
remote sensing  

Article

Optical Classification of the Remote Sensing
Reflectance and Its Application in Deriving the
Specific Phytoplankton Absorption in Optically
Complex Lakes

Kun Xue 1, Ronghua Ma 1,*, Dian Wang 1,2 and Ming Shen 1,2

1 Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese
Academy of Sciences, Nanjing 210008, China; kxue@niglas.ac.cn (K.X.); dwang@niglas.ac.cn (D.W.);
mshen@niglas.ac.cn (M.S.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: rhma@niglas.ac.cn

Received: 13 December 2018; Accepted: 16 January 2019; Published: 18 January 2019
����������
�������

Abstract: Optical water types (OWTs) were identified from remote sensing reflectance (Rrs(λ)) values
in a field-measured dataset of several large lakes in the lower reaches of the Yangtze and Huai River
(LYHR) Basin. Four OWTs were determined from normalized remote sensing reflectance spectra
(NRrs(λ)) using the k-means clustering approach, and were identified in the Sentinel 3A OLCI (Ocean
Land Color Instrument) image data over lakes in the LYHR Basin. The results showed that 1) Each
OWT is associated with different bio-optical properties, such as the concentration of chlorophyll-a
(Chla), suspended particulate matter (SPM), proportion of suspended particulate inorganic matter
(SPIM), and absorption coefficient of each component. One optical water type showed an obvious
characteristic with a high contribution of mineral particles, while one type was mostly determined
by a high content of phytoplankton. The other types belonged to the optically mixed water types.
2) Class-specific Chla inversion algorithms performed better for all water types, except type 4,
compared to the overall dataset. In addition, class-specific inversion algorithms for estimating
the Chla-specific absorption coefficient of phytoplankton at 443 nm (a*

ph(443)) were developed
based on the relationship between a*

ph(443) and Chla of each OWT. The spatial variations in the
class-specific model-derived a*

ph(443) values were illustrated for 2 March 2017, and 24 October 2017.
3) The dominant water type and the Shannon index (H) were used to characterize the optical
variability or similarity of the lakes in the LYHR Basin using cloud-free OLCI images in 2017. A high
optical variation was located in the western and southern parts of Lake Taihu, the southern part of
Lake Hongze, Lake Chaohu, and several small lakes near the Yangtze River, while the northern part
of Lake Hongze had a low optical diversity. This work demonstrates the potential and necessity of
optical classification in estimating bio-optical parameters using class-specific inversion algorithms
and monitoring of the optical variations in optically complex and dynamic lake waters.

Keywords: optical water types; remote sensing reflectance; specific inherent optical properties;
Sentinel 3A/OLCI

1. Introduction

Inland lakes not only supply fresh water and food, but also influence the regional climate and
ecological environment, such as the hydrological cycle and nutrient dynamics [1]. Ocean color
remote sensing has been widely used to monitor the temporal and spatial bio-optical dynamics of
inland waters using satellite data. However, the remote sensing reflectance (Rrs(λ)) showed large
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variability and dynamics in turbid and eutrophic lakes due to the frequency influence of sediment
resuspension, river inflow, and presence of algal blooms. The high complexity and dynamics of
bio-optical properties added challenges in the remote sensing inversion process. Therefore, a number of
local and regional bio-optical inversion algorithms have been developed to estimate the concentrations
of suspended particulate matter (SPM) and chlorophyll-a (Chla), and the inherent optical properties
(IOPs) in optically complex lakes [2–5]. However, it is difficult to define the applicability range of these
specific or local bio-optical models [6]. The optical variations in the water components, e.g., non-algal
particulates (NAP) and phytoplankton, would affect the performance of the local empirical algorithms
or semianalytical algorithms in these lakes [7]. In addition, Dall’Olmo and Gitelson (2006) [8] suggested
that Chla-specific absorption coefficients, affected by package effects and pigment accumulation,
are also an important factor. It is not feasible to develop a universe algorithm to derive bio-optical
parameters in optically complex waters with multiple water types, such as phytoplankton-dominated
waters and colored dissolved organic matter (CDOM)-dominated twaters [9,10].

An effective way to improve the remote sensing inversion algorithms in optically complex
waters is optical classification, which aims to realize the clustering of waters with similar optical
properties and development of a suitable algorithm for each optical water type (OWT) [11].
Oceanic waters were first distinguished into two basic water types: Case I and Case II, based on
the covariation between phytoplankton and the other water constitutes, e.g., NAP and CDOM.
The following studies have treated the partition of oceanic, coastal, and lake waters into different
optical classes based on field-measured or satellite remote sensing reflectance [10,12], inherent optical
properties [13], or specific absorption coefficients [14]. Clustering techniques, such as hierarchical
clustering [15], k-means [16,17], fuzzy c-means [12,18], ISODATA (Iterative Self-Organizing Data
Analysis Technique) [19], and self-organizing maps [20], were used to partition waters into different
groups based on the magnitudes and spectrum characteristics of Rrs(λ). Optical classification
frameworks or schemes of global oceanic [21], coastal [19], and inland waters [16,22] were established
using large datasets collected globally. In addition, the optical classification method was also often
used to build class-specific bio-optical models in regional coastal [11,23] and inland waters [9,15,24].

Previous studies have demonstrated that optical classification improved the inversion of
bio-optical parameters [11], the identification of specific phytoplankton [25] or phytoplankton
groups [20,26] and the characterization of the uncertainties associated with ocean color products [27,28].
For example, improvements in estimating the SPM and Chla, especially for Chla below 30 mg/m3,
using an optical classification method, were observed in turbid and eutrophic lakes (e.g., Lake Taihu
and Lake Chaohu) [9,17]. In addition, a red band-based water classification approach was also provided
to improve the performance of the Chla inversion algorithms with a general improvement in mean
absolute percentage error (MAPE) by 8.4% for optically complex estuaries [29,30].

