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Abstract: Hyperspectral images (HSIs) provide unique capabilities for urban impervious surfaces
(UIS) extraction. This paper proposes a multi-feature extraction model (MFEM) for UIS detection
from HSIs. The model is based on a nonlinear dimensionality reduction technique, t-distributed
stochastic neighbor embedding (t-SNE), and the deep learning method convolutional deep belief
networks (CDBNs). We improved the two methods to create a novel MFEM consisting of improved
t-SNE, deep compression CDBNs (d-CDBNs), and a logistic regression classifier. The improved t-SNE
method provides dimensionality reduction and spectral feature extraction from the original HSIs and
the d-CDBNs algorithm extracts spatial feature and edges using the reduced dimensional datasets.
Finally, the extracted features are combined into multi-feature for the impervious surface detection
using the logistic regression classifier. After comparing with the commonly used methods, the current
experimental results demonstrate that the proposed MFEM model provides better performance for
UIS extraction and detection from HSIs.

Keywords: urban impervious surface; multi-feature extraction; dimensionality reduction; deep
learning; hyperspectral images

1. Introduction

Information on the distribution and sprawl of urban impervious surfaces (UIS) is crucial for
urban planners and government decision-making. Currently, this information is widely used for
urban land planning, urban heat island monitoring, illegal construction detection and environmental
inspection [1,2]. Accurate UIS detection highly depends on the sensor type, quality, resolution, spectral
and spatial information, and other features of remotely sensed data. Hyperspectral images (HSIs)
generally provide moderate or relatively high spatial resolution and hundreds of spectral bands
ranging from the visible to shortwave regions [3–5]. These data provide sufficient detail to delineate
landscapes and have advantages that improve the extraction accuracy of UIS.

However, UIS extraction from HSIs has several challenges: (1) The data have high spatial and
spectral variability [6]. HSIs with high spectral resolution provide fine spectral detail and rich
information on land cover types but this easily leads to confusion in spatial domain, and the spectral
information is relatively complex. (2) Unlabeled data affect the detection accuracy and the training
sample and test sample selection [7]. (3) Dimensionality reduction (DR) is especially challenging [8]
because HSIs have high dimensionality due to hundreds of spectral bands, resulting in the Hughes
phenomenon [3]. DR is required prior to feature extraction and classification.

Remote Sens. 2019, 11, 136; doi:10.3390/rs11020136 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-3218-8146
http://dx.doi.org/10.3390/rs11020136
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/11/2/136?type=check_update&version=2


Remote Sens. 2019, 11, 136 2 of 24

To address these problems, many methods have been proposed and developed for UIS extraction
in recent decades [9]. Early on, machine learning methods were considered popular extraction methods
for HSIs. Common methods include decision trees [10], logistic regression (LR) [11], minimum
distance [12], maximum likelihood [13], k-nearest neighbor methods [14], and random forest [15].
A support vector machine (SVM) is a classical nonlinear classification algorithm, in which the number
and type of samples are determined manually [16,17]. However, these extraction methods consist of a
single-layer feature extraction model and deeper features cannot be extracted. Commonly, the spectral
bands are selected from hundreds of bands and a transformation of the spectral matrix is performed,
which results in information loss [10]. In addition, these methods also have to consider DR and labeling
of the samples. Therefore, a DR method for the full spectrum and deep-feature extraction methods
are required.

The goal of DR is to reduce the high-dimensional (HD) data to a low-dimensional (LD) subspace
representation with intrinsic spatial-spectral features and attribute values. Generally, spectral-based DR
methods are classified into supervised and unsupervised methods [18]. Supervised DR methods use
labeled samples in defined classes to identify land objects based on different features. These methods
include linear discriminant analysis (LDA) [19], local discriminant embedding (LDE) [20], and local
Fisher discriminant analysis (LFDA) [21]. Unsupervised DR methods provide LD classification data
by using a transformation matrix without labeled samples. Principal component analysis (PCA) and
t-distributed stochastic neighbor embedding (t-SNE) [22] are two representative unsupervised DR
algorithms. In the PCA method, a linear transformation matrix is created and its sum of squared errors
is minimized [23]. However, the method has poor performance for data with a subspace structure
and is unsuitable for sparse matrices and large amounts of data. In comparison, the t-SNE method
is considered a significantly better spectral-based DR algorithm and provides HD data visualization
for HSIs [24]. In the t-SNE method, a nonlinear transformation matrix from the HD space to an
LD representation (e.g., 2-D or 3-D) is created. A t-distributed model is created that minimizes the
distance between data points following the one-degree-of-freedom distribution in the LD space. In the
HD space, the data points follow a Gaussian distribution. However, the cost function of the t-SNE
algorithm does not guarantee a global optimum due to the large-scale computation with few labeled
samples and lack of algorithm predictability. Therefore, the optimization of the method and the
integration of a regression model are required for unsupervised spectral feature extraction.

Moreover, the use of spatial features can improve the classification accuracy of land covers.
This method reduces the confusion between land cover classes with similar spectral features and
improves the classification performance, which has been demonstrated in previous studies [4,25].
Several spatial/spectral-based extraction models have been proposed in recent years [26,27].
These methods consider both spatial and spectral information for features extraction. However,
the traditional spatial feature extraction depends on the selection of spatial training samples. These
training samples correspond to specific land cover classes and empirical knowledge is required for
image interpretation. Additionally, spatial attributes are variable and cannot represent all land cover
types and this affects the classification accuracy [28].

Deep learning methods are considered more advanced machine learning approaches [29] and
consist of high-level and multi-layer networks for the automatic extraction of spatial features.
Moreover, many unlabeled samples are not a problem for deep learning methods. Common deep
learning approaches include deep Boltzmann machines (DBMs) [30], stacked denoising auto-encoders
(SDA) [31], convolutional neural networks (CNNs) [32], deep auto-encoders (DAE) [33], and deep
belief networks (DBNs) (see Abbreviations) [27,34]. However, these algorithms require fixed-scale
detection windows, which is unsuitable for detecting spatially and spectrally variable land cover
objects in HSIs. To address this problem, convolutional DBNs (CDBNs) have been proposed [35].
The method represents an unsupervised learning approach for a two-dimensional (2D) image structure
and is based on DBNs. It is a hierarchical generative model with full-sized image transformation and
uses probabilistic max-pooling (PMP) in a multi-layer architecture for high-level representations and
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multi-layer edge detection. However, there is room for improvement regarding the shared weights of
the layer connection.

