
remote sensing  

Technical Note

Field-Scale Rice Yield Estimation Using Sentinel-1A
Synthetic Aperture Radar (SAR) Data in Coastal
Saline Region of Jiangsu Province, China

Jianjun Wang 1,2 , Qixing Dai 1,2, Jiali Shang 3, Xiuliang Jin 4, Quan Sun 1,2, Guisheng Zhou 5

and Qigen Dai 1,2,*
1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and

Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China;
wangjianjun@yzu.edu.cn (J.W.); M160537@yzu.edu.cn (Q.D.); MX120180554@yzu.edu.cn (Q.S.)

2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University,
Yangzhou 225009, China

3 Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A OC6,
Canada; jiali.shang@canada.ca

4 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology
and Ecology, Ministry of Agriculture, Beijing 100081, China; jinxiuliang@caas.cn

5 Joint International Research Laboratory of Agriculture and Agricultural Product Safety, Yangzhou
University, Yangzhou 225009, China; gszhou@yzu.edu.cn

* Correspondence: qgdai@yzu.edu.cn

Received: 31 July 2019; Accepted: 26 September 2019; Published: 29 September 2019
����������
�������

Abstract: In recent years, a large number of salterns have been converted into rice fields in the coastal
region of Jiangsu Province, Eastern China. The high spatial heterogeneity of soil salinity has caused
large within-field variabilities in grain yield of rice. The identification of low-yield areas within a field
is an important initial step for precision farming. While optical satellite remote sensing can provide
valuable information on crop growth and yield potential, the availability of cloud-free optical image
data is often hampered by unfavorable weather conditions. Synthetic aperture radar (SAR) offers
an alternative due to its nearly day-and-night and all-weather capability in data acquisition. Given
the free data access of the Sentinels, this study aimed at developing a Sentinel-1A-based SAR index
for rice yield estimation. The proposed SAR simple difference (SSD) index uses the change of the
Sentinel-1A backscatter in vertical-horizontal (VH) polarization between the end of the tillering stage
and the end of grain filling stage (SSDVH). A strong exponential relationship has been identified
between the SSDVH and rice yield, producing accurate yield estimation with a root mean square error
(RMSE) of 0.74 t ha−1 and a relative error (RE) of 7.93%.

Keywords: rice yield estimation; Sentinel-1A; synthetic aperture radar (SAR); SAR simple difference
(SSD) index; coastal saline region

1. Introduction

With rapid economic development and urban sprawl, the area of agricultural land in China has
decreased dramatically over the past thirty years [1]. In an attempt to increase cropland acreage, a large
number of salterns have been converted into farmland in China’s coastal provinces such as Jiangsu.
While Jiangsu is one of the major rice producing provinces in China, the high soil salinity of its coastal
regions has produced a consistently low yield [2]. The accurate and detailed mapping of rice yield can
help to locate areas associated with low grain yield, which can guide farmers in their decision making
when selecting proper land management practices.
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In recent years, optical satellite remote sensing has been frequently used to map grain yield
over a wide range of crop types and geographical locations with good accuracies [3,4]. However,
optical remote sensing is not a choice for operational rice yield estimation in the coastal regions of
Jiangsu because of their almost always rainy/cloudy conditions during rice growth period. In contrast,
microwave remote sensing can penetrate cloud, haze and light rain, making it more suitable for
operational crop monitoring. For example, researchers have used C-band SAR data to study the
relationships between the SAR signals and crop parameters of various crop types [5,6]. Toan et al.
suggested the use of the backscattering coefficient values in vertical-vertical (VV) co-polarization (σ0

VV)
from European Remote-Sensing Satellite-1 (ERS-1) in rice yield estimation [7]. Similarly, Inoue et al.
found that the σ0

VV values from COSMO-SkyMed and TerraSAR-X are significantly correlated with
late rice maturing stage and rice panicle biomass [8]. A few studies used different SAR data to estimate
the yield or biomass of various crops [9–13]. Little research has been conducted in yield or biomass
estimation of rice or other crops from satellite SAR data in saline regions.

Sentinel-1 is the first to offer worldwide open-access SAR data [14]. Two satellites, Sentinel-1A
and Sentinel-1B, launched on April 3, 2014 and April 25, 2016, respectively, carry a C-band SAR sensor.
Sentinel-1 (1A or 1B only) acquires with a 12-day revisit cycle with a 185 km swath, and a nominal
resolution of 10 m in the default interferometric wide (IW) mode [15] either in VV co-polarization or
vertical-horizontal (VH) cross-polarization.

There have been very few studies in the literature to date that employed Sentinel-1 C-band SAR
data for crop yield estimation. The objective of this study was to evaluate the potential of Sentinel-1A
data for estimating rice grain yield in a saline field in a coastal region of Eastern China.