The large range and variability in bio-optical parameters (e.g., the concentration of particles,
absorption coefficients of water constitutes) were examined in the lower reaches of the Yangtze and
Huai River (LYHR) Basin [3,31]. However, whether the optical classification is applicable to lakes in the
LYHR basin requires further research. In this study, using both field-measured and OLCI data, optical
classification using k-means method was tested to demonstrate whether water optical classification
is beneficial for improving class-specific bio-optical inversion models in optically complex lakes in
the LYHR basin. This study aims to 1) identify the optical water types of the lakes in the LYHR Basin
using field-measured and OLCI-derived Rrs(λ) data; 2) characterize the bio-optical properties and IOP
variations in each OWT; and 3) develop class-specific models to improve the estimation of the Chla
content and Chla-specific phytoplankton absorption at 443 nm (aph

*(443)).
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2. Data and Methods

2.1. Field-Measured Datasets

We assembled datasets, including hyperspectral Rrs(λ) data and concentrations of optical active
constitutes (OACs), and absorption coefficients of each component (phytoplankton, NAP, and CDOM)
from several large lakes in the LYHR Basin. The dataset contained 535 water samples, collected
from 2011 to 2017, from Lake Taihu, Lake Chaohu, Lake Hongze, and Lake Shijiu in the LYHR Basin
(Figure 1). The lakes in the LYHR Basin are mostly eutrophic and turbid due to the frequent occurrence
of algal blooms and sediment resuspension [2,32].
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Figure 1. Location of the lakes in the lower reaches of the Yangtze and Huai River (LYHR) Basin.
The field samples of Lake Chaohu, Lake Taihu, and Lake Hongze were collected from 2011 to
2017. The validation data were match-up pairs of field data and Ocean Land Color Instrument
(OLCI)-derived data.

The remote sensing reflectance (Rrs, sr−1), ranging from 350 to 1050 nm, was measured using the
above-water method (FieldSpec Pro Dual VNIR, Analytical Spectral Devices, Inc.) [33]. According to
the study of Mobley [34] and measurement conditions (viewing direction of 40◦ from the nadir and
135◦ from the Sun), the value of the reflectance ratio $ = 0.028 was used to derive Rrs from the measured
total water-leaving radiance (Lsw), radiance of the gray panel (Lp), and sky radiance (Lsky). Rrs of
validation data was derived using $ from the look up table of Mobley (2015) [35]. The water samples
were collected near the water surface (<0.3 m) and were stored in the dark at 4 ◦C before laboratory
analysis. According to NASA-recommended protocols, the concentration of Chla was measured
spectrophotometrically using a Shimadzu UV-2600 spectrophotometer [36,37]. The concentrations
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of SPM were determined gravimetrically in the laboratory, and were further differentiated into the
suspended particulate inorganic matter (SPIM) and suspended particulate organic matter (SPOM) by
burning the organic matter from the filters [38].

The spectral absorption coefficients of the particulates involved phytoplankton (aph(λ)), NAP
(also referred to as the detritus) (ad(λ)) were determined using the quantitative filter technique [39].
The spectral absorption coefficients of the CDOM (ag(λ)) were determined using a Shimadzu UV-2600
spectrophotometer with Milli-Q water as reference. The absorption coefficient of pure water (aw(λ))
was obtained from Pope and Fry [40]. The specific phytoplankton absorption coefficient (a*

ph(λ))
was the ratio of aph(λ) and Chla, and the specific NAP absorption coefficient (a*

d(λ)) was the
ratio of ad(λ) and SPM [41,42]. Note that the definitions of a*

ph(λ) and a*
d(λ) are, to some extent,

ambiguous. Absorption of phytoplankton was compared with Chla (excluding other pigments),
and absorption of NAP (excluding phytoplankton) was only compared with the dry weight of all
particles (including phytoplankton). As a result, our estimates of a*

ph(443) are probably higher
than the actual aph(443)-to-phytoplankton dry weight ratio, and a*

d(443) is probably lower than the
ad(443)-to-NAP dry weight ratio [42]. The slope coefficient of NAP absorption (Sd) and CDOM
absorption (Sg) was calculated by fitting an exponential equation over 400–700 nm with 440 nm as
the reference band [43]. Further details on the field measurements of the bio-optical parameters and
processing methods can be found in previous studies [31,32,44].

2.2. Sentinel-3A/OLCI Images

Sentinel-3A/OLCI Level-1B full-resolution data (OL_1_EFR, 300-m) were obtained from the
European Space Agency (ESA) Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/
home). A total of 101 cloud-free OLCI Level-1B images covering the lakes in the LYHR Basin, from
1 January 2017 to 31 December 2017, were collected. The 6SV atmospheric correction model (the vector
version of the Second Simulation of the Satellite Signal in the Solar Spectrum correction scheme) [45]
was applied to the cloud-free Level-1B OLCI images to acquire the OLCI-derived Rrs(λ). The 6SV
model was proven to be more efficient than other atmospheric correction methods in turbid inland
waters [46]. A total of 63 match-up pairs of Sentinel-3A/OLCI data and field-measured data were
acquired using a time window of ±3 h and a coefficient of variation (CV) test (3 × 3 pixels, centered at
the sampling station with CV <10%) [32,47]. Further details on the OLCI image preprocessing and
validation of the performance of the atmospheric correction can be found in Shen, et al. [48].