In this paper, we propose a multi-feature extraction model (MFEM) for UIS detection from
HSIs. The model combines the t-SNE-based approach and the CDBNs-based framework for HSIs
interpretation for spectral, spatial, and edge feature extraction. In the MFEM, we propose an improved
t-SNE method. Comparing to the standard t-SNE, the improved version has the advantages of
reduced time complexity, improved similarity of the interclass data points, and better predictability.
The method combines DR and spectral feature extraction. In addition, we improved the CDBNs-based
algorithm, which we call deep compression CDBNs (d-CDBNs). The d-CDBNs method can shrink
sharing weights of the energy function and reduces the redundancy of features when analyzing
full-scale images. The d-CDBNs method combines the features of a multi-layer convolutional restricted
Boltzmann machine (CRBM) and (PMP). The two functions provide unsupervised learning and training
for full-sized 2-D images. The d-CDBNs method extracts spatial features and detects edges using a
hierarchical generative framework. Finally, the spectral features, spatial features, and edge information
are combined using a multi-feature extraction strategy based on an LR classifier. The MFEM model
has better characteristics than other commonly used methods (Table 1). The main contributions of our
work are as follows.

• Development of the MFEM for UIS detection from HSIs. The MFEM model has three
main components, i.e., DR and spectral feature extraction, spatial feature and edge detection,
and multi-feature classification. The model is an integration of the improved t-SNE model,
the d-CDBNs, and the LR. Compared with commonly used methods, the model uses an
unsupervised and nonlinear DR method, requires fewer labeled samples, has multi-layer feature
networks, and a multi-feature cooperation extraction mechanism.

• Improvement of the t-SNE method. The improved t-SNE model has lower time complexity,
improved similarity evaluation performance of the interclass data points, an embedded LR
algorithm to determine the global and local optima, and better results. Compared with the
standard t-SNE method, the improved method has a faster neighbor point search, better similarity
detection performance, and a better prediction function.

• Improvement of the CDBNs method. The proposed d-CDBNs method markedly reduces the
redundancy of the shared weights of the layer connection. Unlike the original CDBNs method,
the improved method provides deep compression for the shared weights to reduce the data
volume and the weight redundancy of the layer connection for the convolution operation.

• Edge information extraction from HSIs. The MFEM model detects edge information of
landscapes using sparse regularization to reduce the confusion between UIS and other land
cover classes with similar spectral information. The integration of the spatial and spectral features
and the edge detection reduces the “salt and pepper” noise of the classification results.

Table 1. Comparison between our model and commonly used methods.

Reference Unsupervised Extraction
Layers

Edge
Detection

Labeled
Data

Multi-Feature
Extraction Nonlinear Shared

Weights

[19] × single × more × × ×
[20] × single × more × # ×
[21] × single × more × # ×
[22] # single × less × # ×
[23] # single × less × × ×
[31] × multiple × more × # ×
[32] × multiple × more × # ×
[33] × multiple × more × # ×
[34] × multiple × more × # ×
[35] × multiple × more × # #

The proposed
MFEM d-CDBNs (#) multiple # less # #

d-CDBNs
(#)
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The rest of paper is organized as follows. In Section 2, the relationship between the t-SNE-based
and the CDBNs-based architecture, as well as the improved methods and the MFEM framework are
described. The experimental results of the analysis of two HSIs are presented in Section 3. In the last
section, results are discussed and we accordingly conclude our work.

2. Materials and Methods

2.1. Dataset Description

Two popular hyperspectral datasets were selected to demonstrate the performance of the MFEM.
One is the university scene and the other is the city center scene in Pavia in northern Italy (http:
//www.ehu.eus/ccwintco/index.php). The two datasets have universal representative characteristics
that are suitable for the validation of the proposed model. The characteristics include the following:
(1) The two datasets are HD datasets with hundreds of bands, covering the electromagnetic spectrum
range from 0.43 to 0.86 µm. The images were acquired by the ROSIS-3 sensor with high spatial
resolution (1.3 m). (2) The images cover different impervious surfaces with complex man-made
objects. The university scene has sparse buildings and the city center scene has dense buildings.
(3) The datasets include ground-truth information for nine land cover classes, representing a certain
difficulty for classification. These characteristics allowed us to determine the performance of the
improved method and obtain universal experiment results.

The university scene has a size of 610 × 340 pixels. Its 103 effective spectral bands were selected
for excluding noisy bands. The dataset has nine classes: trees, meadows, bare soil, shadows, asphalt,
bricks, bitumen, gravel, and metal sheets. The latter five classes represent impervious surfaces.
The shadows represent pervious surfaces and occur mostly close to sparse buildings. The dataset is
shown in Figure 1 and the list of classes is displayed in Table 2.

In the city center scene, similarly, we effectively selected 102 bands with a size of 1096× 715 pixels.
This dataset covers an area with dense urban buildings with complex spatial structure. The buildings
cast many shadows and obscure other objects, resulting in difficulty in the object identification. The
dataset has nine classes: trees, water, meadows, bare soil, shadows, asphalt, bitumen, bricks, and tiles.
The latter four classes represent impervious surfaces. The reason that shadows are excluded from the
impervious surface is explained in Section 4. The dataset is shown in Figure 2 and the details of the
classes are listed in Table 3. In Tables 2 and 3, the reference land cover data are included. The ground
truth image and impervious surface image were considered the reference data for the classification
(Figures 1 and 2).

Table 2. The dataset display of land-cover classes and reference data in the university scene of the
Pavia, Italy.

Class Code Class No. of Reference
Data

Reference Cover Property

Impervious (NNN) Pervious (4)

1 Tree 1494 - 4
2 Meadow 9436 - 4
3 Bare soil 2489 - 4
4 Shadow 586 - 4
5 Asphalt 4931 N -
6 Brick 2787 N -
7 Bitumen 549 N -
8 Gravel 585 N -
9 Metal sheet 670 N -

Total 23,527 5 4

http://www.ehu.eus/ccwintco/index.php
http://www.ehu.eus/ccwintco/index.php
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Table 3. The dataset display of land-cover classes and reference data in the city center scene of the
Pavia, Italy.

Class Code Class No. of Reference
Data

Reference Cover Property

Impervious (NNN) Pervious (4)

1 Tree 1065 - 4
2 Water 22,491 - 4
3 Meadow 831 - 4
4 Bare soil 959 - 4
5 Shadow 657 - 4
6 Asphalt 2339 N -
7 Bitumen 1753 N -
8 Brick 989 N -
9 Tile 16,813 N -

Total 47,897 4 5
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In the MFEM model, the improved t-SNE DR model and d-CDBNs method are combined into an
effective multi-feature extraction strategy. The algorithmic theories of the t-SNE and CDBNs method
constitute the foundation of the MFEM model. Therefore, in the following subsection, an overview of
the t-SNE and CDBNs algorithms is described. Moreover, the improvements of the two methods for
multi-feature extraction are described.