2. Materials and Methods

2.1. Study Area

The study area covers a 600 × 1600 m field located in the coastal Dongxin Farm, Lianyungang
City, Jiangsu Province in Eastern China (Figure 1). It belongs to humid subtropical monsoon climate.
The mean temperature of the region is 26.6 ◦C and 21.5 ◦C in August and September, respectively.
The mean precipitation is 210.3 mm and 117.4 mm in August and September, respectively [16]. The
study area is a former saltern, and the soil was salty clay [17]. Soil salinity at the 0–20 cm depth is
around 3.40%�, i.e., moderate salinity.

2.2. Determination of Rice Grain Yield

A single rice variety (Huaidao 5) was grown in the study area, Huaidao 5, a popular cultivar
in the province. Forty-two 16 × 16 m plots distributed across the field were selected for sampling
(Figure 1). Based on local knowledge from the corresponding author of the paper, soil salinity showed
a southwest-northeast trend in the study area; hence, the sampling sites were deployed along two
southwest-northeast transects. All sampling sites were over 60 m away from the field edge to avoid
the contamination of SAR signals from outside the field. The center location of each site or plot was
recorded using a GPS receiver. Within each plot, sampling was carried out over five 50 × 66 cm
subplots. The subplots were arranged with one plot located at the center of the plot and the rest of the
subplots located near the four corners of the plot.

Rice plants were manually harvested on October 30, 2016 for all five subplots within each plot.
Grains were separated using a small grain thresher and weighed individually. Grain moisture was
determined immediately after weighing. Gross grain yield was adjusted to a moisture content of 14%.



Remote Sens. 2019, 11, 2274 3 of 9
Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 9 

 

 

Figure 1. Map shows the location of the study area and the spatial distribution of 42 sampling sites 

within the field. 

2.3. Acquisition and Processing of Sentinel-1A Data 
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10-m resolution images with both VV and VH polarizations were download from the Copernicus 

Open Access Hub (https://scihub.copernicus.eu/dhus/#/home). The acquisition dates of the two 

images were July 19 and September 29, 2016, reflecting the end of the tillering stage of the vegetative 

phase and the end of the grain filling stage of the reproductive phase, respectively. 

 

Figure 2. Maps show measured rice grain yields at 42 sampling sites overlaid on top of images of VV 

((a) & (b)) and VH ((c) & (d)) backscatter values (σ0) in decibels (dB) calculated from two Sentinel-1A 

Figure 1. Map shows the location of the study area and the spatial distribution of 42 sampling sites
within the field.

2.3. Acquisition and Processing of Sentinel-1A Data

Two Level 1 ground range detected (GRD) Sentinel-1A (~5.405 GHz) interferometric wide (IW)
10-m resolution images with both VV and VH polarizations were download from the Copernicus Open
Access Hub (https://scihub.copernicus.eu/dhus/#/home). The acquisition dates of the two images were
July 19 and September 29, 2016, reflecting the end of the tillering stage of the vegetative phase and the
end of the grain filling stage of the reproductive phase, respectively.
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Figure 2. Maps show measured rice grain yields at 42 sampling sites overlaid on top of images of VV
((a) & (b)) and VH ((c) & (d)) backscatter values (σ0) in decibels (dB) calculated from two Sentinel-1A
synthetic aperture radar (SAR) images acquired on July 19, 2016 ((a) & (c)) and September 29, 2016 ((b)
& (d)).
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The Sentinel-1A image data were preprocessed using the Sentinel Application Platform (SNAP)
open-source software (http://step.esa.int/main/download/). The preprocessing included applying
precise orbit file, thermal noise removal, radiometric calibration, multi-looking (Range Look = 2),
speckle filtering (a 5 × 5- Gamma-MAP filter), terrain correction (Range Doppler Terrain Correction),
and radiometric normalization. The processed SAR data with a 20-m spatial resolution were then
projected onto WGS 1984 Universal Transverse Mercator (UTM) coordinates. The produced images of
VV and VH polarizations (σ0 in decibels (dB)) are shown in Figure 2.

2.4. Analytical Approaches

The σ0 in VV and VH polarizations were extracted from each Sentinel-1A SAR image using the
ENvironment for Visualizing Images (ENVI) software (ITT Exelis, Boulder, Colorado, USA) for each of
the individual sampling sites. These σ0 values at the tillering stage and the grain filling stage (denoted
as σ0

VV,T, σ0
VH,T, σ0

VV,F, and σ0
VH,F, respectively) were used for analysis in this study.

From σ0
VV,T, σ0

VH,T, σ0
VV,F, and σ0

VH,F, two SAR indices, σ0
VV,T/σ0

VH,T and σ0
VV,F/σ0

VH,F, were
calculated, and then three types of SAR indices including the SAR simple difference (SSD) index, SAR
simple ratio (SSR) index and SAR normalized difference (SND) index were calculated (Table 1).

