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Abstract: The coseismic slip on the main fault related to the 2017 Iran-Iraq Mw7.3 earthquake has been
investigated by previous studies using DInSAR (differential interferometric synthetic aperture radar)
ground deformation measurements. However, DInSAR observation is not sensitive to the ground
deformation in the along-track (AT) direction. Therefore, only the one-dimensional (1D) DInSAR
coseismic deformation field measurements, derived in the LOS (line-of-sight) direction of radar, was
applied in source parameters estimation. To further improve the accuracy of the fault slip inversion,
the 3D (three-dimensional) coseismic deformation fields were reconstructed in the first place, by a
combined use of the DInSAR and MAI (multiple aperture InSAR) measurements. Subsequently,
the LOS and 3D deformation data sets were used as the constraint respectively, to perform a two-step
inversion scheme to find an optimal geometry and slip distribution on the main fault. The comparative
analysis indicated that the 3D coseismic deformation data sets improved the inversion-accuracy by
30%. Besides, the fault invention results revealed a deep dislocation on a NNW trending fault (the
strike is 352.63◦) extending about 60 km, along the fault dips 14.76◦ to the ENE. The estimated seismic
moment is 8.44 × 1019 Nm (Mw7.3), which is close to the solution provided by USGS (United States
Geological Survey). The slip distributed at the depth between 12 and 18 km, and the peak slip of
6.53 m appears at the depth of 14.5 km left near the epicenter. Considering the geological structure
in the earthquake region and fault source-parameters, it comes to a preliminary conclusion that
the ZMFF (the Zagros Mountain Front fault) should be responsible for the earthquake. In general,
this paper demonstrated the superiority of using the 3D coseismic deformation fields on source
parameters estimation.

Keywords: The 2017 Iran-Iraq Mw7.3 earthquake; DInSAR; MAI; 3D coseismic deformation fields;
source parameters

1. Introduction

The 2017 Mw7.3 Iran–Iraq Earthquake occurred in a region where the pattern of major plate
convergence is well constrained (Figure 1). Although some studies and institutions (USGS (United
States Geological Survey), GCMT (Global Centroid Moment Tensor), CENC (China Earthquake
Networks Center)) published some source parameters [1–7], the variable slip on the main fault related
with this earthquake is still uncertain. In order to accurately derive the variable slip on main fault, this
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present conducted detailed fault inversion using the 3D coseismic deformation fields reconstructed
by a combined use of the DInSAR and Multiple Aperture InSAR (MAI) measurements, based on
both the ascending and descending SAR images obtained by L-band ALOS-2 and C-band Sentinel-1A
sensors respectively.
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Figure 1. Shaded relief map of study area and image coverage. The yellow star indicates the epicenter 
of the mainshock (Mw 7.3). The red dots show the aftershocks with magnitude higher than Mw4.0 
before 17 November 2017. The blue solid squares indicate the five cities with intensity reaching up to 
VI or higher. The black and red rectangles mark the coverage of SAR images. The dark red line 
represents the boundary between the Iraq and Iran. 

Figure 1. Shaded relief map of study area and image coverage. The yellow star indicates the epicenter
of the mainshock (Mw 7.3). The red dots show the aftershocks with magnitude higher than Mw4.0
before 17 November 2017. The blue solid squares indicate the five cities with intensity reaching up
to VI or higher. The black and red rectangles mark the coverage of SAR images. The dark red line
represents the boundary between the Iraq and Iran.

Nowadays, the geodetic data of GPS and DInSAR have been extensively used in earthquake fault
inversion. Although coseismic GPS data is good at providing 3D surface displacements at individual
observation locations, labor power, and material resources cost is great. Meanwhile, the spatial density
of GPS sites is limited. In recent years, the DInSAR method is developing with continually launching
of new SAR satellites. Because it has a few significant advantages [8], such as high resolution, shorter
revisit interval, wider coverage, etc., that is widely applied in fault slip inversion at present. However,
the DInSAR observation is only sensitive to displacements in the line-of-sight (LOS) direction of
radar. Therefore, only one component of the surface displacement vector was brought in the fault slip
inversion. As a result, uncertainties of fault source parameters arose from data resources and data
incompleteness, and the accuracy of source parameters estimation is restricted.

