sensors, there are many mixed pixels in the real-world HSIs. Since the
spectrum of each mixed pixel can be represented as a mixture of some pure materials (endmembers)
and each endmember can be described in a subspace, all pixels in the HSI can be drawn from multiple
subspaces [34]. The LRR model takes into account the above characteristics of HSI and is therefore
very suitable for AD. The model of LRR is as follows:

min
S,E
‖S‖∗ + λ ‖E‖2,1 s.t. X = DS + E, (1)

where the HSI matrix X is decomposed into a background component DS and an anomaly component
E. D is the dictionary spanning the data space, and S is called the low-rank representation of X with
respect to D. ‖·‖∗ is the nuclear norm, which is a good alternative to the rank function because of
the convex optimization problem it causes. It attempts to find the lowest-rank representation of all
data jointly by imposing low-rank constraint on the representation coefficient matrix S, instead of the
background itself. ‖·‖2,1 is the l21-norm used to encourage the sparse nature of E, indicating that the
anomalies are column-wise sparse, i.e., sample-specific. E is obtained by the residual of the data and
the recovered background component. It contains most of the anomaly information and can therefore
be used for AD. λ > 0 is the tradeoff parameter used to balance these two parts. LRR assumes that
the data are drawn from multiple subspaces corrupted by anomalies and tries to find the lowest-rank



Remote Sens. 2019, 11, 192 5 of 26

representation of all data jointly to recover the underlying multiple subspaces. In the original LRR
model, the entire input matrix X is used as the dictionary D to span the data space.

The difference between the PCA model and the LRR model is illustrated in Figure 1. As we can
see, with the l21 constraint, LRR assumes that the data lie in multiple subspaces, while the data in
PCA are drawn from a single subspace because of the l1 constraint. Due to the presence of mixed
pixels, multiple subspaces can better describe the real HSI data. In addition, the l21 constraint on the
sparse component in LRR indicates that the anomalies are column-wise sparse, i.e., sample-specific.
It means that most of the data vectors are clean and a few of them are corrupted, which ensures that the
background spectra are not affected by the anomalies. On the contrary, in RPCA and LRaSMD [35,36],
the anomalies are entry-wise sparse, and all the spectra of background component can be affected by
the nonzero anomalies due to the l1 constraint on the anomaly component. Moreover, LRR can also
exclude the noise that is normally randomly distributed in each band from the anomaly component.
After comparison, we find that LRR can better separate a sparse component as pure as possible from
the background. The models and characteristics of RPCA, LRaSMD and LRR are summarized in
Table 1. The advantages of LRaSMD over RPCA is that it considers the additive noise in the dataset and
thus avoids the isolated noise being detected as anomalies [37]. In Section 4.2, we will experimentally
demonstrate that the l21 constraint is superior to the l1 constraint for the LRR model.

pixels

b
an

d
s

3D cube

2D matrix Background component

+

+

Anomaly component

=

pixels

b
an

d
s =

RPCA

（l1 constraint）

LRR
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Figure 1. Difference between the l1 constraint in RPCA and the l21 constraint in LRR. Each square
represents the digital number of a pixel in a band. The greens correspond to the backgrounds and the
reds correspond to the anomalies.

Table 1. Comparison of models and characteristics of RPCA, LRaSMD and LRR.

Methods Models Theories Characteristics

RPCA X = L + E
Abstract the low-rank

component as L and the
sparse component as E

Single subspace
assumption

l1 constraint on E

LRaSMD X = L + E + N

Consider the additional noise;
Abstract the low-rank

component as L and the sparse
component as E with predefined

rank(L) and card(E)

LRR X = DS + E

Recover the background
component DS using the

lowest representation
of all data jointly

Multiple subspaces
assumption l2,1 constraint on E
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2.2. Solution of LRR

To solve the problem in Equation (1), we introduce an auxiliary variable J to make the objective
function separable [38]. The optimization problem is converted to:

min
S,E,J
‖J‖∗ + λ ‖E‖2,1 s.t. X = DS + E, S = J, (2)

Then, the following Lagrange function can be obtained:

min
S,E,J,Y1,Y2

‖J‖∗ + λ ‖E‖2,1 + tr
[
YT

1 (X−DS− E)
]
+ tr

[
YT

2 (S− J))
]

+
µ

2
(‖X−DS− E‖2

F + ‖S− J‖2
F),

(3)

where Y1 and Y2 are Lagrange multipliers, µ > 0 is the penalty parameter. The equation can be solved
by inexact Augmented Lagrange Multiplier (ALM) via alternatively updating one variable when the
others are fixed [39]. The solution of LRR is outlined in Algorithm 1.

Algorithm 1. Solving LRR by Inexact ALM for AD

Input: dataset matrix: X; dictionary matrix: D; tradeoff parameter: λ > 0
Initialize: S = J = E = Y1 = Y2 = 0, µ = 10−6, µmax = 1010, ρ = 1.1, ε = 10−8

While not converged do
1. Update J and fix the others: J = arg min 1

µ ‖J‖∗ +
1
2 ‖J− (S + Y2/µ)‖2

F
2. Update S and fix the others: Z = (DTD + I)−1 [DTX−DTE + J + (DTY1 − Y2)/µ

]
3. Update E and fix the others: E = arg min λ

µ ‖E‖2,1 +
1
2 ‖E− (X−DS− Y1/µ)‖2

F
4. Update the Lagrange multipliers: Y1 = Y1 + µ(X−DS− E)), Y2 = Y2 + µ(S− J))
5. Update the tradeoff parameter µ: µ = min(ρµ, µmax)
6. Check the convergence conditions: ‖X−DS− E‖∞ < ε and ‖S− J‖∞ < ε, where ‖·‖∞ is the infinite norm.
end while
Output: the optimal solution of S and E

In Algorithm 1, the sub-problems in step 1 and step 3 are respectively solved by the singular
value thresholding operation [40] and the l21 minimization operation [38].

