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Abstract: In this paper, we present a state-of-the-art precipitation estimation framework which
leverages advances in satellite remote sensing as well as Deep Learning (DL). The framework
takes advantage of the improvements in spatial, spectral and temporal resolutions of the Advanced
Baseline Imager (ABI) onboard the GOES-16 platform along with elevation information to improve the
precipitation estimates. The procedure begins by first deriving a Rain/No Rain (R/NR) binary mask
through classification of the pixels and then applying regression to estimate the amount of rainfall for
rainy pixels. A Fully Convolutional Network is used as a regressor to predict precipitation estimates.
The network is trained using the non-saturating conditional Generative Adversarial Network (cGAN)
and Mean Squared Error (MSE) loss terms to generate results that better learn the complex distribution
of precipitation in the observed data. Common verification metrics such as Probability Of Detection
(POD), False Alarm Ratio (FAR), Critical Success Index (CSI), Bias, Correlation and MSE are used to
evaluate the accuracy of both R/NR classification and real-valued precipitation estimates. Statistics
and visualizations of the evaluation measures show improvements in the precipitation retrieval
accuracy in the proposed framework compared to the baseline models trained using conventional
MSE loss terms. This framework is proposed as an augmentation for PERSIANN-CCS (Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Network- Cloud Classification
System) algorithm for estimating global precipitation.

Keywords: precipitation; multispectral satellite imagery; machine learning; convolutional neural
networks (CNNs); generative adversarial networks (GANs)
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1. Introduction

Near-real-time satellite-based precipitation estimation is of great importance for hydrological
and meteorological applications due to its high spatiotemporal resolution and global coverage.
The accuracy of precipitation estimates can likely be enhanced with implementation of the recent
developments in technologies and data with higher temporal, spatial and spectral resolution. Another
important factor to more efficiently and accurately characterize these natural phenomena and their
future behavior is the use of the proper methodologies to extract applicable information and exploit it
in the precipitation estimation task [1].

Despite having high-quality information, precipitation estimation from remotely sensed information
still suffers from methodological deficiencies [2]. For example, the application of a single spectral band
of information does not provide comprehensive information for accurate precipitation retrieval [3–5].
However, the combination of multiple channels of data has been shown to be valuable for cloud
detection and improving precipitation estimation [6–9]. Another popular source of satellite-based
information is passive microwave (PMW) images from sensors onboard Low-Earth-Orbiting (LEO)
satellites. This information is more relevant to the vertical hydrometeor distribution and surface rainfall,
due to the microwave frequencies response to ice particles or droplets associated with precipitation.
Although PMW observations from LEO satellites have broader spatial and spectral resolutions, less
frequent sensing can result in uncertainty for the spatial and temporal accumulation of rainfall
estimation [10,11]. Data from GEO satellites are a unique means to provide cloud-rain information
continuously over space and time for weather forecasting and precipitation nowcasting.

An example of using LEO-PMW satellite data along with the GEO-IR-based data to provide
global precipitation estimation at near real-time is the Global Precipitation Measurement (GPM)
mission. The NASA GPM program provides a key dataset called Integrated Multi-satellite Retrievals
for GPM (IMERG). IMERG has been developed to provide half-hourly global precipitation
monitoring at 0.1◦ × 0.1◦ [12]. The satellite-based estimation of IMERG consists of three groups
of algorithms including the Climate Prediction Center (CPC) morphing technique (CMORPH)
from NOAA Climate Prediction Center (CPC) [10], the Tropical Rainfall Measuring Mission
(TRMM) Multi-satellite Precipitation Analysis from NASA Goddard Space Flight Center (TMPA) [13]
and microwave-calibrated Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) [14]. PERSIANN-CCS
is a data-driven algorithm and is based on an unsupervised neural network. This algorithm uses
exponential regression to estimate the precipitation from cloud patches at 0.04◦ by 0.04◦ spatial
resolution [14].

Effective use of the available big data from multi-sensors is one direction to improve the accuracy
of precipitation estimation products [15]. Recent developments of Machine Learning (ML) techniques
from the fields of computer science have been extended to the geosciences community and is another
direction to improve the accuracy of satellite-based precipitation estimation products [9,15–23].
Deep Neural Networks (DNNs) are a specific type of ML model framework with great capability to
handle a huge amount of data. DNNs make it possible to extract high-level features from raw input
data and obtain desired output through a neural network end-to-end training process [24]. This is
an important superiority of DNNs over simpler models to better extract and utilize the spatial and
temporal structures from huge amounts of geophysical data available from a wide variety of sensors
and satellites [25,26].