To overcome the limitation, the Multiple Aperture InSAR (MAI) measurements was widely
used to provide valuable information about azimuthal surface displacements [8–12]. Considering
the heading angle of the ascending- and descending-pass direction is varying, totally four different
displacements vectors can be observed by combing the DInSAR and MAI measurements. As a result,
the 3D deformation fields can be reconstructed [13–21] to provide accurate data for fault slip inversion
and increase the inversion efficiency.

The previous study [22] measured the AT (along-track) deformation of the earthquake by the
Azimuth Pixel Offset (AZO) and MAI method, respectively. The comparison results of two methods
show that the MAI method is better at observing the AT (Along Track) deformation. At the same time,
the 3D deformation fields of the earthquake were reconstructed by combing the DInSAR and MAI
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method [22]. But the low frequency (e.g., L-band SAR) is more sensitive to ionosphere [23–25], so it was
necessary to remove the relative azimuth shift caused by ionosphere to obtain better deformation fields.

In this paper, the SAR data sets of ALOS-2 and Sentinel-1a are used firstly to derive the deformation
fields around the epicenter. During the procedures, we used the Precise Orbit Ephemerides for all
images acquired and applied the range split-spectrum method [26,27] to estimate the differential
ionospheric phase, and then mitigate the relative azimuth shift caused by ionosphere in the MAI
interferogram. The accuracy of the 3D coseismic deformation fields was promoted. Then this
paper focus on testing the effect of using the 3D coseismic deformation fields on fault slip inversion.
In addition, the fault slip inversion will be implemented by the constrain of the LOS and 3D coseismic
deformation fields, respectively. In the end, comparative analysis was performed to evaluated the
results. The results demonstrate the advantage of 3D coseismic deformation fields in fault slip inversion.
It should be pointed out that such method is applied for the 2017 Iraq Mw7.3 earthquake, for the
first time.

2. Study Area and Data

2.1. Backgroud of the Study Area

The 2017 Mw7.3 Iran–Iraq earthquake stuck the Iraq-Iran border region on November 12, 2017
with an epicentral of [45.9◦E, 34.93◦N], 50 km north east of Sarpol Zahab city based on the earthquake
report from the USGS (the United States Geological Survey). Figure 1 shows the tectonic in this
region, the continental collision between Arabia and Eurasian plate is the driving force. The oblique
convergence between the Arabia and Eurasia plates activate through a combination of strike-slip
(~5 mm/y in the central part of the Talesh Mountains) and thrust faulting (~2 mm/y–6 mm/y in the
northern and southern parts of the mountains), respectively [28,29]. Geologically, the earthquake’s
epicenter was located near the Zagros Mountain Front Fault (ZMFF) where the Zagros Mountains have
been uplifting since the Late Eocene by the driving force. As a result, this earthquake was triggered
and characterized by thrust motion.

This earthquake event has already been studied several times by using different data sets, resulting
in different fault models [1–7]. These studies indicate that this earthquake was a shallow-slip thrusting
event with a small amount of right-lateral strike slip. The major fault parameters including strike,
dip, and rake are similar. But the maximum slip is quite different. Based on the deformation fields
obtained by the data sets of ALOS-2, Kobayashi and Barnhart indicated that the maximum slip is
approximately 5 m [1,5]. Taymaz [2] indicated that the maximum slip is approximately 6.9 m based on
Sentinel-1A interferometric pairs and teleseismic P- and SH- body-waveforms data. Wang indicated
that the maximum slip is about 7 m while Feng indicated the maximum slip is 6 m (3,7).

2.2. Data

Figure 1 shows shaded relief map of study area and image coverage, etc. The four interferometric
pairs we selected for this study, include two pairs of L-band (radar wavelength of 23.6 cm) ALOS-2
images and two pairs of C-band (radar wavelength of 5.6 cm) Sentinel-1A images (see Figure 1). Table 1
lists the acquisition date of each SAR image and the perpendicular baseline (B⊥), temporal baseline
(BT) and orbit types of each interferometric pair. The ALOS-2 ScanSAR mode images were collected
along both the ascending and descending orbit at a radar incidence angle of 39◦ in HH polarization
and generated with a pixel spacing of 19.02 m in slant range and 25.9 m in azimuth (i.e., along track).
Each image scene covers an area of about 350 km by 350 km in azimuth and range, respectively.
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Table 1. The parameters of selected SAR images.