Table 1. Used 15 SAR indices in this study.

Index Formula

σ0
VV,T σ0

VV,T
σ0

VH,T σ0
VH,T

σ0
VV,F σ0

VV,F
σ0

VH,F σ0
VH,F

σ0
VV,T/σ0

VH,T σ0
VV,T/σ0

VH,T
σ0

VV,F/σ0
VH,F σ0

VV,F/σ0
VH,F

SSDVV σ0
VV,F − σ

0
VV,T

SSRVV σ0
VV,F/σ0

VV,T
SNDVV

(
σ0

VV,F − σ
0
VV,T

)
/
(
σ0

VV,F + σ0
VV,T

)
SSDVH σ0

VH,F − σ
0
VH,T

SSRVH σ0
VH,F/σ0

VH,T
SNDVH

(
σ0

VH,F − σ
0
VH,T

)
/
(
σ0

VH,F + σ0
VH,T

)
SSDVV/VH σ0

VV,F/σ0
VH,F − σ

0
VV,T/σ0

VH,T
SSRVV/VH (σ0

VV,F/σ0
VH,F)/

(
σ0

VV,T/σ0
VH,T

)
SNDVV/VH

(
σ0

VV,F/σ0
VH,F − σ

0
VV,T/σ0

VH,T

)
/
(
σ0

VV,F/σ0
VH,F + σ0

VV,T/σ0
VH,T

)
1T denotes the tillering stage and F denotes the grain filling stage.

In total, 15 SAR indices (i.e., σ0
VV,T, σ0

VH,T, σ0
VV,F, σ0

VH,F, σ0
VV,T/σ0

VH,T, σ0
VV,F/σ0

VH,F, SSDVV, SSRVV,
SNDVV, SSDVH, SSRVH, SNDVH, SSDVV/VH, SSRVV/VH and SNDVV/VH) were calculated (Table 1). Their
relationships with measured rice grain yield were analyzed to determine the best three SAR indices
as candidates of grain yield indicators. A leave-one-out cross-validation (LOOCV) technique was
applied to perform an unbiased assessment of the estimation capacity of the model [18]. The model
goodness-of-fit was assessed by comparing the root mean square error (RMSE) and relative error (RE)
obtained from the LOOCV process [19,20]. The SAR index that achieved the lowest RMSE and RE was
determined as the optimum grain yield indicator. Thus, the SAR index was calculated for each pixel of
the studied field, and then the calculated SAR index values were converted into rice grain yields using
the built regression relationship.

http://step.esa.int/main/download/
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3. Results

3.1. Relationships Between Rice Grain Yield and SAR Indices at Single Growth Stage

Results from this study revealed that three SAR indices σ0
VV,T, σ0

VH,T and σ0
VH,F showed significant

exponential relationships with grain yield at the 95% confidence level (Figure 3). Both σ0
VV and

σ0
VH at the tillering stage showed positive relationships with grain yield; while at the grain filling

stage, negative relationships with grain yield were observed. In comparison, σ0
VH exhibited stronger

relationship with grain yield than σ0
VV did at either of the two growth stages. Among all six SAR

indices calculated at a single growth stage, σ0
VH,T achieved the highest coefficient of determination (R2)

of 0.46.
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3.2. Relationships Between Rice Grain Yield and SAR Indices Combining Both Growth Stages

As can be seen from Figure 4, six SAR indices (SSDVV, SSRVV, SNDVV, SSDVH, SSRVH and SNDVH)
that were calculated using data pooled from both stages had significant exponential relationships
with rice grain yield at the 95% confidence level. For both VV and VH polarizations, the SSD indices
showed negative relationships, while the SSR and SND indices showed positive relationships with
grain yield. In addition, the VH-polarized SSD, SSR and SND indices showed stronger relationships
with grain yield than the VV-polarized indices.
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Among all nine SAR indices (SSDVV, SSRVV, SNDVV, SSDVH, SSRVH, SNDVH, SSDVV/VH, SSRVV/VH,

and SNDVV/VH) combining both growth stages, SSDVH, SSRVH, and SNDVH achieved the highest R2

of 0.65, 0.64, and 0.65, respectively, much higher than the R2 value of 0.46 at a single growth stage
achieved by using σ0

VH,T—the best one among all six SAR indices at the single growth stage.
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3.3. Determination of Optimum SAR Index

Among all SAR indices tested, three indices (SSDVH, SSRVH, and SNDVH) having the highest
R2 values were further evaluated to determine the optimum SAR index as rice grain yield indicator
using LOOCV.

