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Abstract: Landslide is the second most frequent geological disaster after earthquake, which causes a
large number of casualties and economic losses every year. China frequently experiences devastating
landslides in mountainous areas. Interferometric Synthetic Aperture Radar (InSAR) technology
has great potential for detecting potentially unstable landslides across wide areas and can monitor
surface displacement of a single landslide. However traditional time series InSAR technology such as
persistent scatterer interferometry (PSI) and small-baseline subset (SBAS) cannot identify enough
points in mountainous areas because of dense vegetation and steep terrain. In order to improve the
accuracy of landslide hazard detection and the reliability of landslide deformation monitoring in areas
lacking high coherence stability point targets, this study proposes an adaptive distributed scatterer
interferometric synthetic aperture radar (ADS-InSAR) method based on the spatiotemporal coherence
of the distributed scatterer (DS), which automatically adjusts its detection threshold to improve the
spatial distribution density and reliability of DS detection in the landslide area. After time series
network modeling and deformation calculation of the ADS target, the displacement deformation of
the landslide area can be accurately extracted. Shuibuya Town in Enshi Prefecture, Hubei Province,
China, was used as a case study, along with 18 Sentinal-1A images acquired from March 2016 to April
2017. The ADS-InSAR method was used to obtain regional deformation data. The deformation time
series was combined with hydrometeorological and related data to analyze landslide deformation.
The results show that the ADS-InSAR method can effectively improve the density of DS distribution,
successfully detect existing ancient landslide groups and determine multiple potential landslide
areas, enabling early warning for landslide hazards. This study verifies the reliability and accuracy of
ADS-InSAR for landslide disaster prevention and mitigation.
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1. Introduction

Landslides are a common geological disaster typically induced by persistent heavy rainfall,
human activities and earthquakes. Landslides are extremely destructive; they severely restrict the
economic development of countries around the world and pose a serious threat to local public safety [1].
Monitoring and analysis of the landslide deformation area can provide an important basis for landslide
early warnings; therefore, this is key research area for geological disaster prevention and mitigation.
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At present, international landslide monitoring methods predominantly include absolute
deformation measurements based on global positioning systems (GPS), electronic total stations,
levels and so forth [2–4], relative deformation measurements based on displacement meters, crack
meters or fiber sensors and so forth [5,6] and quantitative analysis based on light detection and ranging
(LIDAR) technology [7,8]. Although these methods, which are based on ground point observations,
have the advantage of high precision, the number of monitoring points on the landslide body is limited
by the large amounts of field work and economic costs involved. The density of monitoring points is
typically low; thus, it is difficult to capture the spatial details of landslide deformation. As a result, these
methods cannot identify the distribution of large-scale landslide groups and their dynamic evolution.

In recent years, interferometric synthetic aperture radar (InSAR) remote sensing has shown
excellent application prospects for monitoring large-scale deformation (including landslide
displacement) [9–11] and has been used to monitor earthquakes, glaciers and volcanoes and achieved
good results [12]. In order to improve the practicality of InSAR techniques, Ferretti, Berardino,
Hopper et al. [13–15] have proposed multi-temporal InSAR (MTInSAR) to reduce the atmospheric
delays and spatiotemporal decorrelation. For instance, Lei et al. [16] applied the PS-InSAR method
to ERS-1/2, Radarsat-1 and TerraSAR-X images between 1992 and 2010, revealing the velocity and
locating landslides areas of Berkeley hills landslides. Zhao et al. [17] monitored the landslide along
the Jinsha River by using 20 advanced land observation satellite (ALOS)/phased arrey type L-band
synthetic aperture radar (PALSAR) images with the small baseline subset (SBAS) InSAR technique.
However this technique needs more persistent scatterers (PSs) while there are fewer persistent scatterer
(PS) targets due to general vegetation cover that forms on the landslide body in mountainous areas.
distributed scatterer (DS) interferometry can overcome the problem of no PS targets in the landslide
area and greatly increase the detection of effective deformation monitoring points [18]. However, for
the mountain areas, there are differences in the spatiotemporal coherence of the target due to regional
differences in mountainous areas. If the global threshold method is still adopted, low quality DS may
be selected and high quality DS may be deleted.