Application of DNNs in science and weather/climate studies is expanding and has been
implemented in some studies including, short term precipitation forecast [22], statistical downscaling
for climate models [27], precipitation estimation from Bispectral Satellite Information [28], extreme
weather detection [29], precipitation nowcasting [30] and precipitation estimation [8,28]. Significant
advances of DNNs include Convolutional Neural Networks (CNNs) LeCun et al. [31], Recurrent
Neural Networks (RNNs) Elman [32], Jordan [33] and generative models. Each of the networks has
strength in dealing with different types of datasets. CNNs benefit from convolution transformation to
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deal with spatially and temporally coherent datasets [31,34]. RNNs can effectively process information
in the form of time-series and learn from a range of temporal dependencies in datasets. Generative
models are capable of producing detailed results from limited information and provide a better
match to observation data distribution by updating conventional loss function in DNNs. Variational
AutoEncoder (VAE) [35,36] and Generative Adversarial Network (GAN) [37] are among the popular
types of generative models. In this paper, the conventional loss functions to train DNNs is replaced by
a combination of cGAN and MSE to specifically provide a proof that generative models are capable to
better handle the complex properties of the precipitation.

This study explores the application of the conditional GANs as a type of Generative Neural
Networks to estimate precipitation using multiple sources of inputs including multispectral
geostationary satellite information. This paper is an investigation for the development of an advanced
satellite-based precipitation estimation product driven by state-of-the-art deep learning algorithms and
using information from multiple sources. The objectives of this study are to report on: (1) application
of CNNs instead of fully connected networks in extracting useful features from GEO satellite imagery
to better capture the spatial and temporal dependencies in images; (2) demonstrating the advantage
of using more sophisticated loss function to better capture the complex structure of precipitation;
(3) evaluating the performance of the proposed algorithm considering different scenarios of multiple
channel combinations and elevation data as input; and (4) evaluate the effectiveness of the proposed
algorithm by comparing its performance with PERSIANN-CCS as an operational product and a
baseline model with a conventional type of loss function. The remainder of this paper is organized
as follows. Section 2 briefly describes the study region and the datasets used for this study. Section 3
explains the methodologies and details about the experiments in each step of the process. Section 4
presents the results and discussion and finally, Section 5 discusses the conclusions.

2. Materials and Study Region

The primary data sets used in this research include different channels and combinations of bands
from the Advanced Baseline Imager (ABI) onboard GOES-16 (NOAA/NASA). GOES-16 is the next
generation of the Geostationary Operational Environmental Satellite (GOES) with the Advanced
Baseline Imager (ABI; Schmit et al. [38]), with 16 channels. Compared to five spectral bands available
on the preceding generations of GOES, the ABI provides four times higher spatial resolution and almost
five times faster temporal coverage than the previous system. Providing much greater detail, ABI
enables more accurate monitoring of weather and climate. Each of the bands from GOES satellite is
most sensitive to a certain part of clouds and will give a better insight on structure and properties of
cloud patches and might have different applications. In this study, the emissive bands of GOES-16
satellite with approximate central wavelengths of 3.9, 6.18, 6.95, 7.34, 8.5, 9.6, 10.35, 11.2, 12.3, 13.3 µm
are implemented due to their continuous availability both for daytime and nighttime. The data covers
the time period from 2017 to the present at the temporal resolutions of 30 s to 15 min and are hosted
by NOAA’s Comprehensive Large Array-data Stewardship System [39]. More information about
GOES-16 can be found in Schmit et al. [40].

The target data in this study is the National Severe Storms Laboratory (NSSL) Multi-Radar
Multi-Sensor (MRMS) system which is developed by NSSL and recently activated by NOAA’s National
Weather Service (NWS). MRMS data is obtained from GPM Ground Validation Data Archive [41].
In this work, the MRMS data is processed to be used over the United States (24.35◦ to 49.1◦N, −124.4◦

to −66.7◦W) for every 30 min with 4 km spatial resolution in order to match with PERSIANN-CCS
product. To keep the consistency of the nadir spatial resolution of the ABI channels and MRMS
data implemented in this study with the PERSIANN-CCS operational product all the measurements
mapped to the same resolution of 4 km. In our experiments, we also include elevation data from the
Global 30 Arc-Second Elevation Data Set (GTOPO30) provided by the USGS [42].
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3. Methodology

With the constellation of a new generation of satellites, an enormous amount of remotely sensed
measurements is available. However, it is still a challenge to understand how these measurements
should best be used to improve the precipitation estimation task. Specifically, here we explored the
application of CNNs and GANs in step-by-step phases of our experiment to provide a data-driven
framework for near real-time precipitation estimation. Figure 1 illustrates an overview of our
framework, which consists of three main components: data pre-processing, deep learning algorithms
and evaluation.