2.2. t-SNE

The t-SNE method is a nonlinear and unsupervised DR approach and is based on stochastic
neighbor embedding (SNE) [36]. The t-SNE method alleviates the crowding problem of the heavier
tails of the t-distribution, which takes the place of the Gaussian distribution in the LD map. The LD
points are the result of embedding HD points with similarities and correspond to nearby and distant
points, respectively. The t-SNE captures both the local and global structure of the HD input data for a
multi-scale representation.

Commonly, nonlinear DR methods transform the HD input dataset DX = {x1, x2, x3 · · · , xN}
into a LD output dataset DY = {y1, y2, y3 · · · , yN} using a map function. The LD output dataset
represents the HD input dataset as much as possible to preserve the significant features of the original
dataset in the nonlinear manifold. A distance function dx

(
xi, xj

)
is used, which represents the distance

between pairwise points, xi, xj ∈ DX. The distance function uses the standard Euclidean distance
in the t-SNE, dx

(
xi, xj

)
=
∣∣∣∣xi − xj

∣∣∣∣. For the DR, the joint probabilities pij are defined to evaluate the
pairwise similarity between the input data xi and xj by symmetrizing the conditional probabilities pj|i
and pi|j. The joint probabilities are defined as

pij =
pj|i + pi|j

2N
. (1)

where N is the number of rows in the input datasets DX and pj|i is the conditional probability of the
similarity between the input data points xi and xj as follows:

pj|i =
exp
(
−dX

(
xi, xj

)2/2σ2
i

)
∑k 6=i exp

(
−dX(xi, xk)

2/2σ2
i

) , pi|i = 0. (2)

where pj|i is the conditional probability of xj as xi neighboring points, if the neighbors are collected
according to the probability density of xj at a Gaussian kernel xi. The conditional probability pj|i has a
higher value of the adjacent data points xj than the separated data points xj. However, the value of pj|i
is dependent on reasonable values of the Gaussian variance, σi. A perplexity is determined for each
input data point xi using a binary search algorithm with the aim that the perplexity of the conditional
distribution Pi represents the predefined perplexity of all input values of xi. The perplexity function is
defined as the number of neighboring points at a Gaussian center xi [37]. The perplexity function is
defined as follows:

Perplexity(Pi) = 2H(Pi), (3)

H(Pi) = −∑
j

pj|ilog2

(
pj|i

)
. (4)

where H(Pi) denotes the Shannon entropy of the probability distribution Pi. If Pi has a high entropy
H(Pi) value, the perplexity improves with the entropy and σi has a higher configuration parameter,
i.e., the number of nearby points will increase in the probability distribution. Generally, the empirical
value of the perplexity is set in the range from 5 to 50.

Our goal is to learn and achieve Nl-dimensional DY representing each point in the input dataset
DX by stochastically embedding the points with a minimal Kullback–Leibler (KL) divergence. Where
possible, the value of Nl is usually set to 2 or 3. The t-SNE method uses a Student’s t-distribution in
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the LD space DY to learn and optimize the Gaussian distribution in the HD space DX and computes
the similarities dy between each pairwise points dy, dy

(
yi, yj

)
= ||yi − yj ||. Correspondingly, the joint

probabilities qij are defined as follows:

qij =

(
1 + dy

(
yi, yj

)2
)−1

∑k ∑l 6=k

(
1 + dy(yk, yl)

2
)−1 , qii = 0. (5)

where qij is the embedding similarity between yi and yj in the Nl-dimensional DY. It is achieved
by using a Student’s t-distribution with a single degree of freedom. To minimize the KL
divergences between the pj|i and pi|j, the joint probability distribution represents the conditional
probability distribution

C(DY) = KL(P||Q) = ∑i ∑j pijlog
pij

qij
. (6)

where P is the HD input dataset and Q is the Nl-dimensional output dataset. We assume pji = 0 and
qji = 0. In the symmetric SNE, for ∀ i, j, the joint probability pij = pji and qij = qji. The HD map pij
and the Nl-dimensional map qij are optimized as follows:

pij =
exp
(
−dx

(
xi, xj

)2/2σ2
)

∑k 6=l exp
(
−dx(xk, xl)

2/2σ2
) , qij =

exp
(
−dy

(
yi, yj

)2
)

∑k 6=l exp
(
−dy(yk, yl)

2
) . (7)

In the symmetric SNE, a modified gradient descent algorithm to minimize the KL divergence is
given by:

∂C(DY)

∂yi
= 4 ∑

j 6=i

(
pij − qij

)
qijτ

(
yi − yj

)
. (8)

where τ is a normalization term that is defined as τ = ∑k 6=l

(
1 + dy(yk, yl)

2
)−1

.
The t-SNE DR architecture reduces the negative effects of the “crowding problem” due

to the symmetry of the SNE and retains the local and global features of the original object.
However, the classification accuracy and learning rate of the t-SNE require fine-tuning, as does
the algorithm efficiency.

2.3. Spectral Feature Extraction with the Improved t-SNE

The new optimized model inherits the advantages of the traditional t-SNE method but provides
improved DR performance and more accurate extraction of the spectral features. We propose
an improved t-SNE model for reducing the algorithm time complexity, increasing the prediction
performance, and improving the similarity. The similarity refers to the relationship between the HD
joint probabilities pij and the Nl-dimensional embedding probabilities qji. The optimizing strategy
includes: (1) developing a faster search algorithm for detecting similar data points; (2) determining the
similarity of the data points; and (3) embedding a LR model.