In order to improve the spatial resolution and success rate of large-scale landslide hazard detection
and landslide displacement monitoring, an adaptive distributed scatterer InSAR (ADS-InSAR) method
is proposed. This method automatically adjusts the DS target detection threshold according to the
spatiotemporal coherence of different distributed targets, thereby improving the spatial distribution
density and reliability of DS detection in landslide areas. The adaptive distributed scatterer (ADS)
target is subjected to time series network modeling and deformation solution calculation to extract the
displacement deformation of the landslide area. In order to verify the validity and reliability of this
method, this study uses Shuibuya Town in Hubei Province, China, as the research area. 18 C-band
Sentinel-1A images are employed to detect the spatial distribution of landslide points in the area and
extract and analyze surface deformation data.

2. Adaptive Distributed Scatterer InSAR Method

Compared with the conventional DS-InSAR method, ADS-InSAR uses the fast statistically
homogenous point (SHP) selection method to identify and derivate SHP. It converts the hypothesis test
problem into a confidence interval estimate to set the appropriate SHP number threshold, then divide
pixel targets above the threshold into DS candidate (DSC) points. After that, the image is divided into
high and low coherence regions according to coherence and the adaptive coherence threshold is set to
obtain the final DS candidate points. Finally, the parameters of the DS target are solved to obtain the
final deformation result.

2.1. ADS Target Recognition and Detection

The parameter p is set as a point to be evaluated, whose N time intensity samples are {a1, a2, . . . ,
aN}. Then, the sample point estimate of expectation of p is a(p) = (a1(p) + a2(p) + . . . + aN(p))/N. To
find the interval estimate of µ(p), we first need to determine the distribution of a(p). According to the
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central limit theorem, a(p) gradually approaches a Gaussian distribution as the number of samples N
increases. If the number of samples N is large enough, the Gaussian assumption can be satisfied. At
this time, the interval estimation of a(p) is:

P
{
µ(p) −Z1−α/2·

√
Var(a(p))/N < a(p) < µ(p) + Z1−α/2·

√
Var(a(p))/N

}
= 1− α, (1)

where P{·} represents the probability, Var(a(p)) is the true variance of point p and z1−α/2 is the
corresponding 1 − α/2 point in the standard normal distribution. According to the statistical theory
of SAR images, the single-view intensity image in the homogeneous region obeys the Rayleigh
Distribution [19]. The coefficient of variation CV is constant:

CV =

√
Var(·)
E(·)

=

√
4
π
− 1 ≈ 0.52, (2)

Here, E(·) represents the expectation. We assume that the samples are homogeneous in temporal
space, when the backscattering characteristics are not very strong. Then, Equation (1) can be
converted to:

P
{
µ(p) −Z1−α/2·0.52·µ(p)/

√

N < a(p) < µ(p) + Z1−α/2·0.52·µ(p)/
√

N
}
= 1− α, (3)

When µ(p) is known, it can be converted into a certain interval using the above Equation [20,21].
In actual processing, it is first assumed that the sample expectation and the true value are

approximately equal. By calculating the sample mean of all pixels except the reference cell and
comparing them to Equation (3), all points where the sample mean falls within the interval can be
considered as homogenous. However, when the number of time samples is small, there is a large
uncertainty in the mathematical expectation of the obtained samples. For this reason, in order to
reduce the estimated deviation caused by the distribution tail, the value of α is generally set to
50%. Subsequently, the samples of the pixels within the set are averaged, the sample expectation is
re-estimated and the re-estimated expectation is considered as the true mean of the reference points.
By iterating through the above steps and decreasing the alpha value to increase the interval range, a set
of points that meet the requirements is obtained. After further screening to retain the point of excellent
adjacency, the points are considered SHP [21]. It should be noted that, in order to ensure the accuracy
of the solution results and the validity of the interval estimation, determination of the N value is very
important. According to the classical statistical literature, when the probability distribution is smooth
(just like single-view intensity images subject to Rayleigh Distribution) that N = 5 is close enough to
the Gaussian distribution [22].