SAR Sensor Master Image Slave Image Observation Mode B⊥ (m) BT (days) Orbit

ALOS-2
20160809 20171114 ScanSAR −70 m 462 Ascending
20171004 20171115 ScanSAR +160 m 42 Descending

Sentinel-1A
20171111 20171123 IW Tops mode −33.6 m 12 Ascending
20171107 20171119 IW Tops mode 15.3 12 Descending

Meanwhile, the Senitnel-1A IW mode images were collected along both the ascending and
descending orbits at radar incidence angle of 39.5◦ in VV polarization and generated with a pixel
spacing of 5 m in slant range and 20 m in azimuth. Each image scene covers an area of about 250 km
by 170 km in range and azimuth, respectively. The heading angles of the ALOS-2 and sentinel-1A
ascending orbits are 347◦ and 344◦ (measured clockwise from the north), respectively; and the heading
angles of the descending orbits are 195◦ and 193◦ (measured from the north), respectively.

Around the epicenter, the vegetation coverage is low. At the same time, the temporal and spatial
baselines are small enough (see Table 1), thus the coherence is high enough. The DInSAR and MAI
methods will be processed effectively to reconstruct the 3D coseismic deformation caused by the
earthquake. In ALOS-2 ScanSAR mode, SAR antenna cyclically points to several subswaths with
different look angles. In each cycle, the SAR system collects a group of echoes for each subswath.
The group of echoes is called a burst. By repeating this cycle over several subswaths, a wide-swath
image can be acquired [30]. The earthquake region was fully imaged by a burst. So, considering the
efficiencies, only one burst of ALOS-2 images and whole Sentinel-1A images were used, actually.

3. Methodology

3.1. Geodetic Data Sets

In order to provide accurate data for fault inversion, we use two result sets. Four DInSAR results
provide spatially dense LOS deformation field along both the ascending and descending imaging
direction. Two DInSAR results and two MAI results based on ALOS-2 interferometric pairs will be
combined to reconstruct the 3D coseismic deformation-field.

3.2. Extraction of the LOS and Azimuth Coseismic Deformation Field

The previous study [22] used the conventional DInSAR method based on four images pairs of
ALOS-2 and Sentinel-1A to extract the LOS deformation field. The same procedures were performed
step by step. We used the Precise Orbit Ephemerides for all images acquired. A digital elevation
model (DEM) derived from the Shuttle Radar Topography Mission (SRTM) with 3 arcsec resolution [31]
was used to remove the topographic effects from interferograms. The DEM data of the study area is
depicted as a shaded relief map in Figure 1. In order to reduce the influence of noise, the method
of Goldstein [32] is used to filter interferograms. Then, for avoiding the accuracy loss caused by
orbit error and correcting the orbit and phase shift, refinement and re-flattening is processed by
selecting enough and high coherence reference points, which distribute uniformly and far from the
deformation field in the interferograms. And phase unwrapping was processed by the minimum-cost
flow (MCF) method [33]. In addition, we performed the range split-spectrum method to ALOS-2
ScanSAR interferogram to estimate the differential ionospheric phase [30].

Figure 2 shows the LOS coseismic deformation fields measured by the DInSAR method based
on four interferometric pairs. It has two clear deformation lobes (here refers to lobe G and H) which
divided by an NNW trending bound (see black line AB in Figure 2). As the Figure 2a,c shows,
the maximum value of uplift in lobe G and subsidence in lobe H are approximately 100 cm and −30 cm,
respectively; and Figure 2b,d shows the maximum value of uplift in lobe G and subsidence in lobe H
are approximately 50 cm and −50 cm, respectively.
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Figure 2. The coseismic deformation maps in the LOS directions. (a,b) obtained from ALOS-2 DInSAR
processing. (c,d) obtained from Sentinel-1a DInSAR processing. The red star represents the epicenter of
the mainshock; The red solid squares represent the city Halabja and Sarpol-e-Zahab. The black line AB
is the deformation bound.