Finally, the anomaly response of pixel x is calculated by the l2-norm of the corresponding column
of E, i.e.,

ν(x) = ‖Ei(:)‖2 (1 ≤ i ≤ N), (4)

where Ei(:) is the corresponding column of pixel x in E, and N is the number of pixels in X.

3. Proposed Method

The LRR model has high consistency with the hyperspectral AD problem because it can effectively
capture the low-rank representation of all data jointly and mine the sparse component contained
in the dataset for AD [38]. However, in LRR, the entire input dataset or randomly selected data
are usually used as the dictionary, where the former will bring a large computational burden and
an unsatisfactory separation of sparse anomalies from the background component, while the latter
cannot ensure that all background material categories are covered in the dictionary [28]. In this case,
to achieve a better separation performance between the background component and the anomaly
component with a low computational complexity, a background dictionary that excludes anomaly
contamination and contains all background categories is required. In Section 3.1, we propose a novel
background dictionary construction strategy based on the usage frequency of the dictionary atoms
for HSI reconstruction in each cluster. In addition, for further enhancing the response difference
between the background pixels and the anomaly pixels, an adaptive weighting method based on the
reconstruction residual of the entire data with respect to the constructed dictionary is introduced in
Section 3.2.
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3.1. Background Dictionary Construction Strategy

To contain all background categories in the dictionary, the K-means clustering algorithm is first
used to divide the data into K clusters, where the value of K can be estimated a priori by the HySime
algorithm [41]. A complex background consisting of many types of background materials should
have a larger K, and the value of K we choose should be larger than the true number of background
categories in the scene to cover all background materials. After performing K-means clustering on
dataset X, we obtain K clusters {X1, X2, ..., XK}. For each cluster Xi(1 < i < K), we randomly select M
percent of the pixels to form the dictionary B to sparsely reconstruct each sample in Xi, and then the
sparse reconstruction coefficients are obtained by using the sparse coding method [31]. Specifically,
the spectrum of pixel x is assumed to be approximately represented as a linear combination of only a
few atoms in B, i.e.,

x = Bα + r, (5)

where x is a sample in Xi, α is the reconstruction coefficient vector where most of the entries are zero,
and r is the residual vector. Given a fixed dictionary B, α can be obtained by solving the following
optimization problem:

min ‖x− Bα‖2 s.t. ‖α‖0 < K0, (6)

where ‖·‖0 denotes the l0-norm and K0 is the upper bound of the sparsity level. The sparse coding
method provides the optimal solution of α using greedy pursuit algorithms, such as matching pursuit
(MP) [42] and orthogonal matching pursuit (OMP) [43], where OMP is superior to MP due to its fewer
iterations and better convergence. For cluster Xi, the sparse coefficient vector α for each sample is
obtained, constituting the sparse coefficient matrix Ai.

We focus on Ai and then count the usage frequency of each atom in B for reconstructing Xi.
For a pixel in Xi, some dictionary atoms in B participate in its reconstruction while the others do not.
As mentioned above, background dominates the scene while the anomalies occupy only a few pixels
with a low probability of occurrence. From this point of view, we can conclude that if a dictionary atom
is used frequently for reconstruction, it contains more background information and is more likely to be
a background pixel [31]. In contrast, the rarely used atoms are anomaly pixels with high probability.
In this case, in cluster Xi, assuming bj is the jth atom of B, its usage frequency f j for reconstructing Xi
is defined as:

fj =
∑Ni

k=1

∣∣∣αj,k

∣∣∣
‖Ai‖1

, (7)

where ‖·‖1 denotes the l1-norm, which is the sum of the absolute values of all elements in a matrix. Ni
is the number of pixels in Xi. The numerator in Equation (7) is the sum of the reconstruction coefficients
of atom bj used to reconstruct all pixels in Xi, and the denominator is the sum of all entries in Ai. Then,
we choose P atoms corresponding to the first P largest usage frequency to constitute the background
pixels we estimate in Xi.

The above procedure is repeated in each cluster with the same M and P. The estimated background
pixels in all clusters are summarized, constituting the estimated background pixels in the whole image.
Figure 2 shows an illustration of the background dictionary construction strategy. The constructed
background dictionary, which effectively excludes possible anomalies and contains all background
categories in the scene, is finally used for LRR. It is worth nothing that since sparse coding requires an
over-complete dictionary, in each cluster, the number of atoms randomly selected for HSI reconstruction
should be larger than the dimension H of the dataset. If the total number of pixels in a cluster is less
than H, then this cluster should be ignored and skipped because it may belong to the anomalies due to
its small size and we have set K larger than the true number of background material categories.

In Section 4.3, we will compare the dictionary we construct with two other commonly used
dictionaries, including the dictionary using the entire input data and the dictionary with randomly
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selected atoms, to demonstrate the advantages of our proposed dictionary construction strategy in
terms of detection performance and computation time.

HSI data

K-means 
cluster

Cluster 1

Cluster 2

Cluster K

.

.

.

Randomly 
selected 

dictionary

Sparse 
representation

Sparse coding 
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.
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.

.

.

.

.

Background 
pixels 

estimation

.

.

.

Background 
dictionary 

in LRR 
Summarize

Figure 2. Illustration of the background dictionary construction strategy.

3.2. Adaptive Weighting Method

After performing LRR on an HSI based on our constructed background dictionary, the anomaly
response of each pixel is calculated using the sparse component obtained. However, the response
difference between anomaly pixels and background pixels can be further enhanced to improve the
discrimination degree between them. Fortunately, through implementing sparse reconstruction
on the entire dataset based on the background dictionary constructed in Section 3.1, the resulting
reconstruction residuals provide an effective way to assign adaptive weight values to different pixels
according to their likelihood of being background pixels or anomalies. It is well known that the
background in HSI is highly correlated and the spectrum of a background pixel can be represented
by a linear combination of some other background pixels, while the anomalies cannot. That is to
say, compared with anomaly pixels, the background pixels can be better sparsely reconstructed by
the background dictionary D [44]. Similarly, the sparse coefficient vector can be solved by the OMP
algorithm [43]. Therefore, the following reconstruction residual can be used to assign an adaptive
weight to each pixel:

ξ (x) = ‖x−Dβ‖2 , (8)

where x is an arbitrary test pixel in X, D is the background dictionary constructed in Section 3.1, and
β is the sparse coefficient vector of x with respect to D. Obviously, an anomaly pixel will obtain a
larger residual while the residual for a background pixel will be small. In this case, the response
difference between the background pixels and anomalies is enhanced, which will further improve the
AD performance. The final anomaly response of each pixel is calculated by multiplying the weight
defined in Equation (8) by the anomaly value obtained through LRR, i.e.,

ν′ (x) = ξ (x) · ν (x) , (9)

3.3. Overview of the Proposed Algorithm

According to the consistency of the LRR model and the AD theory, the detection algorithm
proposed in this paper is based on the LRR model, which can effectively mine the hidden lowest-rank
structure in the data and extract the sparse component for AD [38]. A background dictionary
construction strategy is applied to better depart the sparse anomalies from the background component.
An adaptive weighting method is introduced for further enhancing the response difference between
the background pixels and the anomaly pixels. Our proposed method is called the hyperspectral AD
algorithm via dictionary construction-based LRR and adaptive weighting (DCLaAW). The main steps
of DCLaAW are summarized as Algorithm 2, and the corresponding schematic flowchart is given
in Figure 3.
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Algorithm 2. Hyperspectral AD via the proposed DCLaAW

Input: HSI data: X; parameters: K, M, P, λ > 0
1. Divide X into K clusters using K-means clustering.
2. for i = 1 : K

(1) Randomly select M percent of the pixels in this cluster as the dictionary atoms for HSI reconstruction.
if L < H (L is the number of pixels in this cluster, and H is the number of bands of X)

ignore and skip this cluster.
end
(2) Perform sparse coding to obtain the sparse coefficient matrix A.
(3) Count the usage frequency f of each atom in the dictionary based on A.
(4) Choose P pixels corresponding to the first P largest f as the background pixels we estimate.
end

3. Summarize the estimated background pixels in all clusters to constitute the background dictionary D
for LRR.
4. Perform LRR using Algorithm 1 to obtain the anomaly component E, and then calculate the response
value ν of each pixel.
5. Create the weight matrix based on the reconstruction residuals of X with respect to D.
6. Multiply ν by the weight to obtain the final anomaly response value of each pixel.
Output: Anomaly response values of X

K-means
 clustering

Estimate background 
pixels in each cluster

Summarize and obtain 
dictionary D for LRR

Perform LRR
Anomaly response 

Final anomaly 
reponse

HSI dataset X 

Clustering result

Pixel
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in each cluster
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Perform HSI 
reconstruction 

on X based on D  

Adaptive weighing 
matrix

Pixel
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o

lu
m
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Row number

Figure 3. Schematic flowchart of the proposed DCLaAW algorithm for hyperspectral anomaly detection.

4. Experiments and Analysis

In this section, the effectiveness and superiority of our proposed DCLaAW are evaluated on both
synthetic and real-world datasets. The AD performance is assessed by four commonly used indexes,
including color detection map, ROC (receiver operating characteristic) curve [45], AUC (area under
curve) value [46], and background-anomaly separation map. The superiority of the l21 constraint in
LRR, the effectiveness of both the dictionary construction strategy and the adaptive weighting method
are illustrated in Section 4.2, Section 4.3 and Section 4.4, respectively. In Section 4.5, we compare the
detection performance of DCLaAW with that of eight existing state-of-the-art anomaly detectors in
detail. Then, the sensitivity of the detection performance of DCLaAW to the relevant parameters
is analyzed in Section 4.6. In Section 4.7, we provide a comparison between the LRR, the sparsity
formulation, and the L2 formulation to further demonstrate the superiority of our proposed algorithm.
All the experiments are implemented on a personal computer with an Intel Core i3 3.70-GHz central
processing unit, 8GB memory, and 64-bit Windows 7. MATLAB 2016a provides the simulation and
computing platform.

4.1. Dataset Description

The synthetic dataset is generated based on a real-world dataset collected by the HyMap airborne
hyperspectral imaging sensor from a small town of Cook City, MT, USA [47]. It has an area of
280× 800 pixels and 126 spectral bands with wavelengths ranging from 450 to 2500 nm. After removing
the bands corresponding to water absorption regions and low signal-to-noise ratio, 120 bands are



Remote Sens. 2019, 11, 192 10 of 26

retained. A sub-region with a size of 230× 240 pixels on the right side of the scene is chosen to
form the simulated image, where the background types mainly conclude trees, grasses, and rocks.
Based on the linear mixing model (LMM), a synthetic subpixel anomaly with spectrum x and a specified
abundance fraction α is generated by fractionally implanting a desired target with spectrum t in a
given background pixel with spectrum b [48], as follows:

x = α · t + (1− α) · b, (10)

The implanted target corresponds to a vehicle with distinctive spectral characteristics outside
the scene. In this experiment, 30 anomalies are synthesized and distributed in 5 rows and 6 columns.
In each row, the abundance fraction α remains unchanged and the sizes of anomalies are 1× 1, 1× 1,
3× 3, 3× 3, 5× 5, and 5× 5 from left to right. In each column, the abundance fraction α are 0.1, 0.3,
0.5, 0.8, and 1.0 from top to bottom. The pseudo-color image, the ground-truth map, and the spectral
curves of the implanted target and main backgrounds are shown in Figure 4a–c, respectively.
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Figure 4. Synthetic dataset. (a) Pseudo-color image of the scene; (b) Ground-truth map; (c) Spectral
curves of implanted target and main backgrounds.

The first real-world dataset was collected by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor from the San Diego airport area, San Diego, CA, USA [49]. It has a spatial resolution
of approximately 3.5m and 224 spectral bands spanning a wavelength range of 0.37 to 2.51 um.
After removing the bands corresponding to water absorption regions and low signal-to-noise ratio,
189 bands are retained. A sub-region with a size of 100× 100 pixels is chosen for this experiment,
where the background types mainly include parking apron, road, roofs, and shadow. Three aircraft,
occupying 58 pixels in the image, are considered as anomalies in this experiment. The pseudo-color
image, the ground-truth map, and the spectral curves of mean anomalies and main backgrounds are
shown in Figure 5a–c, respectively.