After determining the SHP of each pixel through the method of fast statistically homogenous
point selection, it is necessary to obtain the SHP number threshold to determine whether it is a DSC;
that is, when the SHP number is greater than the given threshold (generally set as the average of all
SHP Numbers), the point is considered as a DSC. After obtaining the DSC, the image is adaptively
filtered. The principle of filtering is to improve the coherence of alternative points and remove the
majority of speckle noise in the image. The coherence coefficient value of each point is then calculated,
which can be obtained by the following estimators [23]:

γ =

∣∣∣∑L
L=1 s1(L)s∗2(L)

∣∣∣√∑L
L=1

∣∣∣s1(L)
∣∣∣2∑L

L=1

∣∣∣s2(L)
∣∣∣2 , (4)

where γ is the coherence coefficient value, s1(·) and s2(·) represent the single look complex (SLC) image
of two scenes used for interference and L represents the number of identical particles in the set.
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Subsequently, the image region is divided into uniform blocks and the adaptive coherence
threshold is calculated by comparing the average coherence coefficient in the block with the overall
coherence coefficient of the image. If the average coherence value in the block is greater than the
overall coherence coefficient value of the image, the latter will be taken as the threshold value and vice
versa. The DSC in the block will continue to be screened. This process is repeated until the point is
selected to obtain all DS targets.

A mountainous area in Yunnan province, southwest China, was selected for the experiment
and the regional coherence coefficient is shown in Figure 1. The region was partitioned into 8 × 8,
16 × 16, 32 × 32 and 64 × 64 blocks and the average coherence coefficient value was calculated for
each block. The results are shown in Figure 2a–d. The DSC points within the extracted region and the
corresponding calculation times are shown in Table 1, the relationship between block threshold and
extracted points is shown in Figure 3.
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Figure 1. Coherence coefficient diagram for Yunnan province, southwest China.

By separating the high and low coherent regions, the adaptive threshold method can further
encrypt the highly coherent points in the low coherence regions without losing the highly coherent
points in high coherence regions. Experimental results show that, by increasing the set block threshold,
the number of extracted DS points starts to increase and eventually becomes stable. Because the
computational time of the program should be considered when selecting points in large areas, the
threshold value of the partition should not be too large. Therefore, to balance the sufficient number of
SHP and the computational time of the program, the 32 × 32 block threshold was chosen as the optimal
threshold as it can effectively increase the point density in low coherence regions and strengthen
surface feature inversion.

Table 1. Comparison of extraction results.

Block Threshold DS Points (pieces) Computational Time (s)

Global threshold 113,423 1.23
4 × 4 124,645 2.08
8 × 8 132,261 3.86

16 × 16 139,107 4.71
32 × 32 141,211 5.63
64 × 64 142,256 7.32
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2.2. Parameter Estimation

After all DS point targets are obtained, the three-dimensional phase unwrapping algorithm was
used to extract the deformation phase in this experiment. Here “three dimensions” includes two spatial
dimensions and one time dimension [24]. Firstly, the phase is unentangled in the time domain and
all points in the space are constructed to form a Delaunay triangulation net. Assuming that N SAR
images are acquired in the research area over a certain period of time, M interference pairs are formed
and their corresponding time baseline is ti (i = 1, 2, . . . , M) Then, the target x phase of any point in the
ith interferogram can be expressed as [25,26]:

ϕ(x, ti) = ϕde f (x, ti) + ϕatm(x, ti) + ϕnoise(x, ti), i = 1 · · ·N, (5)

The three components on the right of the Equation correspond to the deformation phase,
atmospheric phase and noise phase, respectively.

