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Abstract: Water is arguably our most precious resource, which is related to the hydrological cycle,
climate change, regional drought events, and water resource management. In Turkey, besides
traditional hydrological studies, Terrestrial Water Storage (TWS) is poorly investigated at a continental
scale, with limited and sparse observations. Moreover, TWS is a key parameter for studying
drought events through the analysis of its variation. In this paper, TWS variation, and thus drought
analysis, spatial mass distribution, long-term mass change, and impact on TWS variation from the
parameter scale (e.g., precipitation, rainfall rate, evapotranspiration, soil moisture) to the climatic
change perspective are investigated. GRACE (Gravity Recovery and Climate Experiment) Level 3
(Release05-RL05) monthly land mass data of the Centre for Space Research (CSR) processing center
covering the period from April 2002 to January 2016, Global Land Data Assimilation System (GLDAS:
Mosaic (MOS), NOAH, Variable Infiltration Capacity (VIC)), and Tropical Rainfall Measuring Mission
(TRMM-3B43) models and drought indices such as self-calibrating Palmer Drought Severity (SCPDSI),
El Niño–Southern Oscillation (ENSO), and North Atlantic Oscillation (NAO) are used for this purpose.
Turkey experienced serious drought events interpreted with a significant decrease in the TWS signal
during the studied time period. GRACE can help to better predict the possible drought nine months
before in terms of a decreasing trend compared to previous studies, which do not take satellite gravity
data into account. Moreover, the GRACE signal is more sensitive to agricultural and hydrological
drought compared to meteorological drought. Precipitation is an important parameter affecting the
spatial pattern of the mass distribution and also the spatial change by inducing an acceleration signal
from the eastern side to the western side. In Turkey, the La Nina effect probably has an important
role in the meteorological drought turning into agricultural and hydrological drought.
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1. Introduction

Traditional methods of monitoring hydrological processes (e.g., in situ measurements of
precipitation and soil moisture content) have generally been inadequate to characterize extreme
hydrologic events [1,2]. Their temporal and spatial resolutions are not good enough to characterise
water mass variations at a regional or global scale. In order to improve our knowledge to predict
and monitor these water mass changes in the scope of drought analysis, flood potential assessment,
groundwater changes, soil moisture analysis, etc., there are an increasing number of available datasets
being produced, especially from remote sensing techniques. These techniques offer information
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on vegetation, precipitation, surface water storage, evapotranspiration, soil moisture, groundwater,
and snow components. Tropical Rainfall Measuring Mission (TRMM) [3], TRMM Multisatellite
Precipitation Analysis (TMPA), Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks (PERSIANN) [4], the CPC MORPHing technique (CMORPH) [5], Climate
Hazards Group InfraRed Precipitation with Station data (CHIRPS) [6], Global Satellite Mapping
of Precipitation (GSMaP) [7–9], and Global Precipitation Measurement (GPM) [3] are some of the
available satellite precipitation missions offering multiple products in real-time. While missions like
Soil Moisture Active Passive (SMAP) provide satellite soil moisture values, the U.S. Department
of Agriculture’s (USDA) global reservoir and lake monitoring service provides information on
satellite surface water levels by using near-real-time radar altimeter data. Finally, to study satellite
surface/subsurface water, since 2002, the Gravity Recovery and Climate Experiment (GRACE) has
provided entirely new observations suitable for quantifying and monitoring continental or regional
TWS changes [10–13], groundwater changes [14,15], drought monitoring [16–19], and flood potential
assessments [20] at a spatial resolution of a few hundred kilometers with uniform data coverage. The
approaches used for estimating groundwater storage variations with the main applications of GRACE
data for groundwater monitoring can be found in [21]. Moreover, since 2018, GRACE Follow-On
(GRACE-FO) satellite gravity mission has been established to continue tracking Earth’s water
movements at different spatial scales. The results retrieved from the satellite gravity measurements
are independent of the in situ data and might be interpreted independently. However, to increase the
accuracy and make a better interpretation, the trend needs to be assessed based on a combination of
additional data sets provided by other remote sensing technics. Moreover, as observed in many studies,
the comparison of global hydrological models’ results with GRACE data supports the analyses. The
Global Land Data Assimilation System (GLDAS) [22], which is developed jointly by NASA and NOAA,
simulates Terrestrial Water Storage through four main land surface models: VIC [23], NOAH [24],
Mosaic [25], and CLM [26]. The Climate Prediction Center (CPC) model [27], Land Dynamics model
(LadWorld) [28], WaterGAP Global Hydrology Model (WGHM) [29–31], and Organizing Carbon and
Hydrology in Dynamic Ecosystems (ORCHIDEE) Land surface model [32] are examples of such global
hydrological models [33], which provide a general overview on the use of global hydrological models’
results (e.g., water storage change) as a reference to calibrate/validate GRACE data. Additionally, [33]
found inconsistencies in the previous studies between hydrological model simulation results and
GRACE-based observations and provided possible explanations for these inconsistencies.

In Turkey, besides traditional hydrological studies, TWS is poorly investigated at a continental
scale with the new satellite techniques (e.g., GRACE). Previous studies in Turkey revealed about
0.7 cm/year the TWS variation [34]. Among them, the study of TWS variations in Turkey [35] with
GRACE and GLDAS (NOAH) data sets [22] for the period from 2003 to 2009, showed a significant
decrease of up to a rate of 4 cm/year for both data sets in the southern part of the central Anatolian
region. This decrease present in both datasets is explained by decreasing groundwater variations
confirmed by the existing well in the above mentioned regions. More recently, the effect of drought
and water extraction on groundwater storage in central Turkey are also described [36]. They also
showed how the groundwater storage can affect the TWS. In addition, long-term TWS changes in
Turkey during the 2004–2014 period by associating GLDAS/NOAH data are studied and accounted
for TWS variation between −17 and 16 cm in amplitude, with an important decrease in 2008 [37]. The
requirement of further studies to isolate model errors and anthropogenic effects for Turkey, in order
to explain the GRACE signal, which points out a robust acceleration in TWSA is emphasized also by
other studies [38]. These prior studies point out the need for a summarizing and extended up-to-date
study which accounts for a longer time period, associating different auxiliary data and parameters to
understand and interpret the TWS change mechanism and possible drought events at a national scale.