The second real-world hyperspectral dataset was collected by the Hyperspectral Digital Imagery
Collection Experiment (HYDICE) remote sensor. It covers a suburban residential area with 10 nm
spectral resolution and 210 spectral bands ranging from 0.4 to 2.5 um [50]. After removing the bands
corresponding to water absorption regions and low signal-to-noise ratio, 160 bands are retained.
A sub-region with a size of 80× 100 pixels is chosen for this experiment, where the background types
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mainly include parking lot, water, soil and two roads. Some synthetic vehicles, containing 21 pixels,
are the anomalies in this experiment. The pseudo-color image, the ground-truth map, and the spectral
curves of mean anomalies and main backgrounds are shown in Figure 6a–c, respectively.
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Figure 5. San Diego dataset. (a) Pseudo-color image; (b) Ground-truth map; (c) Spectral curves of
mean anomalies and main backgrounds.
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Figure 6. Urban dataset. (a) Pseudo-color image; (b) Ground-truth map; (c) Spectral curves of mean
anomalies and main backgrounds.

4.2. Superiority of the l21 Constraint for LRR

As described in Section 2.1, for the sparse component in LRR, the l21 constraint is theoretically
more suitable to discriminate the background and anomalies than the l1 constraint. In this section,
to experimentally demonstrate the superiority of the l21 constraint, the detection performance of
LRR under l21 constraint is compared with that under l1 constraint. To compare only the effects of
different constraints in the performance of LRR, the optimal background dictionary is adopted while
the adaptive weighting is not implemented. Here we present the experimental results for the San
Diego dataset, and the other two datasets can get the similar conclusions. The detection maps obtained
by LRR with different constraints are shown in Figure 7, and the corresponding AUC values and
calculation times (in seconds) are listed in Table 2. The ROC curve plots the relationship between
the false alarm rate (FAR) and the detection rate (DR), where the FAR is generally measured by a
base 10 logarithmic scale to better illustrate the details. The closer the ROC curve is to the upper left
corner of the coordinate plane, the better the performance of the corresponding detector. The AUC
value represents the whole area under the ROC curve, so a larger AUC value usually means a better
detection performance. For each constraint, the sensitivity of the obtained AUC value to the number
of dictionary atoms is shown in Figure 8.

As shown in Figure 7, the detection map obtained by the l1 constraint has significantly more false
alarm points than the l21 constraint. This is mainly because the l1 constraint finds the entry-wise sparse
points, which are usually sparse in a certain band, not in all bands. This results in the background pixels
that are sparse in only a band being extracted into the sparse component, and further leads to serious
false alarms in the detection result. From Table 2, we see that the l21 constraint achieves a slightly
larger AUC value, consistent with the observation in the detection maps. In addition, the l21 constraint
requires less computation time than the l1 constraint and is therefore more practical. After several
experiments, we find that the l1 constraint requires 240 iterations in one experiment, while the l21
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constraint requires only 152 iterations. Figure 8 shows that the LRR with l21 constraint is more robust
to the number of dictionary atoms. Therefore, after comprehensive consideration, we believe that the
l21 constraint is superior to the l1 constraint both theoretically and experimentally.

(a) (b)

Figure 7. Color detection maps obtained by LRR with different constraints for the San Diego dataset.
(a) l1 constraint; (b) l21 constraint.

Table 2. Performance comparison of different constraints for the San Diego dataset.

Constraint l1 Constraint l21 Constraint

AUC value 0.9936 0.9949

Computation time (s) 72.923 49.260
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Figure 8. AUC values achieved by LRR under different numbers of dictionary atoms for the San Diego
dataset. (a) l1 constraint; (b) l21 constraint.

4.3. Effectiveness of the Background Dictionary Construction Strategy

In this section, our proposed background dictionary construction strategy is compared with two
other commonly used LRR dictionaries, including the dictionary using the entire input data and the
dictionary with randomly selected atoms, to demonstrate the superiority of our dictionary in terms of
detection performance and computation time. In the original LRR, the entire input matrix is used as
the dictionary to span the data space. In the randomly selected dictionary-based LRR, atoms in the
dictionary are randomly selected from the entire dataset. In this comparison, for the sake of fairness,
the number of randomly selected atoms is set equal to the number of atoms in DCLaAW. To make
objective comparisons only for different dictionaries, we do not implement weighting operation when
performing DCLaAW in this section. When the original LRR is executed on a large data, an error
occurs due to “out of memory”. Therefore, in this part, a sub-region taken from the upper right corner
of the San Diego image is used as the toy dataset to perform the experiment. The ground-truth map,
and the color detection maps achieved by these three different algorithms are shown in Figure 9 for
intuitive comparisons. The ROC curves of each algorithm and their corresponding AUC values are
plotted in Figure 10 for quantitative comparisons. In addition, the computation times of each algorithm
are listed in Table 3 for a practical comparison.
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(a) (b) (c) (d)

Figure 9. Color detection maps obtained by LRR using different dictionaries for the toy dataset. (a) Ground-
truth map; (b) Original LRR; (c) LRR using randomly selected dictionary; (d) LRR using our dictionary.

0.001 0.01 0.1 1
false-alarm rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

de
te

ct
io

n 
ra

te

original LRR: AUC(0.85372)
LRR using random dictionary: AUC(0.9895)
LRR using our dictionary: AUC(0.99707)

Figure 10. ROC curves and AUC values achieved by LRR using different dictionaries for the toy dataset.

Table 3. Computation times of LRR using different dictionaries for the toy dataset.