Assuming that deformation in the vertical direction is dominant in the study area, the deformation
phase can be expressed as a function of the vertical deformation rate, the time baseline and the incidence
angle of radar waves [27]. For N SAR images arranged in time sequence, there are N-1 continuous
time intervals (i.e., τ1, τ2, . . . , τM), which corresponds to the N-1 vertical deformation rate. Therefore,
the vector of the vertical deformation rate of a given pixel x can be expressed as:

Vx =
[
v1

x v2
x · · · vM

x

]T
, (6)

Assuming that SAR images k and 1 are combined to generate the ith interferogram, the deformation
phase in Equation (5) can be expressed as:

ϕde f (x, ti) = G(ti)·Vx, (7)

where
G(ti) = [0 0 . . . 0 β(τk) β(τk+1) . . . β(τl−1) 0 0 . . . 0 ], (8)

In Equation (8), β(τj) is:

β(τ j) =
4π
λ
· cosθ·τ j , k ≤ j ≤ l− 1, (9)

where λ is the radar signal wavelength (the radar wavelength of the Sentinel-1A satellite is 5.6 cm)
and θ is the radar wave incidence angle (the radar wave incidence angle of the Sentinel-1A satellite is
approximately 34◦). Therefore, Equation (5) can be further expressed as:

ϕ(x, ti) = G(ti)·Vx +ω(x, ti), (10)

where ω(x,ti) is the residual phase, which is the sum of the contribution components of the atmospheric
effect and the uncorrelated noise phase. For the ith interferogram, the interference phase increment at
any network connection edge of the Delaunay triangulation network (i.e., the arc segment connected
by two adjacent point targets x and y) can be expressed as:

∆ϕ(x, y, ti) = G(ti)·∆Vx,y + ∆ω(x, y, ti), (11)

where ∆ω(x,y,ti) is the residual phase increment, which is the sum of the atmospheric effect between
two point targets and the phase increment of the uncorrelated noise and ∆Vx,y is the increment vector
of the vertical deformation rate. For any arc connected by points x and y, M interference pairs can list
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M Equations as shown in Equation (11) and form the observation Equations [28]. The observation
Equations can be expressed by the following matrix:

∆F = A·∆Vx,y + W, (12)

where A is the coefficient matrix composed of β(τj) and zero values, ∆F is the phase increment vector
and W is the residual phase increment. Since the atmospheric phase delay shows the low-frequency
characteristics of high correlation in the spatial distribution, high-pass filtering can eliminate the
interference phase increment. And the noise phase shows high frequency characteristics in time and
space distribution, which can be suppressed by low-pass filtering [29,30]. Then, the least squares
adjustment method is adopted to estimate the incremental linear deformation rate, namely:

∆V̂x,y = A(ATPddA)
−1

ATPdd∆F, (13)

where ˆ is the estimator and Pdd is the prior weight matrix. After the least squares adjustment method is
used to estimate the linear deformation rate increment for any arc segment in the point-target network,
the phase ambiguity on the arc segment is judged according to the residual phase increment and
variance. The arc detected with ambiguity will be removed and is not included in the subsequent
deformation analysis. After obtaining the deformation rate increment on the effective arc, taking
a certain coherent point as the reference point and using the least squares adjustment method, the
vertical deformation rate of all point targets can be obtained [31]. Finally, according to the vertical
displacement rate corresponding to different time intervals of each point, the time series displacements
of each point can be calculated.

3. Study Area and Data

The research area is located in Hubei province, China and contains Changyang, Badong and
Wufeng counties. The mainstream of Qingjiang river flows from west to east across the region.
Shuibuya hydropower station is a key hydropower station located on the mainstream. The specific
location of the study area is shown in Figure 4.
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The region is characterized by undulating mountains, ravines and complex horizontal terrain,
typified by karst landforms. The maximum relative height difference is approximately 2900 m and most
slopes are covered by vegetation. The formation lithology is mostly shale, which is easily weathered
and softened by water [32]. Due to the terrain, the region has four distinct seasons and abundant
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rainfall. The annual average precipitation reaches 1000 mm. These regional characteristics make the
area prone to landslides.