In this paper, the water storage variation is studied over Turkey at a seasonal time scale for the
period from April 2002 to January 2016 using monthly GRACE land mass grids (Level 3-RL05) from
CSR. To compare the results, monthly grids of GLDAS data with a 1◦ × 1◦ resolution and three GLDAS
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hydrological models: MOS, NOAH, VIC, are also analyzed. To estimate precipitation over Turkey
within the studied period, the TRMM-3B43 model is also considered, with a 0.25◦ × 0.25◦ resolution.
In addition, ENSO, the self-calibrating Palmer Drought Severity Index, and NAO are compared with
the satellite-derived GRACE TWS data.

2. Data and Methods

2.1. Studied Area and Its Hydrological Characteristics

Turkey is geographically located at approximately 36–42◦ N and 26–45◦ E, with an approximate
area of 783.562 km2. A glance at a digital elevation model of Turkey reveals that mountains encircle
the peninsula of Anatolia in four directions (see Figure 1).
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Figure 1. Digital Elevation Model of Turkey.

In Turkey, the yearly mean precipitation rate is approximately 643 mm (501 billion m3 water). A
total of 274 billion m3 of that water is transferred to the atmosphere by evaporation from soil, water,
and vegetation surfaces. Additionally, 158 billion m3 flow to the sea and lakes in closed basins through
streams. Furthermore, 28 billion m3 out of the remaining 69 billion m3 water feeding the groundwater
contributes to the surface water. Besides, an additional water input of about 7 billion m3 comes from
neighboring countries. Thus, the surface water potential of the country is 193 billion m3, or 234 billion
m3 by adding the 41 billion m3 of water contributing to the groundwater [37,39].

Important and severe drought events experienced in Turkey are recorded between 1971–1974,
1983–1984, 1989–1990, 1996, 2001, and 2007–2008 [40,41]. There are also other studies
investigating droughts in Turkey revealing an agricultural and hydrological drought starting from
November/December 2006 to December 2008, so the drought period is recorded as 2007–2008 [42].
Especially in 2008, there was no variation in snow and precipitation for nine to 10 months [43].

2.2. Terrestrial Water Storage (TWS) from GRACE

Three processing centers, including CSR (Center for Space Research, Texas), JPL (Jet Propulsion
Laboratory, California), and GFZ (GeoForschungsZentrum, Potsdam), provide official releases of
GRACE gravity data at three different levels (Level 1, 2, 3), depending on the expertise and needs of
the users for both the time-averaged and time-variable fields. In this study, Level 3 (RL05) land data of
the CSR processing center have been used, which were ready to use as many necessary preprocessing
steps had already been applied (removal of atmospheric pressure/mass changes, replacement of the
C20 (degree 2 order 0) coefficients with the solutions from Satellite Laser Ranging [44], the estimation
of the degree-1 coefficients (geocenter) from [45], the correction of glacial isostatic adjustment (GIA),



Remote Sens. 2019, 11, 120 4 of 24

destriping [46], Gaussian filtering). Level 3 data are in the form of GRACE-derived mass grids
expressed as the TWS function of the gravity fields with 1 degree in both latitude and longitude
(approx. 111 km at the equator) spatial sampling and estimates over land from the gravity coefficient
anomalies for each month (∆Clm, ∆Slm) [47], as below:

∆ηland(θ, φ, t) =
aρave

3ρw

∞

∑
l=0

l

∑
m=0

P̃lm(cos θ)
2l + 1
1 + kl

(∆Clm cos(mφ) + ∆Slm sin(mφ)) (1)

where ρave is the average density of the Earth, ρw is the density of fresh water, a is the equatorial radius
of the Earth, P̃lm is the fully-normalized Legendre associated function of degree l and order m, kl is the
Love number of degree l [48], θ is the spherical co-latitude (polar distance), and φ is the longitude. All
grids are obtained from the following link: https://grace.jpl.nasa.gov/data/get-data/monthly-mass-
grids-land/.

The first, additionally applied data processing, also recommended by the processing center for
the Level 3 land data grid, in order to prevent possible attenuation of the surface mass variations due
to the sampling and post-processing of GRACE observations (destriping, gaussian) and to regain part
of the information loss in prior data processing, is the multiplication of one for each 1-degree land grid
by a set of provided scaling coefficients, as shown below in Equation (2):

g′(x, y, t) = g(x, y, t)× s(x, y) (2)

where x is the longitude index, y is the latitude index, t is time (month) index, g(x, y, t) is the grid
node, s(x, y) is the scaling grid, and g′(x, y, t) is the gain-corrected time series. Moreover, additionally
applied data processing, leakage error correction (residual errors after filtering and rescaling), has been
performed (as below in Equation (3)) with the provided file obtained from the following link: ftp://
podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/, containing scaling coefficients
(as mentioned previously) and leakage error estimates.

g′leak_corr(x, y, t) = g′(x, y, t) + leakage_err(x, y) (3)

where x is the longitude index, y is the latitude index, t is the time (month) index, g′(x, y, t) is the
gain-corrected time series, leakage_err(x, y) is the leakage error estimates, and g′leak_corr(x, y, t) is the
scaled and leakage error corrected time series. In this study, monthly mass grids of GRACE land data
(Level-3 RL05) from the CSR processing center concerning the period from April 2002 to January 2016
with a 1◦ × 1◦ spatial resolution have been used after applying these additional processing steps.

2.3. Global Land Data Assimilation System (GLDAS) Models Data

GLDAS has been developed jointly by scientists at the National Aeronautics and Space
Administration (NASA)-Goddard Space Flight Center (GSFC) and the National Oceanic and
Atmospheric Administration (NOAA)-National Centers for Environmental Prediction (NCEP). GLDAS
is a global, high-resolution, offline (uncoupled to the atmosphere) terrestrial modeling system that
incorporates satellite- and ground-based observations in order to produce optimal fields of land
surface states (e.g., soil moisture, snow water equivalent, and canopy water storage...) and fluxes
(e.g., rainfall, snowmelt, evapotranspiration...) in near–real time [22]. Currently, GLDAS drives
four land surface models: MOS, NOAH, the Community Land Model (CLM), and the VIC. In this
study, GLDAS version1 (GLDAS-1) monthly data of the four land surface models are downloaded
from https://disc.gsfc.nasa.gov/datasets?keywords=gldas&page=1, with a 1◦ × 1◦ spatial resolution,
concerning the period from January 2002 to January 2016. In these data sets, the GLDAS provides a
time series of land surface states and fluxes (25 variables), which can be used to study water storage.
The anomalies corresponding to the major part of the signal to TWS can be assumed to arise from the
change in soil moisture (kg/m2), snow water equivalent (kg/m2), and canopy water storage (kg/m2).

https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/
ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/land_mass/RL05/netcdf/
https://disc.gsfc.nasa.gov/datasets?keywords=gldas&page=1


Remote Sens. 2019, 11, 120 5 of 24

Hence, firstly, these land surface state variables are derived from the file covering Turkey and then, the
TWS from GLDAS models is calculated, as shown by Equation (4):

TWSGLDAS = ∆SM + ∆SWE + ∆CWS (4)

where, TWSGLDAS is the change in terrestrial water storage from GLDAS, ∆SM is the change in soil
moisture, ∆SWE is the change in the snow moisture equivalent, and ∆CWS is the change in canopy
water storage. Soil moisture values are averaged before integrating them into the TWS calculation,
according to the three-layer model for VIC and MOS, and the four-layer model for NOAH. In this
study, CLM models have not been used.