Time(s) Original LRR LRR Using Random Dictionary LRR Using Our Dictionary

Toy Dataset 1340.505 9.471 11.057

As shown in Figure 9, the LRR algorithm using our dictionary achieves the best detection
map in terms of background suppression and anomaly highlighting. For the original LRR, since
the whole dataset, as the dictionary for LRR, cannot separate the background component and the
anomaly component very well, it is difficult to identify the anomalous aircraft in the detection map.
For LRR based on randomly selected dictionary, random selection cannot avoid anomalies being
selected as dictionary atoms, and it is difficult to ensure that each background category is covered.
Therefore, the background component extracted by it cannot adequately describe the real background.
Our proposed background dictionary construction strategy can guarantee the exclusion of anomaly
contamination and the inclusion of all background categories in the background dictionary to a
considerable extent, thus providing the best detection map. From Figure 10, we can see that the ROC
curve obtained by the LRR algorithm using our dictionary is basically always above that obtained by
the LRR using the other two dictionaries. Consistently, the AUC value achieved by LRR using our
dictionary is the largest. In addition, Table 3 shows that the time taken to execute the original LRR is
long, so it is impractical to use it to process the real-world HSI datasets. Although the computational
cost of the LRR using our dictionary is slightly larger than that of the LRR using a random dictionary,
it is within an acceptable range.

4.4. Effectiveness of the Adaptive Weighting

After performing LRR based on the background dictionary we construct, the adaptive weighting
method described in Section 3.2 is implemented to further increase the diversity between the
background pixels and the anomaly pixels. The weighting effect can be clearly reflected by the
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detection map and the background-anomaly separation map. Here, to demonstrate the effectiveness of
our proposed adaptive weighting method, the detection result obtained by DCLaAW with adaptive
weighting is compared with that obtained by DCLaAW without adaptive weighting. The detection
maps and normalized background-anomaly separation maps for the three datasets are shown in
Figures 11 and 12, respectively. The background-anomaly separation map is a graph used to evaluate
the separation performance of background pixels and anomaly pixels. It normalizes the detection
result to 0-1 and uses a green box and a red box to represent the compactness and tendency of the
distribution of backgrounds and anomalies, respectively. The central mark of each box is the median,
the bottom and top edges refer to the lower quartile and the upper quartile, and the whisker are the
extreme values within 1.5 times the interquartile range from the end of the box. Therefore, a larger gap
between two boxes means a better separation between background and anomalies.

(a) (b) (c)

Figure 11. Effect of adaptive weighting on the detection map obtained by DCLaAW for each dataset.
For each dataset, the top is the DCLaAW without adaptive weighting and the bottom is the DCLaAW
with adaptive weighting. (a) Synthetic dataset; (b) San Diego dataset; (c) Urban dataset.

From Figure 11, we can see that for the San Diego and Urban datasets, the response
brightness of the background pixels through weighting is significantly lower than that without
weighting. The anomalous are also brightened noticeably. For the Synthetic dataset, after weighting,
the background materials in the upper left corner are suppressed and the response outputs of the
anomalies in the third to fifth rows are greatly improved. This effect can be clearly observed through the
background-anomaly separation map shown in Figure 12, where the gap between the background box
and the anomaly box becomes larger after weighting, meaning an easier identification of anomalous
objects from the background.

4.5. Detection Performance

Eight state-of-the-art anomaly detectors are used as the benchmarks to evaluate the detection
performance of our proposed DCLaAW, including GRX [8], LRX [9], KRX [14], CKRX [16], SSRX [13],
CRD [20], LRaSMD [36], and LRASR [28]. All compared detectors are implemented with their
optimal parameters.

For the synthetic dataset, the color detection maps of all compared algorithms are shown in
Figure 13 for an intuitive comparison. As shown, GRX obtains the worst detection map, where almost
no anomalies can be successfully detected. LRX performs well for anomalies with an abundance
fraction greater than 0.5 because of its advantages in dealing with local uniform background. For KRX,
all the anomalies except for those in the first row are highlighted satisfactorily, but it is obvious that
the background materials corresponding to the grasses and rocks in the scene are not well suppressed.
For CKRX, all the anomalies are effectively highlighted, but the background materials, especially rocks
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and grasses, have undesirably high response values. For SSRX, anomalies with a large abundance
fraction are well identified, but there are still some background materials with slightly high response.
Both CRD and LRaSMD achieve a satisfactory extrusion for almost all anomalies, regardless of their
sizes. However, they perform poorly for anomalies with an abundance fraction of 0.1 and there is some
noise pollution scattered throughout the detection map of CRD. Compared with LRASR, our proposed
DCLaAW achieves a better performance in anomaly highlighting and background suppression due to
its more reasonable background dictionary construction strategy and adaptive weighing. All anomalies
can be detected by DCLaAW, regardless of their sizes and abundance fractions. In general, besides
DCLaAW, the detection map of LRaSMD is relatively good.
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Figure 12. Effect of adaptive weighting on the background-anomaly separation map for each dataset.
(a) Synthetic dataset; (b) San Diego dataset; (c) Urban dataset.
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Figure 13. Color detection maps of all compared algorithms for the Synthetic dataset. (a) RX; (b) LRX;
(c) KRX; (d) CKRX; (e) SSRX; (f) CRD; (g) LRaSMD; (h) LRASR; (i) DCLaAW.
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Figure 14 provides the quantitative comparisons of these detectors for the synthetic dataset
through the ROC curves and normalized background-anomaly separation maps. As shown in
Figure 14a, our proposed DCLaAW obtains the best ROC curve with a DR close to 1 for all FARs.
The ROC curves of LRaSMD and SSRX are slightly worse than that of DCLaAW, but still better than
that of the other 6 detectors. The ROC curve of LRX approximates a straight line. Figure 14b shows the
normalized background-anomaly separation maps of each detector. As shown, DCLaAW achieves
the largest gap between the background box and the anomaly box with no overlap. In addition to
DCLaAW, CKRX and LRaSMD can also satisfactorily separate anomalies from the background.
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Figure 14. Quantitative comparisons of all compared algorithms for the synthetic dataset. (a) ROC
curves; (b) Background-anomaly separation maps.