To extract the AT (along-track) deformation fields, we performed the conventional MAI method
based on two interferometric pairs of ALOS-2 (only one burst will be used). The achieved accuracy of
the AT deformation is approximately 8 cm with coherence of 0.6. Around the epicenter, the coherence
is high enough. Furthermore, the coherence can be further enhanced by multilooking and filtering
processes. It is suitable to use this method to measure the AT deformation of this earthquake.

Four SLC images, composed of both forward- and backward-looing SLC images from master
and slave SAR data of ALOS-2, were generated by controlling the Doppler Centroids and processing
bandwidth (PBW) for sub-aperture images according to the MAI processor [9–12]. The conventional
MAI processing for the SLC data includes azimuth common-band filtering between the master and
slave SLC images and beam-splitting for the purpose of dividing forward- and backward-looking
spectrum. During the MAI processing, we apply thirteen-looks and two-looks in the azimuth and
range directions, respectively, to reduce the phase noise in the interferograms. The band-width of
common band filtering is 482.39 Hz and 731.23 Hz, two forward-looking and two backward-looking
images were separated out from interferometric pairs of ALOS-2, firstly. Subsequently, both forward-
and backward-looking interferograms were generated independently. Finally, MAI interferograms
were obtained through dual-interferometry between forward- and backward-looking interferograms.
In particular, we used the estimated differential ionospheric phase to mitigate the relative azimuth



Remote Sens. 2019, 11, 2248 6 of 16

shift caused by ionosphere in the MAI interferogram. The AT deformation measured by the MAI can
be defined by the following equation [30]:

∆x = −
ΦMAIvg

2πnKaTC
(1)

where ∆x is the AT deformation, ΦMAI is the phase of the MAI interferogram, vg is the velocity of the
beam footprint on the ground, Ka is the azimuth frequency modulation (FM) rate, TC is the burst cycle
length, and n is the difference of burst numbers.

Figure 3 shows the AT deformation maps. (a) and (b) are the MAI results based on ascending and
descending images, respectively. The displacements of ascending and descending are a little different,
because the projected thrust motion vectors along the ascending and descending azimuth direction are
different. Figure 3 indicates that the AT deformation is concentrated in the lobe G, and the measured
maximum surface displacement is approximately 50 cm away from the SAR sensor. It reflects the
earthquake has some thin features of strike slip.
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maximum displacement in N–S direction is approximately 70 cm. The city of Sarpol-e-Zahab is 
located at the region that had mixed motion in the horizontal and vertical directions, so it suffered 

Figure 3. The along track deformation maps derived from MAI (multiple aperture InSAR) processing.
(a,b) derived from ascending and descending ALOS-2 MAI processing, respectively. The red star
represents the epicenter of the mainshock; The red solid squares represent the city Halabja and
Sarpol-e-Zahab. The black line AB is the deformation bound.

3.3. Reconstruction of 3D Coseismic Deformation Fields

This paper reconstructed 3D coseismic deformation fields by integrating LOS and MAI azimuth
deformation data sets. The retrieval of the east–west (E–W) (De), north–south (N–S) (Dn), up–down
(U–D) (Du) components of the surface deformation followed methods described in previous
studies [13–22]. Figure 4 shows the 3D coseismic displacements maps.

The deformation field covers an area of about 60 × 70 km2 with two clear deformation lobes which
divided by the trending bound AB mentioned in Section 3.1.