In the t-SNE, the similarities of the input dataset DX are considered a normalized Gaussian center
xi, if the neighboring points xj is a dissimilar data point. In this case, the joint probabilities pji have a
lower and negligible value. This allows performing a sparse approximation, and reducing the negative
effects of dissimilar data points. We assume that λi represents the adjacent neighboring datasets of
input xi and the condition of the perplexity pj|i is redefined as follows:

pj|i =


exp
(
−d(xi ,xj)

2
/2σ2

)
∑k∈λi

exp(−d(xi ,xk)
2/2σ2)

, j ∈ λi

0 , otherwise
(9)
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Herein, the Gaussian variance σi is set so that there is equivalence between the perplexity of the
conditional distribution and the predefined perplexity. For a faster search of the neighboring points,
an alternate algorithm with disordered dataset sorting, i.e., a hash table search algorithm, is used to
replace the binary search algorithm. The hash table search time complexity for O (1) is superior to the
binary search time complexity for O (lgN) in the large scale HSIs with a disorder matrix, but more
storage space is required. The HD map pij and the Nl-dimensional map qij are re-defined as follows:

pij =

exp
(
− dx(xi , xj)

2

2σ2

)
∑k∈λi

exp
(
− dx(xk , xi)

2

2σ2

) , qij =
exp

(
−dy

(
yi, yj

)2
)

∑k∈λi
exp

(
−dy(yk, yi)

2
) . (10)

The minimum KL divergence of the DR transformation map is determined by a gradient descent
algorithm, which is divided into two parts

KLmin = ∂C(DY)
∂yi

= 4 ∑
j 6=i

(
pij − qij

)
qijτ

(
yi − yj

)
= 4

(
∑j 6=i pijqijτ

(
yi − yj

)
−∑j 6=i qij

2τ
(
yi − yj

))
= 4

(
Cattr − Crep

)
.

(11)

Herein, Cattr and Crep represent the sum of the attractive correlation and repulsive correlation,
respectively. KLmin evaluates the loss of information between the HD P map and LD Q map using
the SNE iterative process. The lower the KLmin value is, the higher the similarity of P and Q is and
the better DY represents DX. The Cattr subsection computation complexity is O (N) but that of Crep

is O (N2), aiming to reduce the Crep computational cost. The Barnes–Hut algorithm [38] is used to
approximate Crep with O (NlogN), which is superior to the original algorithm efficiency of the joint
distributions P and Q with O (N2).

Additionally, the interclass correlation coefficient (ICC) algorithm [39] is used for the similarity
evaluation between the Gaussian center xi and the adjacent data points xj in the interclass of the
datasets. We assume that there are M sample units Ui

M = {xi}M
i=1 ⊂ RNl in an interclass of similar

points, xj ∈ Dx, xj represents the neighboring data points of center xi in the same sample unit. The xi
and xj are considered N pairwise data points (xi, xj), i 6= j and i, j = 1, . . . , N. We assume that Gi, Gd,
and Rc denote the interclass data points, the different class data points, and the ICC, respectively.

Rc =
∑N

i,j=1(xi − x)
(

xj − x
)

Nσ2
s

, Rc ∈ [0, 1] (12)

where

x =
∑N

i,j=1
(

xi + xj
)

2N
, σ2

s =
∑N

i=1(xi − x)2 +
(
xj − x

)2

2N
. (13)

If Rc < 0.5, xi ∈ Gd, xi is considered a singularity and removed from the class. If Rc ≥ 0.75,
xi ∈ Gi, which can keep in the interclass as nearest similarity points (the threshold of Rc is an empirical
value). If 0.5 ≤ Rc < 0.75, there is uncertainty that depends on the required accuracy. In practical
applications, the Rc threshold is chosen based on the spectral space density. Generally, the higher the
ICC Rc is, the more similar the spectral features of the data points are. The data points are used and
classified into the same class. The sketch map of the similarity evaluation using the ICC is shown in
Figure 3.
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In the improved t-SNE method, the LR method is embedded to improve the predictability and
spectral feature extraction of the DR algorithm due to limited labeled samples. The LR method
accelerates the convergence of the DR algorithm and improves the execution efficiency of the spectral
feature extraction and classification in the LD data. Compared to the t-SNE, the improved t-SNE model
has lower time complexity, faster similarity evaluation, and higher accuracy for interclass matching.
The improved method achieves DR, spectral feature extraction, and classification simultaneously.
The processing framework of the improved method is shown in Figure 4. The LD data are considered
input data for the spatial feature and edge extraction.
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2.4. CDBNs

The CDBNs method is a hierarchical generative model for deep learning and consists of multiple
layers of CRBM. It has been demonstrated that the method has a good performance for remote sensing
image interpretation and land object identification. It is well suited for high-level feature learning
and scales well to 2-D imagery. The CDBNs method is translation invariant and uses the spatial
relationships between neighboring pixels via the CRBM stacked model. A CRBM stacked model is a
probabilistic, multi-layer, bipartite graphical model composed of three layers of sets of units, namely
an input layer with visible units (v), a detection layer with hidden units (h), and a pooling layer with
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probabilistic max-pooling (p). The visible layer and hidden layer are connected symmetrically by
the weight matrix W. The visible layer consists of a NV × NV

(
N2

V
)

matrix of binary units, which
represent the results of the algorithm. The detection layer and pooling layer have K groups, each of the
groups of hidden layers consists of a N2

H matrix of binary units and the pooling layer has N2
P binary

units. Each of the K groups has N2
W feature filter units, which connect the visible layer and the hidden

layer. Every filter is regarded as a channel with computing independence, including the convolution
and pooling operations. The detection layers compute responses by convolving a feature detector
with the previous layers. The pooling layers use a max-pooling method to shrink the representations
originating from the detection layers to obtain small translation-invariant input datasets. The layers
have a bidirectional feed-forward structure with bottom-up and top-down inference in the generative
model. The probability of the two kinds of filter units can be calculated using multiple convolution
operations and is defined by the energy equation E(v, h) as follows:

P(v, h) =
exp(−E(v, h))

Z , (14)

E(v, h) = −
K−1
∑

k=0

NH−1
∑

i,j=0

Nw−1
∑

r,s=0
hk

ijW
k
rsvλ,ξ −

NV−1
∑

i=0
ci

NV−1
∑

i,j=0
vij −

K−1
∑

k=0
bk

NK−1
∑

i,j=0
hk

ij

= −
k−1
∑

k=0
hk ·

(
W̃k ∗ v

)
−

NV−1
∑

i=0
ci

NV−1
∑

i,j=0
vij −

K−1
∑

k=0
bk

NK−1
∑

i,j=0
hk

ij.
(15)

where Z is a partition function, λ = i + r− 1, ξ = j + s− 1. The other notations and variables are
shown in Table 4.

Table 4. Description of the above-mentioned variables and symbols.

Symbol Description

N2
V Number of binary units in visible layer

N2
H Number of binary units of per group in hidden layer

N2
w Number of filter weights (Nw , NV − NH + 1)

N2
P Number of shrinking filter units of per group (NP = NH

C , C is a constant factor)
ci Bias term of visible units
bk Bias term of hidden units of per group

Wk
rs Weights of symmetric connections of visible layer and hidden layer

W̃k Horizontally and vertically flipped array of Wk

· Element-wise product followed by summation
∗ Convolution
pk

α A binary unit in the pooling layer, connecting a block α in the detection layer

βα Range of pooling βα ,
{
(i, j), hij belongs to the block α.