Rrs derived using C2RCC (Case 2 Regional Coast Color processor) [49], POLYMER (POLYnomial
based algorithm applied to MERIS) [50], and 6SV were compared to field-measured Rrs match-ups
at 412, 443, 510, 560, 665, 681, 709, and 754 nm (Figure 2). 6SV was obviously superior (MAPE
ranging from 14.78% to 57.93%) to C2RCC (52.21%–73.96%) and POLYMER (55.23%–91.37%) at the
selected wavelengths. C2RCC and POLYMER tended to underestimate Rrs in our dataset, while the
6SV also had relatively large uncertainties of Rrs at 412 (MAPE = 57.93%), 443 (MAPE = 52.09%),
and 754 nm (MAPE = 44.88%) (Figure 2d). The 6SV atmospheric correction method provided relatively
accurate Rrs, and then 6SV-derived OLCI Rrs was applied to optical classification and estimating
bio-optical parameters.

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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Figure 2. Comparison of the field-measured Rrs and OLCI-derived Rrs using the (a) C2RCC,
(b) POLYMER, and (c) 6SV atmospheric correction models for match-up pairs at different OLCI
bands (N = 63). (d) MAPE of C2RCC, POLYMER, and 6SV at different OLCI bands, error bars represent
one standard deviation of the absolute percentage error in the validation data.

2.3. Optical Classification of the Remote Sensing Reflectance

2.3.1. Clustering the Optical Water Types Based on the Field Rrs(Λ)

The k-means classification approach was implemented into the normalized field-measured remote
sensing reflectance [NRrs(λ), nm−1] to generate the optical water types. Each Rrs(λ) spectrum was
normalized by its integrated value between 400 and 800 nm, similar to previous studies [11,19].
The equation of NRrs(λ) is as follows:

NRrs(λ) =
Rrs(λ)

800∫
400

Rrs(λ)dλ

. (1)

Each water type was defined by its average NRrs(λ) spectrum and covariance matrix from
the NRrs(λ) spectra that belong to that water type in the clustering process. Other unsupervised
clustering methods (e.g., heritage clustering, fuzzy c-means (FCM)) did not show better performance
compared to k-means (Figure 3). The silhouette coefficient and SSE (sum of the squared errors) of the
different number of types (from 2 to 10) were calculated and compared to determine the appropriate
number of optical clusters. Heritage clustering and FCM did not change the average clustering curve
dramatically [11], but had lower average silhouette coefficient and higher magnitude and variation of
SSE and STD (standard deviation) (Figure 3). In addition, FCM is not effective in this study because
we needed to derive distinctive clusters to understand the bio-optical properties of each OWT.
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Figure 3. Performance of the three unsupervised clustering methods: heritage clustering, fuzzy c-means
(FCM), and k-means in clustering waters with different number of types: (a) silhouette coefficient, (b)
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2.3.2. Type-labeling of the Satellite Rrs(λ)

In this part, OLCI-derived Rrs(λ) was associated with the different optical types identified from
the field-measured data using k-means. Mahalanobis distance was used to identify the water type of
satellite Rrs(λ), and has good performance on ocean color data [6]. In this method, assuming for Rrs(λ)
a multivariate log-normal distribution of mean (µ) and covariance matrix (Σ), the probability density
function (p) associated with x = log(NRrs) was described as

p(x) =
1

(2π)d/2|Σ|1/2 exp[−1
2
(x− µ)TΣ−1(x− µ)], (2)

where d is the dimension of x. The contours of constant probability associated with p are defined by
the related Mahalanobis distance (Dm

2) as follows:

Dm
2 = (x− µ)TΣ−1(x− µ). (3)

Before labeling with the distinct type, the normalized OLCI Rrs(λ) spectrum was log-transformed [6].
The Dm

2 of the input NRrs(λ) to a given water cluster was calculated, and used to determine the
appropriate water type [11,19]. In addition, a theoretical threshold Dt

2, representing a given percentage
(e.g., 90%) of the data distribution for a degree of freedom, was calculated according to the chi-square
distribution. In this study, Dt

2 was 11.2, determined from the statistics of all the OLCI images. If Dm
2 was

lower than the threshold value Dt
2, the spectrum x belongs to the class; if Dm

2 > Dt
2, the pixel would

be recognized as an unclassified type. In addition, the current optical classification tool built in SNAP
software [22] was also tried in this study, but it did not perform well due to the failure of atmospheric
correction in the study region [48,51].

When applied to the satellite OLCI data, the wavelengths selected need to be effective in separate
water types. The NRrs bands at 443, 490, 560, 620, 667, and 709 nm derived from the 6SV atmospheric
correction were adopted in the class-matching of the OLCI images. The data at 400, 412, and 748 nm
were not used due to the questionable accuracy of the atmospheric correction in inland waters [23].
The inclusion of NRrs(510) and NRrs(680) did not result in an improvement of the classification because
of its strong correction to NRrs(490) and NRrs(667), respectively.

The Shannon index (H) of each pixel [52] was used to characterize the optical diversity of the
waters from different OLCI images [19]:

H = −
NC

∑
i=1

p′(i) ln[p′(i)], (4)
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where NC is the number of classes, and p’(i) is the probability, representing the ratio between the
number of images with type i and the number of all images for a given pixel. H has a maximum value
(= ln(NC)) when the NC classes have the same probability. H is 0 if only one water type dominated
with p’ = 1.