The heading and length of the arrows indicate the direction and magnitude of the horizontal
motion, respectively. The U–D component map (Figure 4a) shows somewhat similar displacement
patterns with the LOS deformation maps (Figure 2) because vertical motion has dominant during the
earthquake. Uplift appears in the lobe G, while subsidence appears in the lobe H. The maximum
uplift and subsidence values are 100 cm and –50 cm, respectively, thus reaching up to a relative
offset of 150 cm in the vertical direction. It can be confirmed that the U–D components are the most
violent, and the westward motion plays a major role in the horizontal motion. The vectors reflect the
characteristics of a pure thrust fault. The E–W component map (Figure 4b) clearly shows a pushing
effect of plates. Both the maximum displacement in lobe G and H is approximately 50 cm toward the
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west. The earthquake demonstrated dominantly vertical and westward motion along a thrust fault,
but it also encompassed movement in the lobe G of the N–S component map (Figure 4c), the maximum
displacement in N–S direction is approximately 70 cm. The city of Sarpol-e-Zahab is located at the
region that had mixed motion in the horizontal and vertical directions, so it suffered the highest
intensity (the intensity is VIII) and destructions (about 12,000 buildings collapse). At the same time,
the surface ruptures confirmed by Kobayashi [1] distributed in the uplift region mostly.
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3.4. Subsampling and Weighting of Data

The LOS and 3D data as shown in Figures 2 and 4 consist of million data points. As the
displacement field is varying smoothly, we can subsample the data with a factor of 4 and a quadtree
algorithm to obtain reasonable number of data points and good spatial representation of the LOS
and 3D displacements [34]. The numbers of remaining data points for four LOS deformation fields
are 1261, 959, 1552, 1184, respectively. Meanwhile the numbers of remaining data points for EW, NS,
and U–D directions are 1012, 1124, and 869, respectively. Despite dramatic reduction in quantity, this
down-sampled observations well retain the major features of the original interferograms.

We weight the data based on standard deviation of their deformation data [35]. The standard
deviation can be calculated by Equation (2),

σ =

√ΣN(u(i, j) −mu(i, j))2

N − 1

 (2)

where u(i, j) is the observed displacement of one point, mu(i, j) is the mean value of displacements of all
points, N is the number of points. After calculation, the weight factors for four subsampled LOS data
sets are 0.31, 0.24, 0.2, and 0.25; the weight factors for EW, NS, and U–D directions are 0.45, 0.15, 0.4.

4. Results and Discussion

With the using of the LOS and 3D deformation data sets, we aim to demonstrate the effect of using
the 3D coseismic deformation fields on fault slip inversion. For the 2017 Iraq Mw7.3 earthquake, based
on the LOS and 3D deformation data sets, respectively, we first assumed simple uniform-slip fault and
used a nonlinear optimization approach to find the optimum model parameters. Subsequently, we
compared our results with the published parameters [1,7] to confirm the main fault. Finally, we took
the obtained fault geometry and inverted the fault variable slip using a linear approach.
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4.1. Nonlinear Optimization

Based on the assumption of homogeneous elastic half-space, the geodetic data can be associated
with a shear dislocation model that contains a set of fault source parameters. The Okada model
is widely applied into the inversion of the main fault source parameters [36–43]. The fault source
parameters can be derived by minimizing the discrepancies between the observed and simulated
surface displacements. We set different objective functions to search optimum fault source parameters,
including fault length, width, strike, dip, rake, slip, and depth.

When LOS deformation data sets were applied to inversion, the objective function can be expressed
by Equation (3)

costfunction =
k∑

i=1


1

Ni

Ni∑
j=1

(
ui − fi(t)
σi

)2
ai

k∑
i=1

ai

 (3)

where k is the number of data sets; i is the index, j is the number i data sets’ index; αi is the weight
factor of number I data sets; Ni is the counts of observation of number i data sets; ui, fi(t) and σi are
observed deformation; simulated deformation and corresponding RMS the of number i data sets.

When the 3D deformation data sets were applied to inversion, the objective function can be
defined as Equation (4) [20],

H = [u3d −G3d(t) · s]
T
× Σ−1

uu × [u3d −G3d(t) · s] (4)

where u3d = [Du, Dn, De] denotes the 3D motion vector; G3d(t) = [Gu, Gn, Ge]T denotes the Green’s
functions that describe how slip across rectangular dislocation causes displacement at the ground
surface [36,37]; t represents a set of the fault geometric parameters; s represents a set of the slips
of all the fault patches; G3d(t)·s denotes the simulated deformation at a ground point; Σuu is the
variance–covariance matrix describing the quality of the highly spatially correlated observation data,
which can be determined by using an exponential covariance function [20].