}

The block Gibbs sampling is represented by a conditional distribution of the convolution operation
as follows:

P
(

hk
ij = 1

∣∣∣v) = sigmoid(
(

W̃k ∗ v)ij + bk

)
,

P
(
vij = 1

∣∣h) = sigmoid
((

∑k−1
k=0 Wk ∗ hk

)
ij
+ ci

)
.

(16)

The conditional probability is re-defined using the max-pooling method

P
(

hk
i,j = 1

∣∣∣v) =
exp
(
E
(

hk
i,j

))
1+∑(i′ ,j′)∈βα

exp
(
E
(

hk
i′ ,j′
)) ,

P
(

pk
α = 0

∣∣∣v) = 1
1+∑(i′ ,j′)∈βα

exp
(
E
(

hk
i′ ,j′
)) , E

(
hk

i,j

)
, bk + (W̃k ∗ v)ij.

(17)

In CBDNs, each layer is greedily trained from lowest to highest [29] and while a layer is being
trained, the weights of the interlayer connection are fixed. Subsequently, this layer becomes the input
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for the next layer. A model with multi-layer max-pooling can effectively learn higher-level features
using convolution and pooling operations. This results in a hierarchical generative model and allows
for edge detection in the images using sparse regularization [40]. Therefore, CBDNs method is capable
of efficiently extracting features from images, including spatial features and edge information.

2.5. d-CDBNs

The CDBNs method provides scaling of full-sized images using PMP by shrinking the
representation of the higher layers. It improves the efficiency by weight sharing among all locations
of images. The weight sharing provides a symmetrical connection between the visible layer and the
detection layer. The shared weights are updated once a minimum difference between the reconstructed
data and the input data has been reached. The weight matrix influences the classification results of
the CRBM’s three layers and there exists a certain redundancy that controls the value of the energy
function and the probability distribution. Therefore, it is important for further optimize the weights.

We propose a weight shrinking strategy to reduce the weight redundancy of the interlayers
using a deep compression method [41]. The weight-shrinking strategy has three steps: (1) network
pruning [42] removes the connections with weights that fall below a certain threshold and a sparse
matrix index is created. (2) Weight quantization and weight sharing further compress the pruned
network and decrease the number of weights by weight sharing of multiple connections using k-means
clustering, thereby fine-tuning the shared weights. (3) Huffman coding is used to compress the
quantization value without loss of data. The deep compression weight strategy is embedded in the
CDBNs to create the d-CDBNs method.

In the d-CDBNs, the weight quantization and sharing are achieved using the k-means cluster
method. This step ensures that all the weights are in the same cluster and the same weights occur
in the trained network. The original sub-weights are defined as Ws =

{
ws

1, ws
2, . . . , ws

m
}

. These are
divided into κ cluster centers with linear initialization C = {c1, c2, . . . , cκ} (κ� m). The minimum sum
of squares in a cluster is defined as follows:

argmin
C

∑κ

i=1 ∑ws∈ci
|ws − ci|2. (18)

The κ clusters require θ = log2(κ) bits for index encoding and κ shared connection weights in a
network with n layer connections, where each connection represents t bits. The compression ratioRcpr

of the quantization is given by:

Rcpr =
nt

nθ + κt
. (19)

The compression ratio Rcpr reflects the efficiency of the connection of the shared weights and
represents the original connection during the quantization process. Quantization and training ensure
that the number of weights is reduced. To achieve further compression, Huffman coding can provide a
reduction of 20–30% in the storage requirements of the connection weights [41]. The deep compressed
weights are considered the shared weights of the connection layer. The d-CDBNs method inherits all
the functions of the CDBNs method plus the compressed weight sharing. The processing framework is
illustrated in Figure 5. The input data are the results of the improved t-SNE model. In the CRBM layer,
the number of shared weights is reduced by deep compression, which improves the computational
efficiency and reduces space complexity. In addition, the d-CDBNs method can extract deep spatial
features and learn edge detection, and these results are then combined with the spectral features to
improve HSIs classification accuracy.
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Figure 5. The processing framework of weights shrinking, spatial feature and edges extraction
by d-CDBNs.

2.6. MFEM

The MFEM model is a combination of the nonlinear DR technique, the improved t-SNE,
the d-CDBNs method, and the LR classifier. It represents a novel UIS detection model for HSIs
and provides multi-feature extraction. The multi-feature allows for the effective identification and
extraction of impervious surfaces in each pixel. These features include spectral signatures, spatial
features, and edge information. The spectral signatures are the reflectance values of each pixel in
every spectral band; the spatial features reflect the structure, shape, and texture of image objects;
and the edge information describes differences between local attributes and adjacent attributes at
the boundary of different landscapes. The edge information includes the specific properties of an
object that differentiates it from other objects. The MFEM has three major processing steps, as shown
in Figure 6: (1) DR and spectral feature extraction using the improved t-SNE model; (2) spatial
feature extraction and edge information learning using the d-CDBNs; and (3) multi-feature extraction
and LR classification. Compared with the standard t-SNE and the CDBNs methods, the MFEM
model is characterized by a faster neighborhood search, higher accuracy for interclass point matching,
less shared weight redundancy, and better predictability. Additionally, the multi-feature improves the
image interpretation and UIS detection.
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3. Results

For the performance evaluation of the MFEM method, we used common evaluation indices
including the producer’s accuracy (PA), user’s accuracy (UA), kappa coefficient (Kappa), overall
accuracy (OA), and average accuracy (AA) (see Abbreviations). All experiments were performed using
MATLAB R2016a on a Windows 7 (64-bit) Intel Core i5-4200 3.2 GHz 8 GB RAM machine.

3.1. Evaluation of the Improved t-SNE Method

3.1.1. Perplexity Configuration

In the improved t-SNE method, the perplexity (Pi) increases with increases in the Shannon entropy
and increases the Gaussian variance σi. This results in an increase in the number of nearest neighbor
points. To determine the optimal σi and obtain a suitable number of nearest neighbor points, we used
the hash table search to replace the binary search algorithm. In the experiment, the perplexity (Pi)
values were set at 10, 20, 30, 40, and 50, respectively, due to the larger number of discrete points, the
unstable OA, and the poor robustness when Pi < 5 or Pi > 50. The dimensional space of the output
embedded data was set as the default 2-D, the number of iterations was 1000, the correlation parameter
was 0.75, and the minimum gradient descent was 1× 10−7. The ground-truth datasets were considered
the reference for creating the confusion matrix. The evaluation indicators were used to assess the
performance of the improved t-SNE method for the two datasets (Table 5). The two datasets had
different results when different σi were used for the perplexities. The results show that the values of
the evaluation indices increase with the increase in the perplexity Pi. However, the mean σi exhibits
a decreasing rate of growth once the perplexity’s predefined threshold value is reached. This also
demonstrates that the optimal value range of the perplexity is from 5 to 50. The classification accuracy
is higher for the city center scene than the university scene. The reason is that the city center scene has
more reference data points than the university scene.