2.4. Tropical Rainfall Measuring Mission (TRMM) Data

TRMM is a joint mission between NASA and the Japan Aerospace Exploration (JAXA) Agency
in order to study rainfall for weather and climate research (1997–2015). With the help of several
space-borne instruments, TRMM satellite data allow precipitation from diurnal to interannual time
scales to be measured, which led to improving our understanding of tropical cyclone structure and
evolution, including important variability associated with the Madden-Julian Oscillation and with
El Nino Southern Oscillation (ENSO), convective system properties, lightning-storm relationships,
climate and weather modeling, and human impacts on rainfall. The data also supported operational
applications such as flood and drought monitoring and weather forecasting (https://trmm.gsfc.nasa.
gov/).

In our study, we used the TRMM-3B43 Level 3 gridded monthly satellite-gauge (SG) combination
data set with a 0.25◦ × 0.25◦ degree spatial resolution downloaded from http://mirador.gsfc.nasa.
gov/# to estimate the precipitation variations over Turkey.

2.5. In-Situ Precipitation Data

The Turkish state meteorological service provides an annual cumulative rainfall distribution
(1981–2010) map produced on a GIS platform by kriging the in-situ rainfall data of 255 meteorological
stations. This map has been downloaded from the following website: https://mgm.gov.tr/eng/
forecast-cities.aspx, and used further to compare/validate TRMM data and rainfall from ground
meteorological stations.

2.6. Self-Calibrating Palmer Drought Severity Index (SCPDSI) Data

The SCPDSI [49] can estimate the departure relative to normal conditions in the surface water
balance by using a hydrological accounting system [50,51]. The PDSI is primarily considered a
meteorological drought indicator, and sometimes, an agricultural drought indicator [52]. The needed
drought index data was downloaded from the following website: https://crudata.uea.ac.uk/cru/data/
drought/, as global land data covering the time period from 1901 to 2016 with a 0.5◦ latitude-longitude
spatial resolution. Then, grids corresponding to Turkey and the time period from 2002 to 2016 were
extracted from global data.

2.7. El Niño–Southern Oscillation (ENSO) Index Data

ENSO is described as warming on the ocean surface, or above-average sea surface temperatures
(SST), in the central and eastern tropical Pacific Ocean. This is one of the most important climate
phenomena on Earth due to its ability to change the global atmospheric circulation, which in turn,
influences temperature and precipitation across the globe. The magnitude of the ENSO is often
expressed by the Niño SST3.4 index, derived from the normalized Sea Surface Temperature (SST).
El Nino (warm phase) and La Niña (cold phase) are two contrary phases of ENSO [53]. In order to
understand the magnitude of ENSO which influences precipitation and to improve our understanding
of the occurrence of drought events at a national scale, SST data were downloaded from the following

https://trmm.gsfc.nasa.gov/
https://trmm.gsfc.nasa.gov/
http://mirador.gsfc.nasa.gov/#
http://mirador.gsfc.nasa.gov/#
https://mgm.gov.tr/eng/forecast-cities.aspx
https://mgm.gov.tr/eng/forecast-cities.aspx
https://crudata.uea.ac.uk/cru/data/drought/
https://crudata.uea.ac.uk/cru/data/drought/
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website: http://www.cpc.ncep.noaa.gov/data/indices/, where monthly ERSSTv5 (1981–2010 base
period) Niño 1 + 2 (0–10◦ South) (90◦ W–80◦ W) Niño 3 (5◦ N–5◦ S) (150◦ W–90◦ W) Niño 4 (5◦ N–5◦ S)
(160◦ E–150◦ W) Niño 3.4 (5◦ N–5◦ S) (170 W–120◦ W) is available. The time period (from 2002 to 2016)
was extracted from global data.

2.8. North Atlantic Oscillation (NAO) Index Data

NAO is the variability in atmospheric mass circulation especially observed in the cold season
months (November–April) over the middle and high latitudes of the Northern Hemisphere (from
central North America to Europe and much into Northern Asia). The understanding of its mechanism
on the surface temperature, storms, precipitation, ocean, and ecosystem results in understanding
global climate change [54]. Strong positive phases (+) of the NAO tend to be associated with
below-average precipitation over southern and central Europe. Conversely, above average temperature
and precipitation anomalies are typically observed during strong negative phases (-) of the NAO
(https://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml). The monthly mean NAO index data
from 2002 to 2017 were downloaded from the following website: https://www.cpc.ncep.noaa.gov/
products/precip/CWlink/pna/nao.shtml.

To conclude the data and methods section and proceed with the results and analysis section,
Table 1 below summarizes the studied research topics, used input data, methodology, and additional
processing applied in this paper.

http://www.cpc.ncep.noaa.gov/data/indices/
https://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
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Table 1. Studied topics and general structure of the paper.