2.4. Bio-Optical Algorithms Under Evaluation

Several Chla inversion algorithms, including the NIR/red band-ratio algorithm (NR-2B) [53],
3-band algorithm developed for MERIS (Mer-3B) [36], fluorescence line height (FLH) [54], maximum
chlorophyll index (MCI) algorithm [55], and EOF-based algorithm [56], have been developed in coastal
and lake waters. Note that as it was not the intention of the study to develop a new index or algorithm
for Chla inversion, we focused on assessing the performance of the current algorithms in the optically
classified waters.

The NR-2B algorithm uses the band ratio of NIR to red in a second-order polynomial equation:

NR− 2B = Rrs(709)
Rrs(665)

ChlaNR−2B = A1 ×NR− 2B2 + A2 ×NR− 2B + A3
. (5)

The Mer-3B algorithm is expressed as follows:

Mer− 3B = ( 1
Rrs(665) −

1
Rrs(709) )× Rrs(753)

ChlaMer−3B = B1 ×Mer− 3B + B2
. (6)

The MCI algorithm is expressed as follows:

MCI =Rrs(709)− [Rrs(665) + (Rrs(754)− Rrs(665))× 709−665
754−665 ]

ChlaMCI = C1 × exp(B2 ×MCI)
. (7)

The parameters (A1, A2, A3; B1, B2; and C1, C2) of the three Chla estimation algorithms were first
tuned using the overall field-measured data. After the optical classification, the three Chla algorithms
in each OWT were tuned by optimizing the parameters of each type using the corresponding field
data of that type.

The relationship between a*
ph(λ) and Chla can be represented by a power function [57]:

a∗ph(λ) = A(λ)×Chla−B(λ), (8)

where A(λ) and B(λ) are positive, and represent the wavelength-dependent parameters in
this relationship, which describes the decrease in a*

ph(λ) with increasing values of Chla.
The parameterization of a*

ph(λ) at 443 nm (a*
ph(443)) was first performed based on the overall field

a*
ph(443) and Chla data. Then, the relationship between a*

ph(443) and Chla of each water type was tuned
using the data of that OWT. The combination of the class-based Chla algorithm and the class-based
a*

ph(443) algorithm was then applied to OLCI images to map a*
ph(443).

The mean absolute percentage error (MAPE) and the root mean square error (RMSE) between the
field data (Xi) and the modeled data (Yi) were calculated to evaluate the algorithm performance:

MAPE =
1
n

n

∑
i=1

|Yi − Xi|
Xi

× 100%, (9)

RMSE =

√
1
n

n

∑
i=1

(log 10(Yi)− log 10(Xi))
2 (10)
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The root mean squared difference (RMSD) was used to calculate the difference of two parameters
derived from different methods (e.g., Rrs derived using different values of $):

RMSD =

√
1
n

n

∑
i=1

(X1,i − X2,i)
2. (11)

3. Results

3.1. Optical Classification of the Remote Sensing Reflectance

Four OWTs were observed from the NRrs(λ) based on the k-means clustering method, and the
order of the OWTs was changed according to the mean Chla content value of each type (Figure 4).
The majority of the samples were assigned to types 1–3 with percentages of 30%, 36%, and 31%,
respectively. The NRrs(λ) of each OWT showed different magnitude and spectral characteristics.
All types showed obvious peaks around 550, 650, and 700 nm. The overall differences between the
four OWTs were the decreasing NRrs values in the blue to red range, and the increasing trend in the
NIR range from type 1 to type 4. Type 1 had the lowest magnitude of Rrs(λ) but had an obvious peak
at approximately 550 nm. Type 2 and type 3 had higher values of Rrs(λ). In addition, the NRrs(λ)
of type 1 and type 2 overlapped from 570 to 620 nm, but had different magnitudes before and after
this range. Type 3 showed relatively flat features compared to the other OWTs. Type 4 exhibited
a comparable magnitude of Rrs(λ) as type 1 in the blue to red range, but the highest value in the NIR
range. The strong peak around 709 nm of type 4 indicated strong particle backscattering and was
related to the high content of phytoplankton particles.
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membership function. Note that the optical classification was conducted using the NRrs(λ) of the field
data. (f) The mean spectra of Rrs(λ) of the four OWTs.
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3.2. Bio-Optical Characteristics of OWTs

Generally, the concentrations of water constitutes had a large range and variability in the overall
dataset, with Chla ranging from 0.70 to 382.03 mg/m3, and SPM ranging from 5 to 245 g/m3 (Table 1).
After optical classification, types 1 through 4 had increasing mean Chla, SPM, and SPOM contents (Table 1),
and the corresponding mean values of the overall dataset were located between the mean values in type 2
and type 3. Type 1 had lowest mean Chla and SPM magnitude and variability, indicating the clearest water
among the four types. Type 4 had a notable high value of Chla (163.08± 101.26 mg/m3) and a relatively
higher mean SPIM (47.88± 29.78 g/m3) compared to the overall data (37.13± 27.16 g/m3).

The spectrum of ad(λ), aph(λ), and ag(443) increased in magnitude from type 1 to type 4 (Figure 5).
The peaks at approximately 443 and 675 nm are the common spectral characteristics of phytoplankton.
The peak near 620 nm is the absorption peak of cyanobacteria, which was obvious in type 4. The ad(443)
values were approximately two times those of aph(443) in types 1–3; however, aph(443) was notably
larger than ad(443) in type 4 (Table 1). For the particulate absorption at 443 nm, type 2 had the lowest
mean value (0.27 ± 0.15) of aph(443)/ap(443), and type 4 had the highest value (0.65 ± 0.22). ag(443)
showed a relatively low mean value and variability compared with aph(443) and ad(443) in each type.
Type 1 had the lowest mean ag(443) (0.78 ± 0.45 m−1), and contributed more to a(443) (ag(443)/a(443)
= 0.25 ± 0.11) than other types. ag(443) had the highest mean value (1.48 ± 0.75 m−1) ranging from
0.73 to 3.18 in type 4. Overall, the variations in the content of the OACs and the associated absorption
properties showed different features in each OWT, and the phytoplankton and inorganic particles
dominated the optical variations in these waters.