Table 5. Performance evaluation of improved t-SNE with different perplexity for spectral
features extraction.

Perplexity (Pi)
University Scene City Center Scene

Mean σi OA (%) AA (%) Kappa Mean σi OA (%) AA (%) Kappa

10 1.506 77.67 75.94 0.6367 1.159 80.34 78.52 0.6851
20 1.663 78.56 77.29 0.6523 1.663 81.58 79.87 0.6979
30 1.751 80.98 78.48 0.6761 1.917 82.21 80.55 0.7087
40 1.815 82.78 79.77 0.6832 2.114 83.67 81.63 0.7256
50 1.865 83.72 80.35 0.6897 2.277 85.62 82.79 0.7472

In addition, the number of dimensions (after executing the DR) influences the classification
accuracy. We tested dimensions from 2 to 12 and perplexity values from 10 to 100 for the two datasets,
as shown in Figure 7. The OA of the two datasets exhibits different degrees of increase with an
increasing number of dimensions. The results are similar for the different perplexity values.



Remote Sens. 2019, 11, 136 14 of 24Remote Sens. 2019, 11, 136  15 of 26 

 

 

(a) 

 

(b) 

Figure 7. Performance evaluation of the improved t-SNE method for two datasets with 
different dimensions and perplexity values (x-axis, reduced dimension; y-axis, perplexity; z-
axis, overall accuracy): (a) university scene; and (b) city center scene. 

  

Figure 7. Performance evaluation of the improved t-SNE method for two datasets with different
dimensions and perplexity values (x-axis, reduced dimension; y-axis, perplexity; z-axis, overall
accuracy): (a) university scene; and (b) city center scene.

3.1.2. Computation Time

In the DR process, the major time cost is the search for the nearest neighbor points and the LD
map embedding. To optimize the algorithm time complexity, the hash table search algorithm was
implemented in the improved t-SNE and replaced the binary algorithm. We tested various perplexities
and dimensions using the t-SNE method and improved t-SNE method for the two datasets, as shown
in Table 6 and Figure 8. For the university scene, the average computation time is 10.85% less for the
improved t-SNE method than the standard t-SNE method. However, the average computation time
is only 4.11% less for the city center scene because of the larger data volume of the dense buildings.
Overall, the computation time is lower for the improved t-SNE then the standard t-SNE, although the
computation time increases for both methods and both datasets with an increase in the number of
perplexities. This reason for this result is that the complexity is lower for the hash table search method
than the binary search method. In addition, the minimum KL divergence process reduces the time
complexity due to the Barnes–Hut algorithm. An increase in the perplexity increases the number of
nearest neighbor points of the kernel points. Additionally, the computational time cost is higher for the
city center scene than the university scene due to the larger building density of the city center scene.
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Table 6. Computation time of improved t-SNE and t-SNE for university scene (U) and city center scene
(C).

Perplexity (Pi) Dimension
University Scene City Center Scene

t-SNE(U) Improved
t-SNE(U) t-SNE(C) Improved

t-SNE(C)

10 2 133.56 121.12 242.28 231.19
30 4 153.72 133.45 247.36 233.77
50 6 162.58 141.72 248.71 242.38
70 8 167.03 149.88 256.39 245.46
90 10 175.78 157.61 265.59 253.36
100 12 184.64 167.52 271.62 262.85
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3.1.3. Interclass Correlation Configuration

The ICC algorithm evaluates the similarities of the nearest neighbor points and reduces the
classification error in the interclass. For the evaluation of the ICC performance of the improved t-SNE
model, we set the perplexity as 35 and the DR of the result dataset to 2. The reduced dimension dataset
has the embedded LR algorithm and the interclass correlation Rc has a range of 0.2–0.95. The accuracy
of the nearest neighbor points influences the spectral extraction and classification results (Figure 9).
As shown in Figure 9a, the OA of the two datasets increases sharply when Rc < 0.6 and the results
are better for the city center scene than the university scene when Rc > 0.6. The highest OA of the
city center scene is 93.57%, which is 5.82% higher than the OA of the university scene. As shown in
Figure 9b, the classification error rate decreases with an increase in the value of the ICC Rc. The lowest
classification error is 0.106 when Rc = 0.95 for the city center scene, i.e., the OA of similarities of
nearest neighbor points achieves 89.4%. To minimize the influence of the threshold, we used Rc = 0.85,
which provides optimal efficiency in the experiments (see Section 4 for the reasons).
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3.2. Comparison of the Spectral Feature Extraction Results with Other DR Methods

The improved t-SNE model has an embedded LR algorithm to improve the classification
performance and predictability of the samples. This process allows for sequential spectral feature
extraction for LD datasets and improves the classification accuracy. The results of the improved t-SNE
model were compared with those of other frequently-used DR algorithms (Table 7), including the
supervised algorithms LDA, LDE, and LFDA [43] and the unsupervised algorithms PCA and the
standard t-SNE. The dimension was 2-D and the number of perplexities was 30. For the unsupervised
algorithms, we selected 20 training samples randomly for each dataset and 260 unlabeled samples
as test samples for each class. Table 7 shows that the improved t-SNE model outperforms the other
DR algorithms in terms of classification accuracy. All supervised DR algorithms have higher OA than
the PCA. Specifically, the LFDA is more effective than the other supervised DR algorithm for the
hyperspectral datasets. Under the same conditions, the improved t-SNE achieves a higher OA than the
standard t-SNE and the accuracy improvements are 4.22% and 4.08%, respectively, for the university
scene and city center scene.

Table 7. Comparison of results assessment: both improved t-SNE method and other DR methods for
spectral features extraction.