Research Topic 3.1. Drought Analysis
from Time Series

3.2. Spatial Mass
Distribution and Its

Causes

3.3. Long-Term Mass
Change

3.4. Impact on TWS
Variations

3.5. Understanding
Drought and Its Relation

with Climatic Change

Input data (global) GRACE and GLDAS TWS GRACE, GLDAS TRMM,
In-situ GRACE and GLDAS TWS GRACE(TWS), GLDAS **,

TRMM (precipitation)
GRACE(TWS), SCPDSI,

ENSO, NAO

Methodology from the analyses of TWS
time series

Harmonic analyses and
least squares fitting

according to [31] for both
GRACE and GLDAS data
Annual amplitude (cm),

phase (degree) and trend
(cm/yr) values are

derived

from the analyses of TWS
time series

Evapotranspiration(t) =
P(t) − R(t) – TWS
(GRACE)

from the analyses of TWS
time series

Additional processing

-GRACE: Scaling and
leakage error correction
-GLDAS: soil moisture

values are summed with
respect to the number of

models layers as
following: three-layer

model for MOS and VIC
and four-layer model for

NOAH
TWS(GLDAS) = ∆SM +

∆SWE + ∆CWS *

* *

GLDAS: soil moisture
values are summed with
respect to the number of

models layers as
following: three-layer

model for MOS and VIC
and four-layer model for

NOAH *

*

* Interested time (~2002–2016) and land grids (Turkey) are extracted for all global data sets. ** Rainfall rate, Evapotranspiration, Soil moisture. P(t) = Precipitation from TRMM. R(t) =
Runoff derived from MOS, NOAH, and VIC models.
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3. Results and Analysis

3.1. Drought Analysis from Time Series

In order to understand important drought periods, TWS time series derived from GRACE data
and from GLDAS models were analyzed in the studied time period from 2002 to 2016. Figure 2 indicates
residual (GRACE TWS-mean GRACE TWS) monthly TWS variations in Turkey (cm) according to
GRACE and GLDAS models (MOS, NOAH, VIC).
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Figure 2 indicates that GRACE TWS time series and GLDAS models are consistent. According to
the GRACE TWS signal, the studied time period shows some sudden TWS decreases in September
2004 and 2008, which falls after dry summer periods, and in October 2014. However, to be prudent,
the decrease in September 2004 may be an over estimation of GRACE solutions. Additionally, there are
some significant increasing and decreasing trends in TWS during some time intervals. Firstly, GRACE
TWS time series indicate an important decreasing trend period from February 2006 to November
2008 [42]. This underlines the beginning of an agricultural and hydrological drought, which occurred
due to the below-average precipitation [55] from November/December 2006 to December 2008. In
this context, GRACE time series provide an earlier warning (~9 months before) for the beginning
of a decreasing trend in TWS. Briefly, GRACE indicates that 2008 is a remarkable year in terms
of drought records. This finding is also supported with no snow and precipitation variation in
2008 [43]. After this decreasing time interval, Turkey is exposed to an increasing trend in TWS
from November 2008 to March 2010. According to Figure 2, the second decreasing period begins
in March 2010 and lasts until October 2014. During this time interval, historical records indicate
the beginning of a meteorological drought in 2012, intensified with dry summers, as is usual for
the Mediterranean climate. Even in 2013, the observed above-average precipitation levels (32 cm in
2013 where average is 27 cm) could not stop the decreasing trend in TWS because of the successively
observed below-average precipitation that occurred in 2014 (17 cm) [56]. To resume, the analysis
of GRACE TWS time series and the results of previous works revealed that the GRACE signal is
mostly sensitive to agricultural drought (insufficient soil moisture content) and hydrological drought
(significant reduction in winter precipitation) (2006–2008) compared to meteorological drought (little
rain combined with increased temperature and lower humidity) (2012–2014) for the studied region.
Following this prior understanding about the important increasing and decreasing trends in TWS,
leading to important drought events in the time period from 2002 to 2016, we now focus (Section 3.2)
on the spatial mass distribution of the TWS and its causes at the national scale.
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3.2. Spatial Mass Distribution and Its Causes

The TWS variations have significant seasonal signals. As we are interested in seasonal variations
with significant annual and semiannual periods, a mathematical function/model (Equation (5)), which
includes the annual and semi-annual variations with linear trend terms, has to be used to fit the TWS
time series [57]:

M(t) = a + bt +
2

∑
k=1

ck sin(ωk(t− t0) + φk) + ε(t) (5)

where M(t) is the time series; t is the time; t0 is a reference time; a is the constant; b is the trend; ck, φk,
and ωk are annual amplitude, phase, and frequency, respectively; k = 1 is for the annual variation and
k = 2 is for the semi-annual variation; and ε(t) is the un-modeled residual term. During the analysis
of time series, strong annual signals are found, and k = 1 year is used here. Using the least-squares
method to fit the time series of GRACE data at each point, the annual amplitude, annual phase, and
trend terms of TWS are estimated. Figures 3 and 4 show the annual amplitude (cm) and annual phase
(degree) map of TWS variation of Turkey from GRACE data and GLDAS models (MOS, NOAH, VIC)
concerning the 2002–2016 period, respectively. The TWS variation estimates of both methods show a
good agreement in annual amplitudes and phases. The mean annual amplitude is 11.06 cm and 11.19
cm from GRACE and GLDAS models (MOS), respectively. Additionally, the mean annual phase is
21.90 and 22.98◦ from GRACE and GLDAS models (MOS), respectively. The larger annual amplitude
values >20 cm (in red, Figure 3a,d) are observed in the eastern parts of Turkey. However, significant
amplitude values also appear at shorelines (also Black Sea, Aegean, Mediterranean). The smaller
annual amplitude of TWS variations of nearly 2.89 cm is seen in the middle of Turkey (central Anatolia,
Figure 3a–d). According to phase plots, there is lateral variation (especially concerning GRACE phase
plot, Figure 4a) from eastern part to the western part of Turkey, with a small increase through to
the west side contrary to the amplitude plots. This means that lower phase values are observed in
the eastern parts of Turkey, where larger amplitude values have been previously estimated. Table 2
indicates the mean annual amplitude, phase, and trend variations in Turkey according to GRACE and
GLDAS models.Remote Sens. 2019, 11, x FOR PEER REVIEW  9 of 24 
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Table 2. Mean annual amplitude, phase, and trend variations in Turkey according to GRACE and
GLDAS models.

Groundwater Storage Annual Amplitude (cm) Annual Phase (degree) Trend (cm/yr)

GRACE 11.06 21.90 −0.77
GLDAS-MOS 11.19 22.98 −0.74
GLDAS-NOAH 10.00 32.25 −0.31
GLDAS-VIC 11.81 32.22 −0.39

Finally, Figure 5 shows the trend (cm/yr) of TWS of Turkey according to GRACE and GLDAS
models (MOS, NOAH, VIC) concerning the 2002–2016 period.
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Trend plots of Turkey according to GRACE data (Figure 5a) also show lateral increasing variation
from the eastern part to western part, as observed in phase plots (Figure 4a), while GLDAS models
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plots also show lateral variation, but in a mostly heterogeneous way (Figure 5b). Distinctive trend
values (≥1 cm/yr) appear in the eastern part of Turkey (Figure 5a,b), in accordance with amplitude
values (Figure 3a,d).