As shown in Table 2, SSDVH, SSRVH and SNDVH achieved RMSE of 0.74 t ha−1, 0.75 t ha−1 and
0.74 t ha−1 respectively, and RE of 7.93%, 8.12%, and 7.96%, respectively. Figure 5 shows the scatter
plots of measured grain yield against estimated grain yield. All data points are close to the 1:1 line of
the three SAR indices. Hence, either one of the three SAR indices can be used for grain yield estimation,
while SSDVH produced a slightly better yield estimation with the smallest RE than SSRVH and SNDVH.

Table 2. Quantitative relationships between SAR indices and rice grain yield by the leave-one-out
cross-validation (LOOCV).

Index R2 RMSE (t ha−1) RE (%)

SSDVH 0.65 0.74 7.93
SSRVH 0.64 0.75 8.12
SNDVH 0.65 0.74 7.96
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leave-one-out cross-validation (LOOCV) using SSDVH (a), SSRVH (b) and SNDVH (c), respectively.
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The best performed SAR index, SSDVH, for rice grain yield estimation was selected as the optimum
remote-sensing indicator for rice grain yield. The resultant rice grain yield estimation model is
as follows:

y = 10.0127526 × e−0.063187121 × SSDVH , (1)

where y is rice grain yield in t ha−1, SSDVH is in dB, R2 = 0.65, P < 0.001 and n = 42.

4. Discussion

Figure 3 revealed that grain yield had a much more significant relationship with σ0
VH at the

tillering stage than at the grain filling stage. This might be explained by the fact that the VH backscatter
lost its sensitivity to rice growth at the grain filling stage. It has been reported by Inoue et al. that the
RADARSAT-2 C-band VH backscatter saturated at high rice leaf area index (LAI), leaf biomass, and
total biomass values [21]. Other studies have also reported reduced sensitivity of RADARSAT-2 to
the dry biomass of corn, canola, soybeans, and wheat from mid to late season [6]. Similarly, studies
have shown that C-band SAR backscatter saturate and become insensitive to further increases in LAI
(LAI > 2–3) [22,23].

In the present study, although rice grain yield showed positive relationship with VH backscatter
at the end of tillering stage and negative relationship at the end of grain filling stage, the correlations
are not strong enough to produce highly accurate yield estimation. By using SSDVH representing the
temporal change of σ0

VH between the two Sentinel-1A image acquisition dates, this study found that
the accuracy of SSDVH in yield estimation increased significantly, achieving RMSE of 0.74 t ha−1 and
RE of 7.93%. There were five stages between the two image acquisition dates, i.e., internode elongation
stage in the vegetative phase of growth, as well as prebooting, booting, heading, and grain filling
stages in the reproductive phase of growth. The growth of rice during the five stages was critical to
yield formation, and this may explain why the temporal change of σ0

VH during the five stages had
better relationship with rice yield than σ0

VH at single date had.
This study also found that the three Sentinel-1A C-band cross-polarized backscatter (VH) based

indices have better correlation with rice grain yield than co-polarized backscatter (VV) based indices.
Although Inoue et al. concluded that rice panicle biomass was best correlated with X-band co-polarized
backscatter (VV) [8], most previous works that used C-band SAR confirmed with the results from
the present study. For instance, Wiseman et al. reported that RADARSAT-2 polarimetric C-Band
SAR HV can discriminate the level of biomass for canola and alfalfa crops [6]. Furthermore, C-band
data, Advanced Land Observing Satellite-Phased Array type L-band Synthetic Aperture Radar
(ALOS-PALSAR) cross-polarized HV backscatter information also showed a better relationship with
the above-ground biomass of different forest types than co-polarized HH did [24]. A possible reason for
this may be that the cross-polarized data (HV or VH) mainly originate from multiple scattering within



Remote Sens. 2019, 11, 2274 8 of 9

the canopy and are less influenced by the canopy surface condition [25]. In contrast, the co-polarized
data (HH or VV) are more sensitive to changes in canopy surface conditions [26]. In addition, SAR
backscattering of cross-polarization is insensitive to row direction effect [27].

5. Conclusions, Limitations and Future Research

This study demonstrated the potential of the latest Sentinel-1A C-band SAR data for estimating
rice grain yield in a saline field in the coastal region of eastern China. The newly developed SAR index
SSDVH, employing the change of VH backscattering between the end of tillering and the end of grain
filling stages, exhibits a strong exponential relationship with rice grain yield, RMSE of 0.74 t ha−1 and
RE of 7.93%.

This preliminary study used only data from one growing season over a single field. The results
also indicate an over estimation of grain yield when the yield was below 9.5 t ha−1 and an under
estimation of grain yield when the yield was above 9.5 t ha−1 as revealed in Figure 5. To further perfect
the performance, future research should employ multi-year data collected from multiple fields across
different geographical conditions. In addition, future research will apply the newly proposed method
to study the spatial relationship between rice yield and soil salinity for the proper management of the
rice crop in the coastal saline region of Jiangsu Province, China.
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