Dataset Evaluation
Index LDA LDE LFDA PCA t-SNE Improved

t-SNE

University
scene

PA (%) 73.71 73.93 76.74 72.78 76.69 80.38
UA (%) 72.84 72.75 75.81 72.35 76.55 79.89
OA (%) 73.49 73.85 76.17 72.68 76.41 80.63
AA (%) 72.75 72.56 75.44 71.57 75.64 79.86
Kappa 0.7183 0.7171 0.7532 0.7014 0.7445 0.7771

City center
scene

PA (%) 68.43 70.85 75.32 64.71 77.89 82.36
UA (%) 66.87 70.26 74.33 63.27 77.05 81.76
OA (%) 68.72 71.22 75.13 64.56 78.55 82.63
AA (%) 65.88 70.76 74.26 64.13 77.83 82.04
Kappa 0.6796 0.7103 0.7515 0.6422 0.7713 0.8183

The OA results for the different methods and reduced dimensionality values of 2–12 are shown
in Figure 10. It is evident that the OA increases for all methods as the dimensionality decreases, i.e.,
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the values increase from 2 to 12. In the university scene dataset, the mean OA of the improved t-SNE
is 85.07%, which is 3.827% higher than the mean value of the other DR methods. In the more complex
city center scene dataset, the mean OA of the improved t-SNE is 8.747% higher than that of the other
DR methods. The reason is the lower performance of the other methods in the more complex city
center scene, whereas the improved t-SNE is less affected in accuracy by the complexity.Remote Sens. 2019, 11, 136  19 of 26 
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However, the classification results of the spectral extraction retain the “salt and pepper” noise
effect and misclassification. The main reason of misclassification for areas with similar reflectivity
values, such as confusion between shadow and asphalt in the university scene and confusion between
bare soil and brick in the city center scene. This appearance needs to be counteracted by the spatial
feature extraction.

3.3. Verification of the d-CDBNs Method

In the aforementioned experiment, we examined the performance of the improved t-SNE model
and achieved good results. After using the improved t-SNE DR model, the two datasets were translated
into a 2-D representative matrix. The results of the DR processing and spectral extraction were inputs
for the d-CDBNs method. The d-CDBNs method consists of learning and training using three layers.
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In the first layer, i.e., the input layer, the university scene consists of 4148 binary units and the city
center scene consists of 8160 binary units. In the second layer, the hidden layer consists of k = 32
groups and each group has N2

H = 130 and N2
H = 255 hidden units for the university scene and city

center scene, respectively. In the third layer, i.e., the pooling layer, we used a shrink factor of C = 2
and there were 65 and 128 binary units for the two scenes, respectively.

In the MFEM, the d-CDBNs method was used to extract the spatial features and edges.
These features are then combined with the spectral features for a multi-feature UIS classification
method. The multi-feature combination reduces the “salt and pepper” effect. To examine the
performance of the d-CDBNs method, we randomly selected about 15% of the reference image pixels
as training data and used the remaining 85% as testing data. We set the pixel filters for the 5 × 5
matrices and the learning rate was 0.05. The number of connection weights between the visible layer
and the detection layer was set at N2

w = 40 and N2
w = 66 for the university scene and city center scene

datasets, respectively, in the first layer. The other parameters were the default values.

3.3.1. Compression of the Shared Weights of the Layers for Spatial Feature Extraction

For testing the performance of the shared weight deep compression in the d-CDBNs method,
we compared the results with that of the standard CDBNs method in terms of network connection
number, number of weights, data size, and computation time (Tables 8 and 9). In the d-CDBNs method,
we set the compression ratioRcpr at 4× and used two hidden layers for detecting and convolution.
The results indicated that the d-CDBNs effectively reduce the number of network connections, shared
weights, the data size, and the computation time. We only embedded the deep compression method in
the first layer due to time and complexity considerations. Therefore, the number of weights is the same
in the first layer and the second layer. In the third layer, the max-pooling shrinks the representation of
the detection layer, which reduces the computational cost. The reason for the lower number of weights
in the second layer of the CDBNs is that the shared weights replace part of the initial weights. After
weight compression, the computation time and memory requirements are significantly lower, and do
not negatively affect the accuracy of results, which was verified by Han et al. [42].

Table 8. Comparison of performance between CDBNs and d-CDBNs for university scene.

Layer
CDBNs d-CDBNs (Rcpr = 4)

No. of
Connections

No. of
Weights

Data
Size

Computation
Time (Second)

No. of
Connections

No. of
Weights

Data
Size

Computation
Time (Second)

1 130 40 25 M 186.4 114 10 6.25 M 98.3
2-1 130 32 25 M 136.8 114 8 6.25 M 72.8
2-2 130 24 25 M 125.7 114 5 6.25 M 55.5
3 65 15 15.6 M 95.6 57 3 3.56 M 36.9

Table 9. Comparison of performance between CDBNs and d-CDBNs for city center scene.

Layer
CDBNs d-CDBNs (Rcpr = 4)

No. of
Connections

No. of
Weights

Data
Size

Computation
Time (Second)

No. of
Connections

No. of
Weights

Data
Size

Computation
Time (Second)

1 255 66 64 M 202.9 223 17 16 M 115.5
2-1 255 47 64 M 179.3 223 14 16 M 94.6
2-2 225 26 64 M 135.6 223 10 16 M 73.3
3 128 18 35.8 M 110.5 112 5 8.4 M 45.6

3.3.2. Edge Detection

In the d-CDBNs, the first layer detects the edge information of the input dataset and the edges of
the image objects are extracted in the second layer. We used a 5 × 5 pixel filter for the edge detection
followed by the sparse regularization method, which was proposed by Lee et al. [40]. As shown in
Figure 11, the results of detecting the edges in the university dataset are excellent and corners, contours,
edge angles, and boundaries are extracted.
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3.4. Accuracy Comparison of MFEM Model for Impervious Surface Detection

The MFEM model has three major functions: DR and spectral feature extraction, spatial feature
and edge extraction, and multi-feature classification. To evaluate the MFEM model performance for
UIS extraction, we compared the results with that of popular machine learning methods, including an
SVM, CNNs, DBNs, and CDBNs. The input data for these methods are the results of the improved
t-SNE. The classification accuracy results are shown in Table 10. It is evident that the MFEM model
has higher accuracy than the other machine learning methods. The MFEM model enhances the OA
by 6.78% (university scene) and 5.19% (city center scene), comparing with average of other methods,
as well as the Kappa by 6.81% (university scene) and 6.21% (city center scene). The classification
accuracy is higher for the university scene than the city center scene. The reason is that the university
scene has more concise outlines and clearer boundaries than the city center scene, which results in
higher accuracy for the spatial feature extraction and edge detection.

Table 10. Evaluation of classification accuracy of MFEM model compares with other commonly
used algorithms.