Even GRACE and GLDAS 2D plots agree with each other and show the spatial distribution of
TWS; however, they do not explain the reason for the above-presented spatial distribution. To study
the possible reasons for this, GRACE 2D plots are compared with the TRMM-derived precipitation
data shown here as 2D sections. Figure 6 shows the (a1) annual amplitude (cm) of TWS variation from
GRACE data and (b1) annual amplitude of precipitation estimated from TRMM model, (a2) annual
phase of TWS (degree) estimated from GRACE data and (b2) annual phase of precipitation (degree)
estimated from TRMM model, (a3) annual trend of TWS variation from GRACE data (cm/yr), (b3)
annual trend of precipitation (cm/yr) estimated from the TRMM model between 2002–2016 in Turkey,
and (c1) in-situ meteorological rainfall data.
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Figure 6. (a1) Annual amplitude (cm) of TWS variation from GRACE data and (b1) annual amplitude
of precipitation estimated from TRMM model (scales are different), (a2) annual phase of TWS (degree)
estimated from GRACE data, (b2) annual phase of precipitation (degree) estimated from TRMM model,
(a3) annual trend of TWS variation from GRACE data (cm/yr), and (b3) annual trend of precipitation
(cm/yr) estimated from TRMM model between 2002–2016 in Turkey. (c1) Turkish state meteorological
service’s annual cumulative rainfall distribution (1981–2010) map produced by kriging the in-situ
rainfall data of 255 meteorological stations on a GIS platform. Scales are different.
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Figure 6a1,b1 show larger GRACE-TWS (in red, ≥20 cm) and TRMM anomalies (~7 cm) in
the Eastern part of Turkey (see also (Figure 3b–d). The smallest TRMM-precipitation anomalies are
observed in central Anatolia (in blue,≤3 cm), in agreement with GRACE TWS (Figure 6a1). In addition,
the TRMM 2D amplitude (Figure 6b1) and phase plot (Figure 6b2) reveal the input of the water because
of the precipitation observed on the shorelines of Turkey (Black Sea, Aegean, Mediterranean). This
result shows agreement with the GLDAS models’ TWS annual amplitude plots (Figure 3b–d) and also
with the in-situ annual cumulative rainfall distribution map of the Turkish state meteorological service
(Figure 6c1). Trend plots in Figure 6a3,b3 indicate a positive trend through the western part, especially
to the Aegean and Mediterranean shorelines of Turkey. Previous studies focused on groundwater
loss and reservoir/lake storage change [58,59] also support an acceleration signal in GRACE analyses
over the western part of Turkey [38], which has been spatially mapped in this paper. This acceleration
seems to be related to the precipitation patterns or flow (from the precipitation-rich eastern part to
precipitation-lacking Central Anatolia). However, this might not be the only reason for this and has to
be studied in more depth (e.g., human-induced groundwater withdrawal, as mentioned in [36]). After
studying the spatial mass distribution and its causes, we will now have a general look and try to focus
on the analysis of the nature of the long-term mass change in TWS in Turkey (Section 3.3).

3.3. Long-Term Mass Change

The long-term variations of TWS are estimated and investigated according to GRACE and GLDAS
models (MOS, NOAH, VIC) in Turkey. Figure 7 indicates residual mean monthly TWS variations
in Turkey (cm) from GRACE and GLDAS models between 2002 and 2016. The mean TWS values
of a specific month are first calculated by taking the average of all grids (77 grids) with different
geographic coordinates in Turkey for each month of a specific year (e.g., 2002/04, 2002/05), and then
all corresponding months of a specific year are averaged between them (January 2002, January 2003...).
According to GRACE data, Figure 7 indicates an increasing behavior of the TWS variation from January
to April. The monthly maximum of mean TWS at about 10 cm is reached in April. The TWS variation
is negative from April to September, with a minimum of −12.88 cm in September. This corresponds to
possible dry summer periods, as is normal for the Mediterranean climate. This decrease is followed
by a gradual increase from September to December, when we expect more precipitation or snow for
the central and eastern parts of the country. The seasonal variations of TWS estimated from GLDAS
models are in good agreement with the results from GRACE.
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Figure 7. Residuals mean monthly TWS changes for Turkey land calculated from GLDAS-MOS (in
orange), GLDAS-NOAH (in red), and GLDAS-VIC (in green) models, and from GRACE data (blue
circled) for 2002–2016.

In Figure 8, the long-term variation of mean monthly TWS in the spring, summer, autumn,
and winter periods from 2002 to 2016 is studied from GRACE-derived TWS data (cm/month). The
larger amplitudes of the long-term seasonal TWS signal are observed in spring (max: 20.64 cm, mean:
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12 cm), corresponding to April (Figure 7). These orders of amplitudes are followed by the winter
period, which is larger than the summer period. Surprisingly, the weaker TWS values (max: 3 cm,
mean: −7 cm) are observed in autumn, corresponding to September (Figure 7), instead of summer,
as one might expect. This can be explained by the emphasized drought conditions, arising after dry
summers (see Section 3.4.1), which are systematically observed in September almost every four years
during the studied time period (September/2004, September/2008, October/2014 see also Figure 2).
For all seasons, an important decrease is observed in August 2008. This corresponds to the severe
drought events experienced in Turkey, especially in 2008 (also Figure 2). To conclude, there is a
major decreasing trend close to −1 cm/yr in Turkey for the studied period which has to be taken
into account. The exhibition of the negative trend signal of GRACE time series can be attributed to
drought conditions and groundwater withdrawal [35] for the years 2003–2008. The proper study of the
long-term change of signal can reveal a drought prediction with the amplitude of a decreasing trend
(cm/yr), as shown in our results, and can lead to a drought preparedness. In the next section, we will
study the parameters (e.g., precipitation, rainfall rate, evapotranspiration, soil moisture) which might
have influenced/contributed to the amplitude of the above-presented spatial distribution (Section 3.2)
and long-term mass change (Section 3.3).
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3.4. Impacts on TWS Variations

In this section, we performed statistical analysis with IBM SPSS25 software in order to understand
descriptive measures and correlations between studied variables and GRACE TWS.