According to historical records, there are several ancient large-scale landslide groups in the study
area, with a total volume of 24.2 million m3 and four landslides with volumes over 2 million m3 [33].
Instability related to these landslides will affect internal traffic, the safety of residents and even the
stability of the water conservation dam; thus, landslide detection is highly significant in this area. This
experiment used 18 Sentinel-1A images (orbital altitude: 693 km, orbital inclination: 98.18◦, re-visit
period: 12 days, C-band wavelength: 5.6 cm) provided by the European Space Agency (ESA). The
image of the average amplitude in the study area is shown in Figure 5. The time period was from March
2016 to April 2017. The minimum time resolution was 13 days and the spatial resolution was 30 m.
The elevation data was generated using SRTM1 DEM data provided by the United States Geological
Survey (USGS) with a spatial resolution of 30 m.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 18 
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Figure 5. Image of the average amplitude in the study area.

4. Results

The radar image acquired on 30 December 2016 was used as the single main image in the
experiment and all other images were used as auxiliary images to form a total of 17 interference image
pairs. The time-space baseline distribution is shown in Figure 6. The interference pattern formed by the
20161230–20160703 interference pair was used as an example (Figure 7). Due to the dense vegetation
and smaller artificial surface area, the interference fringes in the interference pattern are sparse and the
interference effect is poor.
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Figure 7. (a) Differential interference result and (b) differential interference result superimposed on the
amplitude image.

The fast SHP selection algorithm introduced in Section 2.1 was used to individually select
homogenous points for each pixel. The selected window size was set to 15 × 15, the threshold of
homogenous point numbers was set as the mean of SHP number 98 and the DS candidate points
(DSC) were selected. The coherence of DSC was then estimated and the image was segmented. As
mentioned above, considering the computational time of the algorithm, the number of blocks was set to
32 × 32 = 1024. The coherence coefficient diagram and block results are shown in Figure 8. The
coherence threshold value of each spatial coordinate was obtained by calculating the mean of the
coherence coefficient in each block and the DSC was further analyzed to obtain the DS points. Finally,
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287,584 DS points were obtained in the experimental area. In order to compare the advantages of the
ADS-InSAR method proposed in this study, the empirical threshold method (DS-InSAR) was also used
to select DS points and a total of 157,174 DS points were obtained. The spatial distribution map of DS
points for the two methods is shown in Figure 9.
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Figure 9. Selected distributed scatterer (DS) distribution for (a) the adaptive threshold and (b) the
empirical coherence threshold.

Luanshijiao area, shown in Figure 10, is used as an example; it is densely vegetated and belongs
to a low coherence area. In the figure, (a) is the detection point target result of the ADS-InSAR method
and (b) is the detection point target result of the DS-InSAR method. By combining the results with the
topographic map, it is clear that the area above the red wavy ridgeline is covered by dense vegetation
and the number of point targets extracted by the two methods are almost same. And the area below
the red wavy ridgeline contain many villages, among which there are many roads and bare lands.
Although these features with vegetation coverage may result in a decrease of coherence, they have
stable phase in time series and can be scatterer targets. After the adaptive threshold is determined for
the ADS-InSAR method, the point targets can be extracted.
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Figure 10. Comparison of DS distribution in the Luanshijiao area for (a) the DS result selected by the
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Furthermore, the comparison shows that the DS points selected by the ADS-InSAR method
are denser in the low coherence region, which is more conducive to surface deformation inversion.
Finally, all the acquired DS targets were used to conduct phase unwrapping with the three-dimensional
phase unwrapping algorithm. The annual deformation rate variation interval in the study area was
−38.7 mm/a to approximately +46.3 mm/a. The distribution of the annual average settlement rate is
shown in Figure 11.
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5. Discussion

5.1. Discussion of Landslide Monitoring Results

The results of the regional deformation time sequence are shown in Figure 12. The majority of
time points of large-scale deformation in this region are from June 2016 to August 2016. The left part
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and upper right part of the region shows settlement changes from May 2016, whereas the middle part
shows uplift changes. With time, the subsidence and uplift conditions become gradually weaker.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 18 
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Figure 12. Major deformation results per month.