Based on the objective functions, we searched the optimum fault source parameters in intervals
provided by the GCMT (Global Centroid Moment Tensor), using the Levenberg–Marquardt algorithm
which added damping factor [30]. We set the initial damping factor as 0.06. Table 2 shows the fault
geometric parameters of our experiments and other studies [1,2]

Table 2. Fault geometric parameters from nonlinear optimizations assuming uniform slip (this study
and earlier publications).

Institution/Individual Longitude (◦) Latitude (◦) Moment
Magnitude Mw Strike (◦) Dip (◦) Rake (◦) Depth (km)

GCMT 45.84 34.83 7.4 351 11 140 17.86
USGS [2] 45.96 34.91 7.3 351 16 137 19

CSI 45.79 34.93 7.8 343 10 128 25
Taymaz [1] − − 7.4 358 16 149 19±2

Experiment A 45.86 34.74 7.3 352.65 14.44 139.29 18.52
Experiment B 45.86 34.73 7.3 352.63 14.76 137.1 14.17

a Denotes the “Experiment A” and “Experiment B” represents the results based on the LOS and 3D deformation
data sets, respectively.

It can be seen that our two results are quite similar with each other and closing to the published fault
geometric parameters [1,2]. The strike is approximately 353◦, close to NNW. The dip is approximately
15◦, thus the fault slip has thrust property. The rake is approximately 138◦, thus the fault slip has
dextral property.
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4.2. Variable Slip Inversion

Assuming uniform slip on fault planes is a simplification since the heterogeneity in fault
displacement and rake is observed on all scales of fault [44]. The fault slip is variable. Therefore, based
on the results of the nonlinear inversion, we extend the fault length and width to 60 km and 30 km,
then divide it into the multiple patches of 1.5 km by 1.5 km, thus having 800 fault patches. Based on
the Okada model, the Green functions were calculated, which contains the predicted LOS and three
direction changes at each location in the displacement data set produced by unit slip on each fault
patch (linear inversion). Thus having Equation (4),

u
0
0

 =


G1 G2

κ · L1 0
0 κ · L2


[

s1

s2

]
+ ε (5)

where u is the observed deformation; G1 and G2 are the Green’s function relating the surface deformation
to the strike-slip and dip-slip, respectively; L1 and L2 are the Laplace smoothing constraint matrix of
strike-slip and dip-slip, respectively; κ is the smoothing factor; s1 and s2 are strike-slip and dip-slip; ε
is the error of observation and model building.

The Laplacian operator was used to smooth the slip solution, and its effect was controlled by
the smoothing factor κ, which also controls a constraint of zero on the side and lower edges of
the fault plane [44]. We fixed the rake at the value derived from the uniform slip model, and use
the Fast Non-Negative Least Square (FNNLS) algorithm [45] to solve Equation (4). The amount of
slip S = (s1

2 + s2
2)1/2. Figure 5a,b shows the main fault slip distribution based on the 3D and LOS

deformation data sets. Figure 5a shows that the slip distributes at depths between 12 and 18 km,
the peak slip with value of 6.53 m appears at depth of 14.5 km; Figure 5b shows that the slip distributes
at depths between 12 and 18 km too. After comparing, we can find that the slip distribution of Figure 5a
is more concentrated, more reasonable and having finer details than Figure 5b, thus the constraining
by the 3D deformation data sets is more successful than the constraining by the LOS deformation
data sets.
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characteristics of fault slip, precisely. 

Figure 5. The main fault slip distribution. (a,b) are obtained by variable slip inversion based on the 3D
deformation data sets and the line-of-sight (LOS) deformation data sets, respectively.