Figure 1. The proposed framework for the Precipitation Estimation.

Data pre-processing is an essential part of our framework as measurements collected from
different spectral bands have different value ranges. For example, 0.86 µm (“reflective”) band contains
measurements ranging from 0 to 1 while 8.4 µm (“cloud-top phase”) band contains measurements
ranging from 181 to 323. Normalizing the input is common practice in machine learning as models
tend to be biased towards data with the largest value ranges. We make the assumption that all
remotely sensed measurements are equally important, so we normalize the data of each channel to
range from 0 to 1. Observations of each channel are normalized using the parameters as shown in
Table 1, by subtracting the min value from the channel value and dividing by the difference between
the min and max values. Moreover, all the datasets are matched in terms of spatiotemporal resolution
to qualify for image-to-image translation. As a result, both the MRMS and imageries from GOES-16
were up-scaled to match the PERSIANN-CCS as the baseline with 30 min temporal and 4 km by 4 km
spatial resolution.
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The pre-processed data is then used as input for deep learning algorithms. In this paper,
we explore the application of CNNs to learn the relation between input satellite imagery and target
precipitation observations. Specifically, we use the U-net architecture that has become popular in
recent years in the computer vision—with applications ranging from image-to-image translation to
biomedical image segmentation. An illustration of the U-net architecture is presented in Figure 2,
which shows an encoder-decoder network but with additional “skip” connections between the encoder
and decoder. The bottle-necking of information in the encoder helps capture global spatial information,
however, local spatial information is lost in the process. The idea behind the U-net architecture is
that decoder accuracy can be improved by passing the lost local spatial information through the
skip connections. Accurately capturing local information is important for precipitation estimation as
rainfall is generally quite sparse—making pixel-level accuracy that much more important. For more
information regarding U-nets please refer to Ronneberger et al. [43].

Table 1. Parameters for channel normalization applied using the formula: value−min
max−min .

Band Number-Wavelength (µm) min max

8–6.2 187 260
9–6.9 181 270

10–7.3 171 277
11–8.4 181 323

13–10.3 181 330
14–11.2 172 330

U-net is used to extract features from the pre-processed input data, which are then used to predict
the quantity of rainfall and the classification of rain/no-rain for each pixel. Each extracted feature is
the same height and width as the input and target data, and is a single channel; the number of channels
was selected through separate cross-validation experiments not discussed in this paper. The single
channel feature is then fed into a shallow regression network that predicts a quantity of rain for each
pixel. The specific details of each network are shown in Table 2.

Figure 2. Visualized structure of U-net network.

Performance verification measurements for precipitation amount estimation and rain/no-rain
(R/NR) classification are presented in Tables 3 and 4 respectively.

Two baselines are used to be compared to the output of our framework. The first one is the
operational product of PERSIANN-CCS and the other one is a framework with the same structure
as the proposed one, except that the loss term is calculated using only MSE. The reason to pick this
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baseline model is to show the superiority of the application of cGAN term in the objective function to
better train the network for the task of precipitation estimation.
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Table 2. Details of network architectures. Each layer of the encoder feeds sequentially into the next layer, from top to bottom (i.e., “conv1” top, so the output of the
”conv7” layer feeds into the “convt1” layer. Additionally, “convt2” and “conv8” layers take not only as input the output from their previous decoder layers but also
concatenates the output of the encoder layer of the same row (skip connection). This means the input of the “convt2” layer is the concatenated outputs of the “conv5”
and “convt1” layers. The output of the “conv8” layer is the input for the classifier and regressor.