According to the DS average annual deformation rates in Figure 11 and the deformation sequence
results in Figure 12, seven suspected landslide areas are detected in the experimental area—zone
1: Longtanping village and Qiaotouping village; zone 2: Luanshijiao area; zone 3: Huoshaoping
village and Liusongping village; zone 4: Jiangjiawan village; zone 5: Changling village; zone 6:
Fujiayan village; and zone 7: Taoziping village. As shown in Figure 13, the white areas show the
confirmed landslide areas and the red areas show suspected landslide areas. Although the suspected
landslide areas lack relevant data and evidence, an analysis of local historical data and surrounding
environmental factors suggests that some of the landslide points are ancient small-scale landslides and
are under continuous monitoring by the relevant departments. Moreover, due to the precipitation and
hydropower station discharge caused by the increased groundwater, surface uplift in the experimental
area is mainly concentrated in the Qingjiang river basin.
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Based on field investigations and relevant data from March 2016 to April 2017, the cause of
large-scale settlement has been found. It is predominantly attributed to three major aspects—geological
structure, climate change and human factors.

5.1.1. Geological Structure and Lithology

The study area is large and the geological environment is complex. The regional geological
structure can be divided into two types. (1) The Changyang county geomorphologic type belongs to
structural erosion and a low Zhongshan landscape, the slope body structure type is typically forward
slope and the slope is generally 20–40◦ [34]. (2) The Badong county and Wufeng county landform type
belongs to a karst landscape typified by low mountain canyons and dissolution basins. The slope
structure is complex and the slope is generally 17–30◦ [35,36].

For lithology in the study area, it can be approximately divided into three—(1) The Changyang
county geomorphologic type belongs to structural erosion. The formation lithology is composed of
limestone mixed with shale in the lower Permian Gufeng formation. Shale is prone to wind and
bloom, is easily softened in water, has low mechanical strength, experiences large deformation under
the influence of external forces and typically exhibits internal displacement under the influence of
internal forces [34]; (2) The Badong county landform type belongs to a karst landscape typified by low
mountain canyons and dissolution basins. The lithology of the strata is predominantly the Triassic
lower Daye formation, Permian lower Dalong formation, Wujiaping formation, Quaternary slope
collapse sediments and landslide deposits [35]. The majority of sediments are gray shale with a large
amount of debris distributed on the slope surface, which is easily weathered in later stages and easy to
soften and muddy when exposed to water; (3) The entire area of Wufeng county is mountainous and
belongs to a karst landscape with many karst caves. The terrain slopes gradually from west to east.
The stratum lithology is Quaternary artificial accumulation debris and gravel block layers and the
upper stratum lithology is loose, easy to percolate and affected by weathering [36].

Although the geological environment varies greatly between different areas, the lithology of the
strata is easily weathered and softened by water. Therefore, when heavy rainfall occurs, a large amount
of surface water seeps into the rock mass, which reduces adhesion between the rocks and reduces
their shear strength. Furthermore, due to softening and muddying, the top of the weak layer becomes
looser, the penetrating shear failure surface further deteriorates into a sliding surface and the slope
loses stability, leading to a landslide.

5.1.2. Climate Change

The study area has a subtropical monsoon climate with abundant rainy season rainfall, which is
mainly concentrated in summer. According to meteorological and hydrological data of this region,
the total monthly precipitation and mean monthly temperature of this region from January 2013 to
December 2017 was calculated (Figure 14). The broken line chart of rainfall and temperature indicates
that the study area is hot and rainy in summer and cold and dry in winter. And the precipitation in
June and July 2016 reached its peak in recent years. Abundant rainfall very readily induces landslides
for the following four reasons—(1) heavy rain causes a large amount of surface water to infiltrate into
the ground, continuously eroding the weak layer and reducing the mechanical strength of the rock and
soil [37]. Additionally, the infiltration pressure of pore water reduces slope stability, thereby inducing
landslides [38]; (2) Heavy rain increases underground water and soil water content and significantly
decreases the shear strength of soil. Moreover, as the underground water level increases, the soil weight
and moisture increases, further resulting in weakening of soil slope convergence, slope displacement
and landslides [39,40]; (3) Rainfall leads to an increase of groundwater velocity, which intensifies the
subsurface erosion of soil by groundwater, damages slope stability and induces landslides [40]; (4) The
continuous increase of groundwater will generate hydrostatic pressure within cracks in the soil mass,
increasing the sliding thrust of the slope body and subjecting the sliding surface to upward supporting
force, thereby reducing slope stability and inducing landslides [41–43].
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According to the results of major deformation by month, the increased rainfall in June corresponds
to the onset of slow displacement deformation in the study area. Especially after the rainstorm on July
19, the shape variable of the experimental area increased significantly and a new suspected landslide
point appeared. With the gradual decrease of rainfall in the subsequent period, no new suspected
landslide areas appeared and the existing landslide area was restored naturally; thus, the settlement
phenomenon was alleviated to some extent.