Figure 6 indicates that fault has weak dextral slip motion and strongly thrust motion. Most
of the slip distribute in south area of epicenter. The depth of the fault top-left corner is 10.8 km.
The city Sarpol-e-Zahab locates at the fault boundary almost, that’s why it suffered the highest intensity
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and destructions. The geologic structure background mentioned in Section 2 accounts for these
characteristics of fault slip, precisely.
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Figure 6. Schematic view of the source mechanism. (a,b) are source mechanism based on the 3D
deformation data sets and the line-of-sight (LOS) deformation data sets, respectively. The blue star
represents the epicenter of the mainshock. The red solid squares represent the city Halabja and
Sarpol-e-Zahab. The arrows in (a,b) are the slip vectors.

4.3. Comparison and Evaluation of Results

For further comparison and evaluation, we simulate the ascending and descending LOS
deformation maps to calculate the residuals by our fault geometric parameters and slip based
on Okada model. The 3D simulated deformation components were all projected to the LOS direction
and the common area was cut for convenient comparison.

Figure 7 shows the measurements, models and residuals maps. The characteristics of simulated
LOS deformation maps are well matched with the real LOS deformation maps, no matter based on the
fault parameters and slip inversed from the LOS data sets or 3D data sets. The area where residuals
exist of Figure 7c,f is smaller than the area of Figure 7i,l. The obvious residuals appear in the near field
of Figure 7i,l.

For further comparison, we derive the profile CD on deformation maps. Figure 8 shows the
displacements along the profile CD. Figure 8 shows the displacements along the profile CD. Regard
smoothness and tendency of curve as a comparison-reference. It is clear that the profiles in Figure 8a,b
are in agreement mostly, while the profiles in Figure 8c,d are in disagreement relatively. The differences
exist due to the fault parameters inversed based on the 3D and LOS coseismic deformation data sets.

Figure 9 shows the residual distribution histograms. According to the Figure 9, the standard
deviation (Std) of residuals in Figure 7c,f are 2.4 cm and 2.9 cm, respectively. The standard deviation of
residuals in Figure 7i,l are 3.5 cm and 4.2 cm, respectively. The morphological characteristics of curves
in Figure 9a,b are slimmer and higher than the curves in Figure 9c,d.
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The comparative analysis indicated that the residuals of inversion based on the 3D data sets are
controlled better. We regard the Std as the comparative standard. Thus, the fault inversion using the
3D data sets improved nearly 30% relatively the use of the LOS data sets. These results are within a
reasonable range as defined by other studies [1,7], but our analysis is unique due to the reconstruction
of constrained 3D surface movements and the derivation of the fault’s optimal focal plane. These
results support existing seismological interpretations and contribute to a better understanding of the
main fault’s behavior.

5. Conclusions

This paper combined DInSAR and MAI observations to reconstruct the 3D coseismic deformation
associated with the 2017 Iraq Mw7.3 earthquake. From the 3D coseismic deformation filed, it can
be found that the maximum coseismic displacements in U–D, N–S, and E–W direction are 100 cm,
50 cm, and 100 cm, respectively. The U–D components are the most violent, and the westward motion
plays a major role in the horizontal motion. With the 3D displacements derived from the DInSAR and
MAI measurements, it can be concluded that the Iraq earthquake predominantly resulted in reverse
slip with small dextral slip component. Furthermore, fault inversions were performed based on the
3D and LOS coseismic deformation data sets, respectively. After comparison, we find that the 3D
coseismic deformation data sets improved the inversions’ accuracy by 30%. Our results reveal a deep
dislocation on an NNW trending fault (the strike is 352.63◦) extending about 60 km, along the fault
dips 14.76◦ to the ENE. The estimated seismic moment is 8.44 × 1019 Nm (Mw7.3), which is close to
the solution provided by USGS (United States Geological Survey). The slip distributed at the depth



Remote Sens. 2019, 11, 2248 14 of 16

between 12 and 18 km, and the peak slip of 6.53 appears at the depth of 14.5 km left near the epicenter.
Further comparative analysis indicated that the inferred geodetic results derived from this study can
be considered as the optimized results due the use of 3D displacements.

Considering the geological structure in the earthquake region, locations of aftershocks and fault
source-parameters, it comes to a preliminary conclusion that the ZMFF (the Zagros Mountain Front
fault) is responsible for the earthquake. In total, this paper demonstrates the superiority of using the
3D coseismic deformation fields on fault inversion.
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