Table 1. The mean value (mean ± SD) and range (min–max) of the field-measured concentrations
of chlorophyll-a (Chla, mg/m3), suspended particulate matter (SPM, SPIM, and SPOM, g/m3), total
absorption coefficient at 443 nm (a(443), m−1), absorption coefficients of phytoplankton (aph(443), m−1),
non-algal particles (ad(443), m−1), and CDOM (ag(443), m−1) at 443 nm, aph(443)/ap(443) (ap(443) =
aph(443) + ad(443)), and ag(443)/a(443). The “All” column contains the statistics of all data. Types 1–4
represent the statistics of each OWT.

All
N = 535

Type 1
N = 162

Type 2
N = 194

Type 3
N = 168

Type 4
N = 11

Chla 31.77 ± 36.86 19.30 ± 13.57 26.56 ± 25.56 41.47 ± 37.21 163.08 ± 101.26
0.70–382.03 1.27–85.64 0.70–165.84 0.71–157.05 70.41–382.03

SPM 48.87 ± 30.31 30.37 ± 11.48 45.07 ± 20.23 68.85 ± 36.88 91.82 ± 45.22
5.00–245.00 5.00–73.33 5.00–150.00 10.67–245.00 20.00–210.67

SPIM 37.13 ± 27.16 21.44 ± 12.67 37.86 ± 18.67 50.91 ± 36.39 47.88 ± 29.78
0.50–232.00 0.50–73.00 6.00–110.00 4.00–232.00 1.33–96.00

SPOM 16.77 ± 16.04 12.18 ± 7.35 15.23 ± 12.99 20.63 ± 18.27 51.12 ± 44.11
1.00–173.33 2.67–50.00 1.00–120.00 1.00–107.00 16.00–173.33

a(443) 4.67 ± 2.25 3.15 ± 0.80 4.49 ± 1.22 5.96 ± 2.32 11.27 ± 5.13
1.02–20.86 1.02–5.61 2.06–11.41 2.24–16.18 5.34–20.86

aph(443) 1.31 ± 1.56 0.86 ± 0.46 0.99 ± 0.80 1.76 ± 1.63 6.91 ± 5.17
0.16–17.88 0.16–3.09 0.18–5.50 0.20–13.12 1.80–17.88

ad(443) 2.40 ± 1.37 1.52 ± 0.58 2.49 ± 0.80 3.11 ± 1.86 2.88 ± 1.84
0.34–10.41 0.34–2.97 0.51–5.50 0.39–10.41 0.59–5.66

ag(443) 0.98 ± 0.60 0.78 ± 0.45 1.02 ± 0.70 1.10 ± 0.51 1.48 ± 0.75
0.16–7.10 0.16–2.50 0.28–7.10 0.28–4.04 0.73–3.18

aph(443)/ap(443) 0.34 ± 0.18 0.36 ± 0.15 0.27 ± 0.15 0.36 ± 0.21 0.65 ± 0.22
0.06–0.97 0.13–0.76 0.06–0.83 0.07–0.92 0.31–0.97

ag(443)/a(443) 0.22 ± 0.11 0.25 ± 0.11 0.23 ± 0.10 0.21 ± 0.10 0.15 ± 0.08
0.05–0.62 0.05–0.60 0.06–0.62 0.05–0.55 0.06–0.37
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The average spectrum of aph
*(λ) of each OWT showed that type 1 and type 2 had similar

magnitudes, while type 3 had the highest and type 4 had the lowest values in the range from 400 to
650 nm (Figure 6a). Type 1 had a relatively higher aph

*(675) (0.024 m2/mg) value compared to the
other OWTs (0.021, 0.020, 0.017 m2/mg for types 2–4, respectively), indicating a larger proportion of
small cells in type 1. Types 1–3 showed increasing mean values of aph

*(443)/aph
*(675), which indicated

the effects of accessory pigments on the variation in the phytoplankton absorption. The highest mean
value of aph

*(443)/aph
*(675) in type 3 was related to the high influence of the accessory pigments.

The low magnitude of aph
*(443) in type 4 (0.042± 0.0003 m2/mg) was mainly affected by the packaging

effect in algal bloom waters with accumulated algae.
The mean ad

*(λ) spectra of types 1–3 were very similar, and type 2 (0.066 m2/g) had a slightly
higher value compared to type 1 (0.054 m2/g) and type 3 (0.050 m2/g). However, ad

*(443) of type 2
was approximately 2 times that of type 4 (0.033 m2/g), resulting from the higher proportion of NAP
in type 2 compared to type 4. In addition, Sd and Sg did not show significant differences (p > 0.5),
with average values of 0.0112 and 0.0105, respectively.
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Figure 6. (a) Mean spectra of the absorption coefficient of phytoplankton normalized to the Chla
concentration (a*

ph(λ)) of types 1–4. (b) Boxplots of a*
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ph(675) for each OWT in the field-measured
data. (c) Mean spectra of the absorption coefficient of NAP normalized to the SPM concentration (a*

d(λ)) of
types 1–4. (d) Boxplots of a*

d(443) for each OWT in the field-measured data. The sample median is indicated
by a line within the box, the dots represent the mean value, and “x” represents data beyond the bounds of
the error bars.