Datasets Evaluation
Index SVM CNNs DBNs CDBNs MFEM

University
scene

OA (%) 89.35 93.48 91.23 94.27 98.87
AA (%) 88.65 93.11 90.77 94.89 98.35
Kappa 0.8621 0.9171 0.9017 0.9325 0.9714

City center
scene

OA (%) 88.62 92.22 90.95 93.89 96.61
AA (%) 88.09 91.92 90.25 93.16 96.84
Kappa 0.8617 0.9045 0.8813 0.9149 0.9527

The results of the UIS extraction were compared with those of the above-mentioned methods
(Figure 12). It was observed that, in the commonly used methods, the lower classification
accuracy stems from the confusion between classes, such as bare soil and brick in the university
scene and sediments in the shoal water and asphalt in the city center scene. The multi-feature
extraction in the MFEM model reduces the confusion and minimizes the “salt and pepper” effect.
In Figure 12, from left to right are SVM, CNNs, DBNs, CDBNs and MFEM (see Abbreviations) results,
respectively. At the bottom of each comparison figure, we added part of the zoom image to clarify the
algorithm performance.



Remote Sens. 2019, 11, 136 20 of 24

Remote Sens. 2019, 11, 136  22 of 26 

 

(see Table A1) results, respectively. At the bottom of each comparison figure, we added part of 
the zoom image to clarify the algorithm performance. 

Table 10. Evaluation of classification accuracy of MFEM model compares with other 
commonly used algorithms. 

Datasets Evaluation Index SVM CNNs DBNs CDBNs MFEM 

University scene 
OA (%) 89.35 93.48 91.23 94.27 98.87 
AA (%) 88.65 93.11 90.77 94.89 98.35 
Kappa 0.8621 0.9171 0.9017 0.9325 0.9714 

City center scene 
OA (%) 88.62 92.22 90.95 93.89 96.61 
AA (%) 88.09 91.92 90.25 93.16 96.84 
Kappa 0.8617 0.9045 0.8813 0.9149 0.9527 

 

 
Figure 12. Results of impervious surface extraction use by successively SVM, CNNs, DBNs, 
CDBNs, and MFEM: (a, g) single band original image; (b–f) results of university scene; and (h–
l) results of city center scene. 

Figure 12. Results of impervious surface extraction use by successively SVM, CNNs, DBNs, CDBNs,
and MFEM: (a, g) single band original image; (b–f) results of university scene; and (h–l) results of city
center scene.

4. Discussion

In this paper, we propose the novel MFEM model based on multi-feature extraction for UIS
detection from hyperspectral datasets. The model combines a nonlinear DR with the improved t-SNE
and the deep learning d-CDBNs method. The improved t-SNE method is used to translate the HD
data into LD data and extracts the spectral features. In the experiment, we used different dimension
number and perplexity to test the two datasets, respectively, and explored the influence on the overall
accuracy. We found that the overall accuracy would be improved with the increase of dimension
number, but the influence of the change of perplexity on the overall accuracy would fluctuate. We took
the perplexity and reduced dimension as the independent variables, overall accuracy as the dependent
variable, built the 3-D surface figure such as Figure 7. The maximum overall accuracy of the university
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scene and the city center scene datasets was 84.23% and 87.87%, respectively. The ICC algorithm
evaluates the similarities of the nearest neighbor points, improves classification accuracy and reduces
the classification error in the interclass. However, a higher interclass correlation threshold has a
negative effect on the number of nearest neighbor points and the classification results. First, a higher
interclass correlation threshold results in a smaller number of nearest neighbor points, thereby reducing
the perplexity. Second, a higher interclass correlation threshold results in fewer nearest points in the
interclass of a kernel point. Therefore, if a larger number of Gaussian kernel points are selected, the
memory requirements and time cost of the improved t-SNE will increase.

The d-CDBNs method performs spatial feature and edge extraction. The method embedded deep
compression strategy for shared weights. The experiments showed that the compression strategy
effectively reduced the complexity of data, especially the workload of convolution operation, and
improved the performance of d-CDBNs algorithm. The setting of the compression ratioRcpr affects
the compression effect and the accuracy of the algorithm, while the setting of a larger compression
ratio will negatively affect the extraction accuracy. Generally, setting the compression ratio at 4× will
not negatively affect the accuracy of the algorithm [42].

It is worth mentioning that the shadows in the two datasets were considered pervious surfaces
in this experiment. Most shadows occur in meadows or trees in the university scene and are cast by
the sparse building. However, in the city center scene, some shadows occur in streets with asphalt,
especially near dense and low buildings. These shadows are classified into the pervious surface classes,
which caused a moderate reduction in the classification accuracy. The reason can be attributed to two
factors: first, narrow streets have vegetation on both sides; and, second, the shadows cast by trees
mostly occur in meadows or bare soils in green areas. To achieve a unified classification strategy for
both scenes, we considered the shadows in both scenes as pervious surfaces.

5. Conclusions

The MFEM model optimizes and improves the standard t-SNE and CDBNs and provides the
following improvements: (1) Faster neighborhood point searching and higher accuracy for the
interclass point similarity detection for the DR and spectral feature extraction. On average, the MFEM
model reduces time by 10.85% (university scene) and 4.11% (city center scene), and enhances the OA by
3.83% (university scene) and 8.75% (city center scene). (2) The LR algorithm increases the predictability
for reducing dependence on labeled data. (3) The deep compression algorithm reduces the weight
redundancy of the connected convolution layers and improves the computation time and storage
requirements. The MFEM model reduces time cost by 88.1 s and 87.4 s, and storage by 18.75 MB and
47 MB for university and city center scene, respectively. (4) The multi-feature extraction combines
spectral, spatial and edge extraction of UIS using the LR classifier. The MFEM model achieves the OA
of 98.87% (university scene) and 96.16% (city center scene). Therefore, the provided MFEM model has
better performance than other commonly used methods in term of efficiency and accuracy of the UIS
feature extraction and detection.
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Abbreviations

List of nomenclature in this paper.
Abbreviation Description
AA average accuracy
CDBNs convolutional deep belief networks
CNNs convolutional neural networks
CRBM convolutional restricted Boltzmann machine
DAE deep auto-encoders
DBMs deep Boltzmann machines
DBNs deep belief networks
d-CDBNs deep compression convolutional deep belief networks
DR dimensionality reduction
HD high-dimensional
HSIs hyperspectal images
ICC interclass correlation coefficient
Kappa kappa coefficient
KL Kullback–Leibler
LD low-dimensional
LDA linear discriminant analysis
LDE local discriminant embedding
LFDA local Fisher discriminant analysis
LR logistic regression
MFEM multi-feature extraction model
OA overall accuracy
PA producer’s accuracy
PCA principal component analysis
PMP probabilistic max-pooling
SDA stacked denoising auto-encoders
SVM support vector machine
t-SNE t-distributed stochastic neighbor embedding
UA user’s accuracy
UIS urban impervious surfaces
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