Feature Extractor

Encoder Decoder

layer Kernel Size, Stride, Padding Activation Batch Norm layer Kernel Size, Stride, Padding Activation Batch Norm

conv1 3× 3× C× 64, 1, 1 ReLU Yes
conv2 3× 3× 64× 64, 1, 1 ReLU Yes conv8 5× 5× 65× 1, 1, 2 None No
conv3 3× 3× 64× 64, 2, 0 ReLU Yes
conv4 3× 3× 64× 128, 1, 1 ReLU Yes
conv5 3× 3× 128× 128, 1, 1 ReLU Yes convt2 3× 3× 129× 1, 2, 0 None No
conv6 3× 3× 128× 128, 2, 0 ReLU Yes
conv7 3× 3× 128× 128, 1, 1 ReLU Yes convt1 3× 3× 128× 1, 2, 0 None No

Classifier Regressor

Layer Kernel Size, Stride, Padding Activation Batch Norm Layer Kernel Size, Stride, Padding Activation Batch Norm

conv1 3× 3× 1× 1, 1, 1 Sigmoid No conv1 3× 3× 1× 1, 1, 1 ReLU No

C = number of input channels.

Table 3. Description of the verification metrics. TP denotes the number of true positive events, MS denotes the number of missing events, FP denotes the number of
false-positive events, TN denotes the number of true-negative events.

Verification Measures Formulas Range and Desirable Value

Probability of Detection POD = TP
(TP+MS) Range: 0 to 1; desirable value: 1

False Alarm Ratio FAR = FP
(TP+FP) Range: 0 to 1; desirable value: 0

Critical Success Index CSI = TP
(TP+FP+MS) Range: 0 to 1; desirable value: 1



Remote Sens. 2019, 11, 2193 8 of 17

Table 4. Common verification measures for the satellite-based precipitation estimation products.

Verification Measures Formulas Range and Desirable Value

Bias Bias = x̄− ȳ Range: −∞ to +∞; desired value: 0
Mean Squared Error MSE = 1

N ∑(xi − yi)
2 Range: 0 to +∞; desired value: 0

Pearson’s Correlation Coefficient COR = ∑(xi−x̄)(yi−ȳ)√
∑(xi−x̄)2

√
∑(yi−ȳ)2

Range: −1 to +1; desired value: 1

First phase of the methodology considers the most common scenario: one channel of IR from
GOES-16 satellite is used as input to predict target precipitation estimates. In this phase, the networks
in our framework (feature extractor and regressor) are trained using the mean squared error (MSE)
loss, optimizing the objective:

min
Greg

Ex,y∼Pr
[
‖y− Greg(x)‖2

2
]
, (1)

where Pr is the data distribution over real sample (x and y), Greg is the feature extractor and regressor,
x is the input GOES satellite imagery, and y is the target precipitation observation. According to this
phase experiments, the regressor predicts small quantities of rain when the target indicates no-rain
pixels. Instead of deciding on an arbitrary threshold to truncate values with, we follow the work
of Tao et al. [15] and use a shallow classification network to predict a rain/no-rain label for each
pixel—a binary mask. Tao et al. (2018) applied Stacked Denoising Autoencoders (SDAEs) to delineate
the rain/no-rain precipitation regions from bispectral satellite information. SDAEs are common and
simple DNNs consisting of an autoencoder to extract representative features and learn from input
to predict the output. The binary mask in our study is used to update the regression network’s
prediction—pixels where the classification network predicts no-rain is updated to zero. The classifier
uses the same single channel feature from the feature extractor as the regressor (details of the classifier
are shown in Table 2). This gives us an updated objective of:

min
Greg ,Gcls

Ex,y∼Pr
[
‖y− Greg(x) · Gcls(x)‖2

2
]
+ (2)

Ex,ŷ∼Pr
[
ŷ · log(Gcls(x)) + (1− ŷ) · log(1− Gcls(x))

]
,

where Gcls is the feature extractor and classifier and ŷ is the binarized version of y. Here the feature
extractor in Gcls share the same weights as those in Greg.

As mean squared error (MSE) is a commonly used objective for the task of precipitation estimation,
we use it as our optimization objective in the first phase. Using MSE, however, we find the outputs from
precipitation estimators to be highly skewed toward smaller values due to the dominance of no-rain
pixels, as well as, the rarity of pixels with heavy rain. This means that MSE by itself is insufficient in
driving the model to capture the true underlying distribution of precipitation values. And since one of
the main purposes of satellite-based precipitation estimation is to specifically track extreme events
with negative environmental consequences, this behavior is problematic.