3.3. Application to the aph
*(443) Estimation

3.3.1. Model Validation

The performance of the Chla algorithms using the three indexes (NR-2B, Mer-3B, and MCI) was
assessed using the field dataset (Table 2). The RMSE of the three models based on the overall data were
similar (21.78, 28.57, and 23.35 mg/m3 for NR-2B, Mer-3B, and MCI, respectively), while the MAPE of
Mer-3B (104.90%) was higher than those of NR-2B (71.34%) and MCI (56.23%). The performance of the
class-specific Chla models in the individual OWTs indicated that type 1 and type 2 had an apparent
improvement in the three Chla models. Mer-3B performed better than NR-2B and MCI, with a lower
RMSE and APD in type 1. Type 3 had similar RMSE values compared to the three algorithms,
while type 4 had obviously larger RMSEs compared to the overall dataset. Comparably, the waters
with an optical classification except type 4 showed an improved performance in the class-specific
NR-2B and Mer-3B Chla models.

Table 2. Uncertainty statistics of the four OWTs and all data for the derived Chla from the three
algorithms (NR-2B, Mer-3B, and MCI) using the field-measured data.

NR-2B Mer-3B MCI

R2 RMSE
(mg/m3)

MAPE
(%) R2 RMSE

(mg/m3)
MAPE

(%) R2 RMSE
(mg/m3)

MAPE
(%)

Type 1 0.53 9.30 40.53 0.66 7.32 34.19 0.35 10.93 47.04
Type 2 0.86 9.70 39.52 0.88 9.79 40.33 0.63 15.37 53.60
Type 3 0.63 23.35 68.26 0.64 22.99 59.12 0.60 25.03 69.11
Type 4 0.18 87.59 42.91 0.01 96.13 51.70 0.07 92.92 47.24

All data 0.66 21.78 71.34 0.51 28.57 104.90 0.61 23.35 56.23
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The relationships between Mer-3B and Chla of each OWT were then established using the
match-up pairs of field-measured data and OLCI-derived data (Figure 7a). The Chla exhibited
an increasing trend with increasing Mer-3B; however, the function of the overall data (black line)
indicated a clear overestimation when Chla < 10 mg/m3. In addition, the relationships between the
Chla and aph

*(443) of each OWT and the overall data (aph
*(443) = n1*Chla−n2) were also developed

using the match-up pairs (Figure 7b). aph
*(443) was well correlated with the Chla content in types 1–2,

while aph
*(443) did not show a good relationship with Chla in type 4. Thus, aph

*(443) of type 4 was
calculated using the function of the overall data.

The comparison between the field-measured and model-derived Chla content indicated the
improvement of Chla estimation using the class-specific algorithms of the different OWTs (Figure 7c).
In particular, the RMSE of deriving Chla decreased from 19.01 and 13.77 mg/m3 to 12.37 and
9.98 mg/m3 in types 1 and 2, respectively (Figure 7c). The estimation of aph

*(443) showed an obvious
improvement in types 1 and 2 using the class-specific aph

*(443) model of each OWT. The combination
of class-specific Chla algorithms (Figure 7a) and class-specific aph

*(443) algorithms (Figure 7b) could
provide an effective way to estimate aph

*(443) in waters with large optical variations.
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Figure 7. (a) Mer-3B versus field-measured Chla content data for OLCI validation of each OWT and
all data. (b) Chla versus a*

ph(443) for OLCI validation of each OWT and all data. (c) Comparison of
the field-measured Chla and model-derived Chla using unclassified models and classified models for
each OWT and all data. (d) Comparison of the field-measured a*

ph(443) and model-derived a*
ph(443)

using unclassified models and classified models for each OWT and all data. Note that the input Chla
data in calculating a*

ph(443) were the derived Chla values using the class-specific model of each OWT.
The number of samples (N) is 15, 15, 27, and 6, for type 1 to type 4, respectively.
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3.3.2. Application to the Satellite OLCI Data

The optical classification method was then applied to the OLCI-derived NRrs(λ) to map the water
types of the lakes in the LYHR Basin on 2 March 2017 and 24 October 2017 (Figure 8a,e). The dominant
OWTs were type 2 and type 3 on 2 March 2017 (Figure 8a), while the dominant OWTs were type 1 and
type 2 on 24 October 2017 (Figure 8e). The black regions are the areas that were not classified as any
water type based on the classification criteria, due to the cloud coverage, land adjacency, or aquatic
vegetation in the lakes. Large lakes, such as Lake Taihu, Lake Hongze, and Lake Chaohu, were usually
dominated by types 1 and 2. Type 4 was located in the northern part of Lake Taihu on 24 October 2017,
due to the occurrence of algal blooms. Furthermore, the class-specific Chla and aph

*(443) algorithms
were used to derive the corresponding Chla content and aph

*(443) in each OWT. Compared with Chla
derived using the unclassified Mer-3B model (Figure 8b,f), a large range of Chla values was derived
with the class-specific Mer-3B Chla algorithm, which improved the performance of Chla estimation at
low values. Then, aph

*(443) was derived using the classified aph
*(443) models based on the class-specific

model-derived Chla. Overall, aph
*(443) had an inverse tendency with the Chla distribution. The central

part of Lake Hongze and the western part of Lake Taihu had high aph
*(443) values on 2 March 2017.
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Figure 8. (a) Optical water types, (b) Chla derived using the unclassified Mer-3B Chla model, (c) Chla
derived using the class-specific Mer-3B Chla model, and (d) a*

ph(443) derived using the class-specific
model on the 2 March 2017, OLCI image over the lakes in the LYHR Basin. (e) Optical water types,
(f) Chla derived using the unclassified Mer-3B Chla model, (g) Chla derived using the class-specific
Mer-3B Chla model, and (h) a*

ph(443) derived using the class-specific model on the 24 October 2017,
OLCI image over the lakes in the LYHR Basin.