For the real-world San Diego dataset, the color detection maps of all compared algorithms are
shown in Figure 15. We can see that neither GRX nor LRX can identify any anomalous aircraft from
the background, thus providing the worst detection maps among all detectors. KRX achieves the most
outstanding anomaly extrusion in all detectors, but there are some serious false alarms in the lower
left and upper left corners. The anomaly extrusion of CKRX is satisfactory, but the background in the
lower left corner needs to be further suppressed. For SSRX, when eliminating redundant background
interference, some useful anomaly information is also removed by PCA, resulting in weak brightness
of anomaly pixels in the detection map of SSRX, as shown in Figure 15e. The centers of the anomalous
aircraft are well extruded by CRD, but the edges are ignored. LRaSMD achieves a very satisfactory
background suppression for most of the background areas, but it is obvious that there are some high
background responses in the lower left corner of the scene. For our proposed DCLaAW, all three
aircraft are extracted from the background with very high brightness, and the background interference
is well suppressed, demonstrating its superiority over LARSR which has relatively weak brightness in
the anomaly pixels. Figure 16 presents the ROC curves and background-anomaly separation maps
of these detectors. As shown in Figure 16a, DCLaAW obtains a DR greater than 0.3 when the FAR is
approximately 0, and its DR is about 0.95 when the FAR is 0.007. Therefore, our proposed DCLaAW
achieves the best detection performance among all detectors. The ROC curves of GRX and LRX are
the worst, consistent with the conclusions of the above detection maps. Figure 16b illustrates that
both LRX and LRaSMD successfully suppress the background to a very low and narrow range of
brightness, but the anomalies in LRX are not well highlighted. The separation of CKRX is quite good,
but the brightness of the background is too high. Although our proposed DCLaAW is not optimal for
background suppression, it can obtain the maximum distance between the background box and the
anomaly box, thus achieving the best background-anomaly separation performance.
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Figure 15. Color detection maps of all compared algorithms for the San Diego dataset. (a) RX; (b) LRX;
(c) KRX; (d) CKRX; (e) SSRX; (f) CRD; (g) LRaSMD; (h) LRASR; (i) DCLaAW.
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Figure 16. Quantitative comparisons of all compared algorithms for the San Diego dataset. (a) ROC
curves; (b) Background-anomaly separation maps.

For the real-world Urban dataset, the detection maps are shown in Figure 17. As we can see,
compared with GRX, LRX effectively eliminates some false alarm points in the scene. However, some
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anomalies are also suppressed undesirably by LRX. For KRX and CKRX, there are some background
areas with high brightness, especially in the lower right corner of CKRX. For SSRX, almost all anomalies
can be found, and its background suppression is much better than KRX and CKRX. For LRaSMD,
the anomalies are well highlighted and most of the background areas in the scene are suppressed
to a very low brightness. However, due to the presence of some background objects with sparse
property, the detection map of LRaSMD may also contain some bright background responses, as
shown in Figure 17g. Our proposed DCLaAW achieves an excellent anomaly extrusion from the
background with almost no false alarms, and all background pixels are suppressed to a small interval.
Figure 18 gives quantitative comparisons of these detectors by ROC curves and background-anomaly
separation maps. It can be observed from Figure 18a that our DCLaAW obtains a DR greater than
0.6 when the false alarm is 0, and its FAR is the smallest compared with others when the DR reaches
1. The ROC curves of KRX and CKRX are the worst as they are close to the lower right corner of
the coordinate plane. From Figure 18b, we can see that both LRX and LRaSMD achieve the best
background suppression because their background boxes are very narrow, and their background
values are close to 0. For DCLaAW, the gap between background and anomalies is the largest, meaning
the best background-anomaly separation performance among all detectors.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 17. Color detection maps of all compared algorithms for the Urban dataset. (a) RX; (b) LRX;
(c) KRX; (d) CKRX; (e) SSRX; (f) CRD; (g) LRaSMD; (h) LRASR; (i) DCLaAW.

In addition, the AUC values of all compared algorithms for each dataset are listed in Figure 19.
It can be seen that DCLaAW obtains the largest AUC value for all three datasets, proving its advantages
in AD. For the Urban dataset, all these detectors achieve an AUC value larger than 0.9, which mainly
because this dataset has high anomaly fractions, relatively uniform background and weak anomaly
contamination caused by small anomaly size.
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Overall, our proposed DCLaAW generally performs best on both synthetic and real-world
hyperspectral datasets. Compared with these compared algorithms, the main reasons for the
superior performance of DCLaAW can be summarized as follows: (1) it requires no assumptions
on the distribution of the background, which is the main limitation of the conventional probability
distribution-based RX methods. (2) anomaly contamination in LRX and CRD is a major factor affecting
their performances, which can lead to some false alarms and the missed detection of real anomalies.
(3) for LRaSMD, because of the decomposition error, the sparse property of some background objects
and the large upper bound of sparsity level, some background information is usually included in
the extracted sparse component, which may result in the presence of some false alarms. (4) LRASR
and DCLaAW, as improved versions of LRR, both construct a reliable background dictionary that can
remove anomalies and contain all background categories. However, our proposed weighting strategy
further enhances the response difference between the background pixels and the anomaly pixels, thus
providing a better AD performance.
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Figure 18. Quantitative comparisons of all compared algorithms for the Urban dataset. (a) ROC curves;
(b) Background-anomaly separation maps.
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Figure 19. AUC values of all compared algorithms for each dataset. (a) Synthetic dataset; (b) San Diego
dataset; (c) Urban dataset.

Furthermore, the computational costs of all these algorithms for each dataset are listed in
Table 4 for a practical comparison. The computational cost of each algorithm refers to its runtime
on our designated platform, and the number is in seconds. For the three datasets, although the
detection performance of CKRX is slightly worse than KRX, its computation time is significantly less.
The LRR-based algorithms, such as LRASR and DCLaAW, require more time to perform the detection
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operation than other algorithms. Due to the use of sparsity-inducing regularization term in LRASR,
the computational cost of LRASR is slightly larger than that of our proposed DCLaAW. It is worth
nothing that although our dictionary construction strategy greatly reduces the computation time of
the original LRR algorithm, the main calculation of DCLaAW is still spent on the solution of LRR.
Specifically, for the synthetic dataset, the San Diego dataset, and the Urban dataset, LRR accounts for
88.12%, 90.41% and 90.38% of the computational cost of DCLaAW, respectively.