The second phase of our methodology looks to address this problematic behavior. We follow
along the same line as Tao et al. [15], who tried to remedy this behavior with the addition of a
Kullback-Leibler (KL) divergence term to the optimization objective. KL divergence measures how
one probability distribution p diverges from a second expected probability distribution q:

DKL(p‖q) =
∫

x
p(x) log

p(x)
q(x)

dx (3)

DKL achieves the minimum zero when p(x) and q(x) are equal everywhere. It is noticeable
according to the formula that KL divergence is asymmetric. In cases where p(x) is close to zero but
q(x) is significantly non-zero, then the effect of q is disregarded. This makes optimizing difficult when
using gradient methods as there is no gradient to update parameters in such cases [44].
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We consider instead a different measure, the Jensen-Shannon (JS) divergence:

DJS(p‖q) = 1
2

DKL(p‖ p + q
2

) +
1
2

DKL(q‖
p + q

2
) (4)

JS divergence is not only symmetric but is a smoother function compared to KL divergence,
making it better suited to use with gradient methods. Huszár [45] have demonstrated the superiority
of JS divergence over the KL divergence for quantifying the similarity between two probability
distributions. An implementation of JS divergence is a generative adversarial network (GAN), which
adds a discriminator network that works against a generator network. The discriminator network
discriminates whether the given input is a real sample from the true distribution (ground truth) or is a
fake sample from a fake distribution (output from the generative network) and the generator network
attempts to fool the discriminator. The GAN concept is illustrated in Figure 3, where G is a generator
network and D is a discriminator network. For further detail on GANs structure please refer to the
papers by Goodfellow et al. [37] and Goodfellow [46].

Figure 3. Schematic conditional Generative Adversarial Network Structure.

In our setup, the generator consist of the previously mentioned networks (feature extractor,
classifier and regressor) and a fake sample is an output from the regressor that has been updated using
the binary mask from the classifier. Updating Equation (2) to include the discriminator network for
GAN gives the following equation:

min
Greg ,Gcls

max
D

Ex,y∼Pr
[
‖y− Greg(x) · Gcls(x)‖2

2
]
+ (5)

Ex,ŷ∼Pr
[
ŷ · log(Gcls(x)) + (1− ŷ) · log(1− Gcls(x))

]
+

Ex,y∼Pr
[

log(D(x, y))
]
+Ex∼Pr

[
log(1− D(x, Greg(x) · Gcls(x)

]
,

where D is the discriminator. Unlike the previously discussed discriminator that only looks at the
target y or simulated target Greg · Gcls, here we use a discriminator that also looks at the corresponding
input x as reference. This is known as a conditional generative adversarial network (cGAN), as now the
discrimination of the true or fake distribution is conditioned on the input x. cGANs have been shown
to perform even better than GANs but requires paired x, y data, which is not always readily available
Mirza and Osindero [47]. However, in this study, the paired data is provided by spatiotemporal
resolution matching of the inputs (GOES-R bands) and the observation data (MRMS). Our setup
follows closely to that of Isola et al. [48] as we consider pixel-wise precipitation estimation from
satellite imagery as the image-to-image translation problem from computer vision. The notable
differences between our setup and that of Isola et al. [48] are the generator network structure and
objective function. While the objective function of Isola et al. [48] contains only two parts: L1 on the
generator and binary cross-entropy on the discriminator, our final objective function (Equation (5))
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contains three parts: L2 on the generator, binary cross-entropy on the discriminator and binary
cross-entropy on the output of the classifier. The optimal point for the min-max equation is known
from game theory, which is when the discriminator and the generator reach a Nash equilibrium. That’s
the point when the discriminator is not able to tell the difference between the fake samples and the
ground truth data anymore.

The last phase of the methodology considers the infusion of other channels of GOES-16 satellite
data and GTOPO30 elevation information as an ancillary data. We first evaluate selected channels of
GOES-16 individually with and without inclusion of elevation data to establish a baseline for how
informative each individual channel is for precipitation estimation. We then evaluate combinations of
GOES-16 channels to see how well different channels complement each other.

4. Results

In this section, we evaluate the performance of the proposed algorithm over the verification
period for the continental United States. We compare the operational product PERSIANN-CCS,
in addition to a baseline model that is trained using conventional and commonly used metric MSE as
its objective function. The MRMS data is used as the ground truth data to investigate the performance
improvement in both detecting the rain/no-rain pixels and the estimates. Table 5 provides the overall
statistic performances of the cGAN model compared to PERSIANN-CCS with reference to the MRMS
data. Multiple channels are considered stand-alone and as the input to the proposed model including
channel 13 with similar wavelength to PERSIANN-CCS to make the comparison fair.