4. Discussion

Optical classification is an effective way to distinguish optical water types in oceanic, coastal,
and lake waters. Different from the true end-member classes in the land cover classification scheme,
the optical water types are determined from the characteristics of Rrs(λ) or Lw(λ), and reflect the optical
conditions of the water, which could change dramatically with time [23]. The choice of the optical
classification scheme depends on the usage, e.g., to determine the most suitable tuning method of
a bio-optical algorithm, or to assess the general optical conditions of the lakes [16,22]. In optical
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classification, the Rrs(λ) spectra and normalized Rrs(λ) spectra were both used to define the OWTs.
The variability in the magnitude of Rrs(λ) is mostly associated with backscattering and concentration
of particles, whereas the absorption coefficients of each component are more related to the spectral
shape [19,58]. That is, the optical classification based on the normalized Rrs(λ) focused on spectral
shape variations, whereas the optical classification based on Rrs(λ) is greatly influenced by the gradient
in the concentrations of SPM.

The appropriate number of clusters is usually determined prior to using different methods,
including gap statistic [16] and cluster validity measures [21], and is adjusted automatically based
on the spectral standard deviation and distance criteria [19]. In this study, the appropriate number
of clusters was determined using gap statistics [16]. The number of water types was similar to
the previous studies in Lake Taihu and Lake Chaohu, which illustrated three water types using
a hierarchical approach [15] and the TD680 water classification method [30]. In addition, the selection
of wavebands in the type-labeling of the satellite Rrs also affected the effectiveness of the optical
classification. Note that the covariance matrix would increase as the square of the number of labeling
wavelengths [59]. Similar to the previous study [23], Rrs(400), Rrs(412), and Rrs of NIR bands longer than
709 nm were omitted in the classification due to the poor performance of the atmospheric correction.
For OLCI-derived Rrs, POLYMER and C2RCC had obvious overcorrection of Rrs, consistent with the
study of Bi et al. (2018) [51] in Lake Taihu and Lake Hongze. It was also shown that C2RCC exhibited
good performances from 490 to 709 nm, and poor performances in the blue (400, 412, and 443 nm) and
NIR wavebands (754–865 nm) for the highly absorbing waters in the Baltic Sea [60]. However, 6SV had
better performance than POLYMER and C2RCC in the turbid and eutrophic waters in this study.

One limitation of defining the optical classes using the field Rrs(λ) data is that the optical variability
in the OWTs is restricted to the range of the field data. If there exists a water type that was not included
or only represented a small fraction of the field data, the results would be unclassified or classified into
a similar water type [19]. As we would like to analyze the bio-optical properties and build class-specific
models, the optical classification based on field data was necessary. Jackson et al. suggested that optical
classification on a global scale can be first used to highlight regions where more sampling would be of
great significance [59]. Several studies [16,23,61] have provided valuable frameworks for classifying
global waters; however, the OWTs from the large global dataset cannot be used in regional studies of
inland lakes. Figure 9 shows that the OWTs in this study are different from those illustrated in Table A1
in Moore et al. (2009) and Table 2 in Moore et al. (2014) [21,23] and located between type 6 and type 7
of Moore et al. (2014). Type 8 in Moore et al. (2009) had higher Rrs(λ) values in the blue band and lower
Rrs(λ) values in the red band, compared to the OWTs in this study. The latter could explain the reason
that the optical classification using the approach in Moore et al. (2009; 2014) did not obtain suitable
results (data not shown). This finding indicated not only the difficulty of using the OWTs of other
studies directly, but also the importance of considering the usage of optical classification. If optical
classification is used to characterize the optical conditions of global or large-scale waters, coarse water
types may be suitable. A finer optical classification is suggested in developing class-specific or blended
inversion models, which could provide more reliable results.

The optical variations in the lakes in the LYHR Basin in 2017 were illustrated using the dominant
OWT and Shannon index (H) (Figure 10). Type 1 dominated most of the lakes through 2017, type 2
dominated the southern part of Lake Taihu, and type 4 dominated the western part of Lake Taihu.
H, ranging from 0 to 1.4, indicated the optical similarity and diversity of the lakes in 2017 (Figure 10b).
Most of the lakes had H values between 0.5 and 1.2, with an average value of 0.84 ± 0.05. The northern
part of Lake Hongze had a low H value, while the western and southern part of Lake Taihu,
the southern part of Lake Hongze, Lake Chaohu, and several small lakes near the Yangtze River
had high H values, indicating the optical diversity in these areas. In addition, the frequency of
each OWT in 2017 showed that type 1 and type 2 contributed most of the percentage except for
areas with turbid waters (type 3) and algal blooms (type 4). The northern part of Lake Hongze was
dominated by type 1, and the southern part of Lake Hongze was dominated by types 1 and 2. However,
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the northwestern part of Lake Taihu and the northwestern part of Lake Chaohu also contributed to
type 4, indicating the frequent occurrence of algal blooms.
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Figure 10. (a) Dominant OWTs of the lakes in the LYHR Basin in 2017 (the class most frequently
selected as the dominant class over the period); (b) Shannon index (H) computed from the frequency of
the different OWTs of the lakes in the LYHR Basin in 2017. (c–f) The annual frequency of the different
OWTs: (c) type 1, (d) type 2, (e) type 3, (f) type 4, associated with lakes in the LYHR basin in 2017.
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The western part of Lake Chaohu and the western part of Lake Taihu had high optical diversity,
which is in accordance with previous studies [56,62]. The mean field-measured Chla content value
in this study was 31.77 ± 36.86 mg/m3, ranging from 0.7 to 382.03 mg/m3. The mean value of Chla
was 40.5 mg/m3, ranging from 4.0 to 448.9 mg/m3 in Lake Taihu in the period of 2006 to 2007 [62],
and the western lake and Meiliang Bay of Lake Taihu had a high variation in the Chla content [56].
The western part of Lake Chaohu showed the highest Chla through the seasonal cycle (21.96–63.63
mg/m3), followed by the eastern part (19.26–54.95 mg/m3) and the central part (17.31–51.87 mg/m3)
of Lake Chaohu [2].