Table 4. Computational costs of all compared detectors for each dataset.

Times (s) GRX LRX KRX CKRX SSRX CRD LRaSMD LRASR DCLaAW

Synthetic Dataset 0.698 87.726 21.043 11.823 0.464 32.134 58.079 520.356 466.527
San Diego Dataset 0.157 48.108 10.218 1.946 0.161 9.953 16.885 62.877 60.015

Urban Dataset 0.143 20.930 2.561 1.677 0.155 2.552 10.919 58.111 55.787

4.6. Parameter Analysis

There are some important parameters in our proposed DCLaAW that may influence the detection
performance, mainly including: (1) in the K-means clustering step: K is the number of clusters. (2) in the
background dictionary construction step: M is the percentage of atoms selected for HSI reconstruction
in each cluster; P is the number of pixels selected as the estimated background pixels in each cluster.
(3) in the LRR step: λ is the tradeoff parameter. When we analyze the specified parameters, the other
parameters are set to be optimal.

Firstly, we investigate the sensitivity of the detection performance of DCLaAW to K and M with the
other parameters fixed. The AUC values are calculated when jointly taking K and M into consideration.
Without loss of generality, K is set as {1, 2, 4, 6, 8, 10, 12, 14, 16, 20} and M is set as 10–100% with an
interval of 10%. For each dataset, the AUC values obtained with different combinations of K and M
are exhibited in Figure 20. It should be noted that since the sparse coding in each cluster requires an
over-complete dictionary, we ignore and skip the clusters where the number of pixels is less than the
number of dimensions of the dataset. As shown in Figure 20, it is clear that the AUC surfaces for the
three datasets are similar, where the DCLaAW algorithm is more sensitive to the transformation of K
than that of M. The detection performance of DCLaAW with small K is poor, mainly because the value
of K is too small to enable the K-means clustering algorithm to segment the HSI dataset into a sufficient
number of clusters. In this case, the constructed background dictionary for LRR cannot contain enough
background categories and therefore cannot span the entire data space. The AUC value is relatively
low when both K and M are very small. When K is in the range of 8–20 and M is in 30–100%, the AUC
values are stable and satisfactory for all three datasets, demonstrating the robustness of DCLaAW to
parameter K and M. For simplicity, in our experiments, we choose K = 12 and M = 50% for all the three
datasets. It is worth noting that K = 12 is also slightly larger than the number of categories estimated
by HySime and is therefore a reasonable choice.

Then, we investigate the influence of P on the detection performance of DCLaAW for each dataset.
Since the value of K can significantly affect the variation of detection performance with P, here we
jointly analyze K and P. The value of K is set as {1, 4, 8, 12, 16, 20} and P is in the range of 10–100 with
an interval of 10. Since the background dictionary we use for HSI reconstruction in the weighting
operation needs to be over-complete, the product of K and P should be larger than the dimension of
the dataset. Therefore, when the product of K and P is lower than the dimension, we do not execute
the adaptive weighting operation. It is worth mentioning that since we have made the dictionary for
sparse coding in each cluster over-complete, we can ensure that the selection of P atoms in each cluster
is sufficient, even if P takes the maximum value of 100. Figure 21a–c illustrate the change of AUC
values with P under different K for each dataset.
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Figure 20. AUC illustration of DCLaAW with different combinations of K and M for each dataset.
(a) Synthetic dataset; (b) San Diego dataset; (c) Urban dataset.
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Figure 21. AUC values achieved by DCLaAW with different K and P for each dataset. (a) Synthetic
dataset; (b) San Diego dataset; (c) Urban dataset; (d) Relationship between calculation time and the
number of dictionary atoms used for LRR.

As shown in Figure 21a–c, we can see that for the three datasets, the changes of AUC exhibit
similar characteristics. Specifically, on the one hand, an increased K means a better clustering result
and a more comprehensive background dictionary, thus resulting in a more satisfactory detection
performance. On the other hand, as P increases, more background dictionary atoms for LRR make
the background space to be more adequately spanned and thus further lead to a larger AUC value.
However, as P further increases, the AUC value will not increase anymore because the background
space has been fully described. Here, we choose several representative K-curves to illustrate the details.
For K = 1, the detection performance is very poor because the weighting method is not executed in
this case and such a small K makes the background dictionary unable to contain enough background
categories. For K = 4, there is a turning point where the AUC value increases rapidly. Prior to this
point, the weighting strategy is not implemented. At this point, the weighting strategy optimizes the
detection results. For K = 20, the weighting strategy is executed under all P values, so the detection
performance is satisfactory. It is worth nothing that although a larger P and K can result in a larger
AUC value, it also brings a greater computational cost. Though experiments, we plot the change
of the calculation time of LRR with the number of atoms in the dictionary, as shown in Figure 21d,
where the x-axis is the number of atoms in the dictionary for LRR and the y-axis is the calculation time.
Therefore, the values of K and P should be chosen to be moderate after jointly considering the detection
performance and time cost. For example, K = 12 and P = 30 is a good choice for all the three datasets.

Finally, the sensitivity of DCLaAW to the tradeoff parameter λ is analyzed. λ is chosen from
{0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, and the ROC curve is used as the evaluation measure.
From the results shown in Figure 22, we can see that the variation trend of ROC curves with λ for
the synthetic dataset is significantly different from that for the two real-world datasets. Specifically,
for the synthetic dataset, as λ increases, the ROC curve initially becomes better and then reaches the
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best when λ is 0.02, and finally deteriorates as λ further increases. In the detection maps, λ larger
than 0.2 will result in the appearance of false alarm points corresponding to the rocks and grasses
in the scene. Differently, for the two real-world datasets, the ROC curves exhibit similar trends and
are not sensitive to λ. To observe the details, we plot the AUC values as a function of λ, as shown in
Figure 23. It reveals that for the two real-world datasets, all λ in the range of {0.001, 0.5} can achieve an
AUC value larger than 0.994, demonstrating the robustness of DCLaAW to λ. For the synthetic dataset,
when λ is less than 0.1, we can achieve an AUC value larger than 0.98. In our experiments, we choose
λ = 0.02, λ = 0.02 and λ = 0.4 for the three datasets, respectively.
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Figure 22. ROC curves achieved by DCLaAW with different λ for each dataset. (a) Synthetic dataset;
(b) San Diego dataset; (c) Urban dataset.
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Figure 23. AUC values achieved by DCLaAW with different λ for each dataset. (a) Synthetic dataset;
(b) San Diego dataset; (c) Urban dataset.