3.4.1. Impact of Precipitation

In order to understand the impact on TWS variations, we used estimated precipitation (cm/month)
from TRMM, which is an average rate over a month, and compared the result to the GRACE data. The
comparison is shown in Figure 9, which is concerned with the mean monthly precipitation from the
TRMM model and the mean monthly TWS derived from GRACE. The TRMM-derived precipitation
ranges from 0.71 (July 2015) to 15.36 cm/month (December 2012), while the GRACE-derived TWS
ranges from −17.48 (August 2008) to 20.64 cm (April 2006). The amplitude of the TRMM is smaller
compared to GRACE data. This can be explained by the fact that GRACE data, displaying more of
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an increasing and decreasing trend, is not only affected by the precipitation, but also by the other
parameters, as we further investigate in this paper.Remote Sens. 2019, 11, x FOR PEER REVIEW  14 of 24 
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Figure 9. Mean monthly precipitation (cm/month) from TRMM model (in red) and mean monthly
GRACE TWS (cm, in blue with circle) of Turkey during 2002–2016.

To give numerical orders of magnitude concerning the correlation between TRMM and GRACE
TWS time series, firstly, with the Kolmogorov-Smirnov method, the data is checked to assess whether
the distribution is normal or not. The results show that the TRMM distribution is not normal (p =
0.036 < 0.05). Hence, Spearman’s rho method is preferred to more appropriately study the correlation
between variables. As seen Table 3, there is a significantly positive correlation between TRMM and
GRACE TWS with 0.34.

Table 3. Correlation between TRMM precipitation and GRACE TWS according to Spearman’s
rho method.

Correlations

TRMM GRACE

Spearman’s rho

TRMM
precipitation

Correlation
Coefficient 1.000 0.337 **

Sig. (2-tailed) 0.000

GRACE TWS
Correlation
Coefficient 0.337 ** 1.000

Sig. (2-tailed) 0.000

** Correlation is significant at the 0.01 level (2-tailed).

3.4.2. Impact of Rainfall Rate

Rainfall rate values (kg/m2) are available in the GLDAS models data files. We extracted
corresponding values in the studied region, and converted (cm/month), averaged, and calculated the
residual. Figure 10 shows the residual mean monthly rainfall rate (cm/month) extracted from GLDAS
models (MOS, NOAH, VIC), from TRMM and residual mean monthly TWS variation from GRACE
data from 2002 to 2016 for Turkey. The rainfall data changes between −3.5 and 6.5 cm/month (MOS)
and −5 and 9.5 cm/month (TRMM). In Figure 10, a good agreement between all models of GLDAS
(MOS, NOAH, VIC) and TRMM data is observed. The correlation between GRACE TWS, TRMM
precipitation, and GLDAS models’ rainfall rate is given in the Table 4.
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Figure 10. Residual mean monthly rainfall rate (cm/month) from GLDAS-MOS (in orange),
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Table 4. Correlation between GRACE TWS, TRMM precipitation, and GLDAS models (MOS, NOAH,
VIC) rainfall rate according to Spearman’s rho method.

Correlations

GRACE TRMM

Spearman’s rho

GRACE TWS
Correlation
Coefficient 1.000 0.338 **

Sig. (2-tailed) 0.000

MOS rainfall rate
Correlation
Coefficient 0.243 ** 0.826 **

Sig. (2-tailed) 0.003 0.000

NOAH rainfall rate
Correlation
Coefficient 0.244 ** 0.826 **

Sig. (2-tailed) 0.003 0.000

VIC rainfall rate
Correlation
Coefficient 0.227 ** 0.788 **

Sig. (2-tailed) 0.005 0.000

TRMM
precipitation

Correlation
Coefficient 0.338 ** 1.000

Sig. (2-tailed) 0.000

** Correlation is significant at the 0.01 level (2-tailed).

There is a positive correlation between GRACE TWS and the rainfall rate derived from GLDAS
models (r = ~0.24) and a strong positive correlation between TRMM precipitation and the rainfall rate
derived from GLDAS models (r = ~0.82).

3.4.3. Impact of Evapotranspiration

The estimation of evapotranspiration (ET) has been performed by using the water balance
equation [60,61] as is traditional for a closed basin area, in the case of available observed streamflow
data (see Equation (6)):

ET(t) = P(t)− R(t)− TWSGRACE (6)

where t is the time; TWSGRACE is the water storage derived from GRACE data; and P(t), R(t), and
ET(t) are the precipitation provided from TRMM, runoff extracted from available GLDAS files of
different models, and evapotranspiration, respectively. Figure 11 compares the residual mean monthly
evapotranspiration values calculated from Equation (6) and GRACE TWS data in order to understand
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the role of the evapotranspiration effect on the TWS parameter. Evapotranspiration values range
from −3.8 to 8.6 cm/month (VIC). This finding shows that both data (GLDAS evapotranspiration and
GRACE TWS) are in-phase. The amplitudes of evapotranspiration seem to impact the rainfall rate
equally to the TWS amplitudes.Remote Sens. 2019, 11, x FOR PEER REVIEW  16 of 24 
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Figure 11. Mean monthly evapotranspiration (cm/month) calculated from precipitation (TRMM)
minus runoff (from model (MOS, NOAH, VIC)) minus GRACE TWS variations between 2002 and 2016
for Turkey.

3.4.4. Impact of Soil Moisture

First, for each GLDAS land model, soil moisture values (kg/m2) available in the GLDAS data
files are extracted from the global grids, and then reduced to the studied region scale. In addition,
according to the models, soil moisture values are summed with respect to the number of model layers,
as follows: three-layer model for MOS and VIC and four-layer model for NOAH are converted to
cm and averaged, and the residual mean monthly variations are finally calculated. Figure 12 shows
the comparison between residual mean monthly soil moisture variation (cm) obtained from GLDAS
models and residual mean monthly GRACE TWS of Turkey from 2002 to 2016. Soil moisture values
ranges from −15.4 to 18.9 cm (MOS), while GRACE TWS data ranges from −16 to 20 cm. According to
Figure 12, it can be concluded that for Turkey, the most efficient parameter producing the important
part of the GRACE TWS signal is the soil moisture. This statement is supported not only by the MOS
model, but also by other GLDAS models (NOAH, VIC). Table 5 shows the correlation coefficients
between GRACE TWS and soil moisture obtained from GLDAS models (MOS, NOAH, VIC).

Remote Sens. 2019, 11, x FOR PEER REVIEW  16 of 24 

 

 
Figure 11. Mean monthly evapotranspiration (cm/month) calculated from precipitation (TRMM) 
minus runoff (from model (MOS, NOAH, VIC)) minus GRACE TWS variations between 2002 and 
2016 for Turkey. 