The relations between a*
ph(λ) and Chla have been used in estimating a*

ph(λ) and in modeling of
the primary production [57,63]. The variation in a*

ph(λ) was usually affected by the package effect
and accessory pigments, which resulted in the weak correlation between a*

ph(λ) and Chla. Relatively
low a*

ph(λ) values and an independence of a*
ph(λ) with regards to Chla were usually observed in the

highly eutrophic waters [64,65]. In this study, the mean a*
ph(675) values of each OWT (0.024± 0.001,

0.021± 0.001, 0.021± 0.001, and 0.017± 0.001 m2 mg−1 for types 1–4, respectively) were compared with
the values in the previous studies of high eutrophic lakes, e.g., Lake Taihu (0.021± 0.011 m2 mg−1 [64],
and 0.022 m2 mg−1 [66]) and Lake Kasumigaura (0.018± 0.005 m2 mg−1) [65]. The high a*

ph(675) value in
type 1 indicated the high content of small cells. The low mean value of a*

ph(675) and its poor relationship
with Chla content values were also observed in the waters of type 4 (0.017± 0.001 m2mg−1). Note that after
the optical classification, a*

ph(675) had a low variability in each OWT compared to the a*
ph(675) of the overall

data (0.022± 0.011 m2 mg−1).
The uncertainties in input field-measured Rrs(λ) affect the accuracy of optical classification and

bio-optical models [41,67]. In the measurement of Rrs(λ) using above-water approach, water-leaving
radiance (Lw(λ)) is derived by correcting the measured above-water upwelling radiance (Lu(λ))
using a reflectance ratio ($) which depends on sky conditions, wind speed, solar zenith angle [34],
sky polarization [35], and wavelength [68]. According to the look-up table of Mobley [34] (M1999)
and measurement conditions, $ = 0.028 was used in this study. For the concurrent validation data
(N = 63), comparison of Rrs(λ) derived using $ in Mobley (2015) (Rrs-M2015(λ)), $ in Mobley (1999)
(Rrs-M1999(λ)), and $ = 0.028 indicated that $ = 0.028 had lower RMSD than that of M1999, especially in
the wavelength range > 500 nm (Figure 11). Band combination in NR-2B and Mer-3B could decrease
this variability introducing from surface-reflected light (Figure 11c). In addition, it was demonstrated
that there is no general value of $ to be adopted in different inland water conditions, but the most
suitable methodology is the spectral $, e.g., approach in Lee et al. (2010) [69]. However, spectral
variability of $ was not taken into consideration in the process of deriving field-measured Rrs(λ),
which should be improved in the further studies.

The main aims of this study were to document the optical variations in the lakes in the LYHR
Basin and to refine the bio-optical algorithms through optical classification. The specific absorption
coefficients, especially the Chla-specific phytoplankton coefficients of the four OWTs, had significant
differences. This finding indicated that the variations in the specific inherent optical properties (SIOPs)
should be taken into consideration in establishing bio-optical inversion models in waters with different
OWTs. Moreover, the optical similarity and variability usually reflect the optical conditions and can be
used in the selection of algorithms for specific regions [19]. The bio-optical inversion models mostly
had certain limitations and a range of applicability. It is more likely that a model can be used for other
waters with a high degree of optical similarity. In addition, the SIOPs of each OWT can be used as input
parameters of radiative transfer simulation, e.g., HydroLight, Monte Carlo simulation, in studying the
underwater light field and light fluctuations in optically dynamic waters.
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5. Conclusion

Optical classification was used to characterize the optical variations and evaluate the potential
of estimating a*

ph(443) of the lakes in the LYHR Basin. Four OWTs were derived using NRrs(λ),
and the bio-optical properties of each OWT were compared. Type 2 showed an obvious feature with
a high contribution of mineral particles, while type 4 was mostly determined by a high content
of phytoplankton. The ag(443) values did not show significant differences among the 4 water
types. Furthermore, the potential of class-specific inversion algorithms for estimating a*

ph(443) was
illustrated by developing class-specific Chla inversion algorithms first. An improved performance
of the class-specific algorithms was demonstrated in each optical water type, especially in types 1–2.
In addition, the optical variation in and similarity of the lakes in the LYHR Basin were characterized
using the dominant water type and Shannon index (H), respectively, in 2017. A high optical variation
was located in the western and southern parts of Lake Taihu, the southern part of Lake Hongze,
Lake Chaohu, and several small lakes near the Yangtze River, while the northern part of Lake Hongze
had a low optical diversity. The results indicated the necessity of optical classification in lakes with
a large range and variability in the bio-optical parameters. The class-specific inversion algorithms for
estimating the bio-optical parameters are suitable for waters in optically complex and dynamic lakes.
In the future, analysis of the temporal variations in the water types would help towards understanding
the influence of ecological processes and environmental conditions on the spatial-temporal variations
in bio-optical parameters.
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