4.7. Comparison between Sparsity and l2 Formulation

In our proposed algorithm, based on the constructed background dictionary, the LRR is used to
separate the sparse anomaly component from the background for AD. As described in Section 3.2,
since the background pixels can be reconstructed sparsely by the background dictionary very well,
while the anomalies cannot, the reconstruction errors of the sparsity formulation can be used to assign
anomaly responses to pixels. l2 formulation, as a more commonly used approach, can theoretically also
achieve AD based on the constructed dictionary. That is to say, the LRR, the sparsity formulation, and
the l2 formulation perform AD from different aspects, and they adopt different models. In this section,
the AD performances of these three approaches are compared through experiments to demonstrate the
superiority of our proposed algorithm.

The models of LRR and sparsity formulation are Equation (1) and Equation (6), respectively,
both of which are used in our algorithm. l2 formulation, whose regression is called ridge regression,
is usually used to prevent data overfitting. In fact, with the l2 formulation, the entries of the coefficient
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vector are close to 0, but not equal to 0, which is the main difference between it and the sparsity
formulation. With the background dictionary D, the l2 formulation is as follows:

min ‖x−Dθ‖2
2 + δ ‖θ‖2

2 , (11)

where δ is the Lagrange multiplier. It can be found that for the l2 formulation, each pixel is reconstructed
by all atoms in the background dictionary. Differently, for the sparsity formulation, each pixel is
sparsely reconstructed by a few atoms in the dictionary. The above optimization problem can be
solved by making the derivative zero, and an analytical expression can be obtained. Without adaptive
weighting, the optimal detection maps obtained by these three approaches are shown in Figure 24, and
the corresponding AUC values are listed in Table 5. In addition, for each approach, the relationship
between the calculation time (in seconds) and the number of dictionary atoms is shown in Figure 25
for practical comparisons. Here we only show the experimental results for the San Diego dataset, and
the other two datasets can get the similar conclusions.

(a) (b) (c)

Figure 24. Detection maps obtained by different approaches for the San Diego dataset. (a) LRR with l21

constraint; (b) Sparsity formulation; (c) l2 formulation.

Table 5. AUC values obtained by different approaches for the San Diego dataset.

Approach LRR with l21 Constraint Sparsity Formulation l2 Formulation

AUC value 0.9949 0.9922 0.9937
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Figure 25. Relationship between computation time and the number of dictionary atoms for each
approach for the San Diego dataset.

As shown in Figure 24, LRR achieves a uniform and satisfactory suppression for almost all
background materials, thus obtaining the largest AUC value, as listed in Table 5. For the sparse
formulation, the overall background brightness is too high and needs to be further suppressed. The l2
formulation achieves the best suppression for most background areas, but the response values of the
background objects in the upper left and lower left corners are quite high. Table 5 shows that the
detection performance of LRR is the best, followed by the l2 formulation, while the sparse formulation
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has the worst performance. However, in our algorithm, if we use the l2 formulation instead of the
sparsity formulation to adaptively weight, the final AUC value obtained by the LRR weighted by l2
formulation is 0.9952, while the final AUC value obtained by the LRR weighted by sparsity formulation
is 0.9973. The reason may be that for the l2 formulation, the high background responses in the upper left
and lower left corners make the FAR of the final detection result serious. For the sparsity formulation,
although the overall background suppression in the weight map is not satisfactory, it is uniform. As a
result, the final detection performance can be effectively improved. As can be seen from Figure 25,
for the l2 formulation, the AUC value increases rapidly as the number of dictionary atoms increases.
Therefore, when the number of dictionary atoms is large, it is impractical to process HSI datasets using
the l2 formulation. In fact, the LRR with l1 constraint has the longest computation time compared to
these three approaches. After jointly considering the final detection performance and the calculation
time, we use the sparsity formulation to weight the detection result of the LRR with l21 constraint,
while the l2 formulation is not adopted.

5. Conclusions

In this paper, a novel hyperspectral AD algorithm via DCLaAW is proposed. Based on the
consistency of the LRR model and the hyperspectral AD problem, the LRR is used to mine the
lowest-rank representation of all data jointly and extract the sparse component for AD. Considering
the shortcomings of the conventional dictionaries for LRR and the fact that the background atoms
participate more frequently in HSI reconstruction, a background dictionary construction strategy based
on the usage frequency of the dictionary atoms for HSI reconstruction in each cluster is proposed.
Such a background dictionary guarantees the exclusion of anomaly pixels and the inclusion of all
background categories to a considerable extent, thus achieving a satisfactory separation between the
anomaly component and the background component. In addition, to further enhance the response
difference between the background pixels and the anomaly pixels, an adaptive weighting method
based on the reconstruction error of the entire data with respect to the constructed background
dictionary is proposed. The final anomaly value of each pixel is calculated by multiplying the weight
value by the response value obtained through LRR.

Experiments on both synthetic and real-world datasets demonstrate the superiority of our
proposed anomaly detection algorithm over the other eight state-of-the-art AD detectors. Moreover,
the effectiveness of the dictionary construction strategy and the adaptive weighting method is proven
by experiments. Finally, the influences of relevant parameters on the detection performance of our
algorithm are analyzed in detail. Although our algorithm can greatly alleviate the computational
burden of the original LRR, its calculation time is still larger than some other anomaly detectors.
Therefore, computational complexity is the focus of future research.
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