3.4.4. Impact of Soil Moisture 

First, for each GLDAS land model, soil moisture values (kg/m2) available in the GLDAS data 
files are extracted from the global grids, and then reduced to the studied region scale. In addition, 
according to the models, soil moisture values are summed with respect to the number of model layers, 
as follows: three-layer model for MOS and VIC and four-layer model for NOAH are converted to cm 
and averaged, and the residual mean monthly variations are finally calculated. Figure 12 shows the 
comparison between residual mean monthly soil moisture variation (cm) obtained from GLDAS 
models and residual mean monthly GRACE TWS of Turkey from 2002 to 2016. Soil moisture values 
ranges from −15.4 to 18.9 cm (MOS), while GRACE TWS data ranges from −16 to 20 cm. According to 
Figure 12, it can be concluded that for Turkey, the most efficient parameter producing the important 
part of the GRACE TWS signal is the soil moisture. This statement is supported not only by the MOS 
model, but also by other GLDAS models (NOAH, VIC). Table 5 shows the correlation coefficients 
between GRACE TWS and soil moisture obtained from GLDAS models (MOS, NOAH, VIC). 

 
Figure 12. Residual mean monthly soil moisture variation (cm) of Turkey from GLDAS MOS (in 
orange), GLDAS-NOAH (in red), and GLDAS-VIC (in green) models, and residual mean monthly 
TWS variation from GRACE data (in blue with circle) from 2002 to 2016. 

  

Figure 12. Residual mean monthly soil moisture variation (cm) of Turkey from GLDAS MOS (in
orange), GLDAS-NOAH (in red), and GLDAS-VIC (in green) models, and residual mean monthly TWS
variation from GRACE data (in blue with circle) from 2002 to 2016.



Remote Sens. 2019, 11, 120 17 of 24

Table 5. Correlation between GRACE TWS and soil moisture derived from GLDAS models (MOS,
NOAH, VIC) according to Spearman’s rho method.

Correlations

GRACE

Spearman’s rho

GRACE TWS
Correlation Coefficient 1.000
Sig. (2-tailed)

MOS soil moisture
Correlation Coefficient 0.840 **
Sig. (2-tailed) 0.000

NOAH soil moisture
Correlation Coefficient 0.797 **
Sig. (2-tailed) 0.000

VIC soil moisture
Correlation Coefficient 0.790 **
Sig. (2-tailed) 0.000

** Correlation is significant at the 0.01 level (2-tailed).

The correlation coefficient between GRACE TWS and soil moisture derived from the MOS model
with r = 0.84 indicates a strong positive relation between these two times series and supports that the
GRACE TWS signal is mostly dependent on soil moisture content in the studied region. To sum up,
soil moisture is a key parameter in terms of drought monitoring because, as mentioned previously in
Section 3.1, the insufficiency of soil moisture is a turning point indicating the change from classical
drought, observed because of the lack of precipitation, to the agricultural drought. GRACE TWS time
series are very sensible to agricultural drought (2006–2008).

3.5. Understanding the Drought and Its Relation with Climatic Change

In Section 3.4, we investigated the impact and correlation of different parameters (e.g.,
precipitation, soil moisture, etc.) on the signal amplitude, specifically on the TWS time series. We
found that the precipitation is an important parameter which governs the pattern of spatial mass
distribution (Section 3.2) and soil moisture produces the most important part of the GRACE TWS
signal (Section 3.4.4). In this part, we decided to combine the available data and our findings with the
self-calibrating Palmer Drought Severity Index, ENSO, and NOA index, which use also precipitation,
temperature, soil moisture, and so on [51,52] to understand the type, the variability, and the severity of
a drought event.

3.5.1. Self-Calibrating Drought Severity Index (SCPDSI)

In Figure 13, non-seasonal GRACE TWS data are compared with the SCPDSI drought
severity index.

The analysis of the SCPDSI time series shows a good agreement in terms of the increasing and
decreasing trend of the signal with GRACE-derived residual TWS. From a general point of view, in
Figure 13, except for some small variations, SCPDSI time series show that progressive decreasing
periods (2002–2008, 2010–2014) and increasing periods are (2008–2010, 2014–2016) followed up with
the GRACE TWS. Nevertheless, the SCPDSI index is not as sensitive as GRACE data to small variation,
especially during 2002–2006 (miss the increase 02/2003–02/2004). September 2004 (may be also an
overestimation of GRACE solution), 2008, and October 2014 appear as dramatic drought cases for both
time series.

Statistically speaking, according to the Kolmogorov-Smirnov method, p is equal to 0.2 and the
Pearson Correlation can be used here to study the correlation coefficients between GRACE TWS and
the self-calibrating Palmer Drought Severity Index (SCPDSI), as shown in Table 6.

A positive correlation is found to be r = 0.25. To sum up, according to GRACE data, the SCPDSI
index, and historical data, the reason for the drought can be primarily categorized as meteorological.
In this step, we decided to extend our results and to more deeply study the underlying processes of
the drought event, i.e., the causes resulting in a lack of precipitation from the point of view of climatic
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change. For this reason, in the next section (Section 3.5.2), GRACE TWS anomalies are compared with
the ENSO and NAO index, improving our understanding of the occurrence of drought events.
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Figure 13. Mean monthly residual TWS variation from GRACE data (blue circled line, seasonal signal
removed) and mean monthly self-calibrating Palmer Drought Severity Index (orange dotted line) from
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Table 6. Correlation between residual GRACE TWS and self-calibrating Palmer Drought Severity Index
(SCPDSI).

Correlations

SCPDSI GRACE TWS

SCPDSI
Pearson Correlation 1 0.246 **
Sig. (2-tailed) 0.002

GRACE TWS
Pearson Correlation 0.246 ** 1
Sig. (2-tailed) 0.002

** Correlation is significant at the 0.01 level (2-tailed).

3.5.2. El Niño Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) Indices

Figure 14 compares the SST3.4 and NAO time series with the non-seasonal GRACE TWS anomaly
time series.
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Figure 14. Mean monthly residual TWS variation from GRACE data (blue circled line, seasonal signal
removed) compared with the ENSO index Niño SST3.4 (El: El Niño and La: La Niña; Warm: orange
shading and Cool: cyan shading) Niño SST3.4. (prepared as in [62]) and with monthly mean NAO
index (in black).
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According to [63], ENSO also affects the Mediterranean winter climate. During El Niño events,
the Mediterranean cyclone track is shifted northward, which affects precipitation. Moreover, less
precipitation in southwestern Europe, as well as the Black Sea area, during cold events, but more
precipitation in the same regions during warm events are founded [64]. Figure 14 reveals that cold
events (La Nina: cyan shading) corresponding to La Nina effect occur between 2006–2009 and
2010–2014. This can be interpreted as a climatic impact creating a lack of precipitation in Turkey.
This statement is also validated by the decreasing trend of GRACE TWS and SCPDSI (Figure 13)
time series. This lack of precipitation due to the possible effect of the La Nina phase first results in a
meteorological drought (Figure 13), which then turns into agricultural and hydrological drought, as
mentioned in [55]. Spatially speaking, as a possible proof of the impact of ENSO, as mentioned in [64],
Black sea coasts in Figure 6b1 show a low (≤3 cm) annual amplitude of precipitation estimated from
the TRMM model, unlike the other coasts.