5.1.3. Human Factors

With the continued increase of national economic level and improved living standards in recent
years—which are linked to the formulation and implementation of the 13th five-year plan—the level
of industry and commerce and urban and rural construction is progressively increasing in China.
However, the excavation of building foundations, construction of rural roads and the continuous
expansion of residential areas have all affected the surrounding natural environment. Landslides
caused by human factors can be subdivided into the following four groups. First, slope foot excavation
during housing construction leads to degradation and removal of support in the lower part of the
slope. Second, due to the influence of geographical location, improper site selection, such as the
construction of buildings on slopes, can result in slopes being unable to support significant weight,
leading to instability and slides. Third, human effects on water flow (e.g., impounding and drainage)
leads to infiltration of water flows into the slope body, increasing the water pressure, softening the
soil and rocks and increasing the bulk density of the slope body. Fourth, the continuous extraction of
groundwater and the uncontrolled cutting of trees lead to soil erosion on slopes, which changes the
original state of the slope and induces landslides.

5.2. A Cross Comparison with PSInSAR Method

In order to evaluate the reliability of this method, the landslide point A of Qiaotouping in one
of the suspected landslide areas was selected for evaluation. This point is both a DS target and a PS
target. Firstly, the target deformation time series results obtained by ADS-InSAR and PS-InSAR were
compared. Then, the deformation information of the landslide area was compared by combining
hydrometeorological and other relevant media reports.



Remote Sens. 2019, 11, 2273 15 of 18

The point A of Qiaotouping Changxi village (see Figure 15) which is PS and also DS, is selected
for the evaluation. Because this point is located in the middle of the mountainous region and is on a
steep slope strongly affected by rainfall and softening of the rock mass leads to the instability of the
slope, which is prone to landslides. The deformation time series results of point A obtained by the
ADS-InSAR method are approximately consistent with those obtained by the PS-InSAR method (see
Table 2). The RMS value of point A is 1.67 mm, which indicates that the proposed method is robust
and reliable.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 18 

 

 

Figure 15. Annual average settlement rate of landslide monitoring point A. 

Table 2. The deformation time series results of point A obtained by adaptive distributed scatterer 
interferometric synthetic aperture radar (ADS-InSAR) and persistent scatterer interferometric 

synthetic aperture radar (PS-InSAR). 

 2016/03/05 2016/04/22 2016/05/16 2016/06/09 2016/07/03 2016/08/20 
ADS(mm) 1.453  −2.191  −1.346  −12.336  −22.503  −9.701  

PS(mm) 2.392  −2.739  −1.932  −15.795  −23.627  −11.325  
 2016/09/25 2016/10/07 2016/10/31 2016/11/12 2016/12/30 2017/01/11 

ADS(mm) −12.471  0.164  0.110  −0.951  0.000  −3.713  
PS(mm) −13.543  −1.325  0.369  −1.189  0.000  −4.892  

 2017/01/23 2017/02/16 2017/02/28 2017/03/12 2017/03/24 2017/04/05 
ADS(mm) 1.141  −1.243  0.174  0.928  0.096  −0.390  

PS(mm) 1.426  −1.554  0.218  1.160  0.215  −3.150  

Other landslide points are located within a landslide group, such as Taoziping (zone 7) (Figure 
13). Considering that its geological structure and climatic environment are consistent with the 
existing landslide areas, there is a high probability of landslides at this suspected landslide point. In 
addition, some landslide points are affected by other geological disasters and are also classified as 
suspected landslide areas, such as Jiangjiawan (zone 4) (Figure 13). In July 2016, there was a huge 
mud-rock flow and flood in this area, which likely led to the current landslide disaster. 