According to Figure 14, the warm phase El Nino (orange shading) is observed between 2002 and
the beginning of 2007 (with some interaction of the cold phase creating instantaneous drops) and
2014–2016. The climatic impact of the warm phase, resulting in an increase in precipitation, seems to
appear as the increase of GRACE TWS and ENSO, while SCPDSI is more sensitive to the decrease
of signal amplitude in this period due to the interaction of the cold phase (Figure 13). GRACE TWS
anomalies (Figure 14) and rainfall rate (Figure 10) are important for these time intervals cited above.
Spatially speaking, the bigger annual amplitudes of precipitation (≥7 cm) estimated from the TRMM
model (Figure 6b1) are observed in Southeastern, Mediterranean, and Aegean parts of Turkey.

Concerning the NAO index, the time series do not show any strong positive or negative anomalies
or trends. As a reminder, strong positive phases (+) tend to be associated with below-average
precipitation, while strong negative phases (-) are related with the above average temperature and
precipitation anomalies. In this case, the amplitude of the NAO time series is small. It can be concluded
that NAO does not have any significative impact on the studied area. Table 7 shows the correlation
between GRACE TWS with ENSO and the NAO index. There is a positive correlation in the order of
r = 0.3 between GRACE TWS and the ENSO index. Additionally, GRACE TWS and the NAO index
show a small negative correlation (r = −0.05).

Table 7. Correlation between residual GRACE TWS and ENSO Index.

Correlation

GRACE TWS

GRACE TWS
Pearson Correlation 1.000
Sig. (2-tailed)

ENSO index
Pearson Correlation 0.295 **
Sig. (2-tailed) 0.000

NAO index
Pearson Correlation −0.049
Sig. (2-tailed) 0.552

** Correlation is significant at the 0.01 level (2-tailed).

4. Discussion

Our results provide a broad context for the current hydrological status in Turkey by combining
various external data sets (e.g., hydrological models, remote sensing techniques, drought indices)
and reveal new drought events, spatial extension of the mass change, long-term variation, impacts
on TWS, and the effect of climatic change, in addition to the previous studies within the GRACE
mission operation time. The limitations of the work are related to the spatial resolution of the GRACE
mission, which does not allow monitoring of the very high resolution surface mass change (e.g., dams,
reservoirs); the lack or inaccessibility of the in-situ rainfall data. Which could provide information
about groundwater withdrawal; and additionally and more specifically, the limited satellite mission
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lifetime that ended in 2017. Even though there has been a new following mission, “GRACE-FO”,
which started operating on 22 May, there is a data gap between the two missions. For this reason,
as future research to generate a new perspective to drought analysis, there is the aim to develop
statistical modelling from GRACE time series. This connection between GRACE and GRACE-FO
revealed by statistical modelling will be valuable in terms of the continuity of drought monitoring
and prediction, especially in the case of missing data within the GRACE-FO operation period. We also
demonstrated that GRACE is more sensitive to agricultural and hydrological drought and less sensitive
to meteorological drought, which occurs in the case of a lack of precipitation, increase of temperature,
and decrease in humidity. GRACE data might be combined with the datasets derived from remote
sensing techniques that measure above-cited external data sets to conduct a more sensitive analysis
and to predict meteorological droughts [65]. The combined solutions can be assessed in different
regions to test the sensibility of the GRACE data to differentiate different types/states of drought.

5. Conclusions

According to the drought analysis studied in this paper from GRACE-derived TWS time
series, Turkey experienced dramatic drought events in 09/2004 (may also be an overestimation of
GRACE solution), 09/2008, and 10/2014. Moreover, TWS decreasing periods are recorded as follows:
04/2002–09/2004; 02/2006–09/2008; 03/2010–10/2014. In terms of assessment of the drought, GRACE
can help to better predict the possible drought (starting from 02/2006) nine months before, with a
decreasing trend observed in GRACE TWS times series compared to previous studies which do not
take satellite gravity data (see only since 11/2006) into account. Moreover, the GRACE signal is more
sensitive to agricultural and hydrological drought compared to meteorological drought. Spatially, mass
amplitudes are larger (20 cm) in the eastern part compared to central (2 cm, smaller) or Aegean parts,
related to received precipitation levels. Shorelines also show distinctive values compared to the central
part. There is an acceleration signal from the eastern side to the western side, which is related to the
precipitation. Concerning long-term mass change, Turkey experiences a decreasing trend in the order
of 1 cm/yr. Rainfall rate, evapotranspiration, and precipitation constitute a small part of the signal,
while soil moisture is the parameter most affecting the GRACE signal in the studied region according to
soil moisture values derived from GLDAS models and GRACE TWS results having a strong correlation
(r = 0.84). Precipitation has a specific impact on the pattern of the spatial mass distribution. In Turkey,
we observed a meteorological drought turning into agricultural and hydrological drought due to the
climatic impact of the La Nina effect (cold phase) resulting in a lack of precipitation in Turkey. The
GRACE signal is very sensitive to this climatic change. It is worth mentioning that the NAO index
does not show any meaningful anomalies and correlation with GRACE TWS (r = −0.05). Finally, in
order to real-time monitor and estimate possible drought conditions in the future, either in Turkey or
in another region, we propose the combination of the new and up-to-date satellite gravity mission data
(GRACE-FO), offering more accurate measurements and providing information about mass decreasing
and increasing trends; the precipitation to understand the spatial mass distribution patterns; soil
moisture data (models and also in-situ) to monitor the occurrence of a possible agricultural drought;
the ENSO index to predict possible excess or deficiency in precipitation; and the drought indices,
which provide information about the type and the variability of the drought.
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