6. Conclusions 

Although there are currently many mature and reliable methods for landslide monitoring, due 
to the special climatic environment and complex topographical and geological conditions in 
mountainous areas, the majority are technically difficult to perform and cannot achieve large-scale 
and high-density continuous deformation monitoring. In this study, an adaptive distributed scatterer 
interferometric synthetic aperture radar (ADS-InSAR) method was proposed. Landslide deformation 
data from Shuibuya district, Hubei province, China was then extracted and analyzed using this 
method, resulting in the detection of three landslide areas and several suspected landslide points. 
The calculation results were then compared with those of PS-InSAR. 

The results of the proposed ADS-InSAR method are consistent with the calculation trend of the 
PS-InSAR method, which confirms the reliability of landslide detection by ADS-InSAR. In addition, 
the proposed method can encrypt the point targets in low coherence regions under the premise of 

Figure 15. Annual average settlement rate of landslide monitoring point A.

Table 2. The deformation time series results of point A obtained by adaptive distributed scatterer
interferometric synthetic aperture radar (ADS-InSAR) and persistent scatterer interferometric synthetic
aperture radar (PS-InSAR).

2016/03/05 2016/04/22 2016/05/16 2016/06/09 2016/07/03 2016/08/20

ADS (mm) 1.453 −2.191 −1.346 −12.336 −22.503 −9.701
PS (mm) 2.392 −2.739 −1.932 −15.795 −23.627 −11.325

2016/09/25 2016/10/07 2016/10/31 2016/11/12 2016/12/30 2017/01/11

ADS (mm) −12.471 0.164 0.110 −0.951 0.000 −3.713
PS (mm) −13.543 −1.325 0.369 −1.189 0.000 −4.892

2017/01/23 2017/02/16 2017/02/28 2017/03/12 2017/03/24 2017/04/05

ADS (mm) 1.141 −1.243 0.174 0.928 0.096 −0.390
PS (mm) 1.426 −1.554 0.218 1.160 0.215 −3.150

Other landslide points are located within a landslide group, such as Taoziping (zone 7) (Figure 13).
Considering that its geological structure and climatic environment are consistent with the existing
landslide areas, there is a high probability of landslides at this suspected landslide point. In addition,
some landslide points are affected by other geological disasters and are also classified as suspected
landslide areas, such as Jiangjiawan (zone 4) (Figure 13). In July 2016, there was a huge mud-rock flow
and flood in this area, which likely led to the current landslide disaster.



Remote Sens. 2019, 11, 2273 16 of 18

6. Conclusions

Although there are currently many mature and reliable methods for landslide monitoring, due to
the special climatic environment and complex topographical and geological conditions in mountainous
areas, the majority are technically difficult to perform and cannot achieve large-scale and high-density
continuous deformation monitoring. In this study, an adaptive distributed scatterer interferometric
synthetic aperture radar (ADS-InSAR) method was proposed. Landslide deformation data from
Shuibuya district, Hubei province, China was then extracted and analyzed using this method, resulting
in the detection of three landslide areas and several suspected landslide points. The calculation results
were then compared with those of PS-InSAR.

The results of the proposed ADS-InSAR method are consistent with the calculation trend of the
PS-InSAR method, which confirms the reliability of landslide detection by ADS-InSAR. In addition,
the proposed method can encrypt the point targets in low coherence regions under the premise of
guaranteeing the accuracy of the solution, thereby more effectively inverting local surface deformation
and extracting deformation data. The suspected landslide points indicated by the calculation results
will be an important reference for various future engineering construction activities. The proposed
method can also provide effective early warnings for landslide occurrence and powerful insights for
the effective identification and evaluation of landslides in complex and dangerous mountainous areas.
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