Table 5. Statistical evaluation metrics values for different scenarios using single spectral bands

Sc. Band Number/Wavelength (µm) MSE (mm h−1 )2 COR BIAS POD FAR CSI MSE COR BIAS POD FAR CSI

cGAN Model Output

Without Elevation With Elevation

1 8–6.2 1.410 0.270 −0.030 0.356 0.734 0.174 1.096 0.311 −0.017 0.363 0.726 0.180
2 9–6.9 1.452 0.271 −0.044 0.371 0.725 0.182 1.107 0.317 −0.032 0.428 0.736 0.190
3 10–7.3 1.536 0.281 −0.090 0.474 0.755 0.188 1.105 0.313 −0.037 0.450 0.727 0.200
4 11–8.4 1.310 0.271 −0.034 0.507 0.714 0.219 1.053 0.326 −0.047 0.599 0.726 0.229
5 13–10.3 1.351 0.262 −0.041 0.518 0.718 0.220 1.037 0.323 −0.039 0.594 0.731 0.224

PERSIANN-CCS

MSE COR BIAS POD FAR CSI
10.8 µm 2.174 0.220 −0.046 0.284 0.622 0.193

The elevation data is also considered as another input to the model along with single bands of ABI
GOES-16 to investigate the effect of infusing elevation data as auxiliary information. All evaluation
metrics show improved results for the proposed cGAN model over the operational PERSIANN-CCS
product during the verification period using band number 13. Specifically, the application of elevation
data combined with single spectral bands indicates further performance improvement. Beside channel
13 as input to the model, utilization of channel 11 (“Cloud Top Phase”) as a stand-alone input to the
model also shows good performance due to the statistics from evaluation metrics. It could be concluded
that channel 11 is also playing an important role as channel 13 in providing useful information for the
task of precipitation estimation either utilized as stand-alone or combined with elevation information.

Multiple scenarios are considered as shown in Table 6 to investigate the benefit that channels 11
and 13 provide for the model in combination with some other spectral bands including different levels
of water vapor. The evaluation metrics values indicate that the utilization of more spectral bands as
input to the proposed model (Sc. 9), leads to lower MSE and higher correlation and CSI.

Visualization of predicted precipitation values for the proposed cGAN model and operational
PERSIANN-CCS product are shown in Figure 4 to emphasize the performance improvement
specifically over the regions covered with warm clouds. Capturing clouds with higher temperature
associated with rainfall is an important issue that is considered as the main drawback for precipitation
retrieval algorithms such as PERSIANN-CCS. This inherent shortcoming is associated with the
temperature threshold based segmentation part of the algorithm incapable of fully extracting warm
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raining clouds [9]. Figure 4 is showing two sample IR band types and the half-hourly precipitation
maps from the proposed model using the inputs listed in the scenario number 9 in Table 6 for 31 July
at 22:00—UTC along with the PERSIANN-CCS output and MRMS data for the same time step.

Table 6. Statistical evaluation metrics values for different scenarios using multiple spectral bands.

Sc. Band Number/Wavelength (µm) MSE (mm h−1)2 COR BIAS POD FAR CSI

cGAN Model Output

1 8,11–6.2, 8.4 1.349 0.353 −0.094 0.635 0.683 0.266
2 9,11–6.9, 8.4 1.317 0.345 −0.088 0.627 0.667 0.275
3 10,11–7.3, 8.4 1.385 0.343 −0.119 0.668 0.681 0.274
4 8,9,10,11–6.2, 6.9, 7.3, 8.4 1.170 0.319 −0.064 0.601 0.658 0.275
5 8,13–6.2, 10.3 1.350 0.348 −0.100 0.644 0.689 0.264
6 9,13–6.9, 10.3 1.410 0.344 −0.124 0.661 0.678 0.275
7 10,13–7.3, 8.4 1.408 0.337 −0.129 0.665 0.676 0.277
8 8,9,10,13–6.2, 6.9, 7.3, 10.3 1.258 0.317 −0.077 0.594 0.655 0.274
9 8,9,10,11,12,13,14–6.2, 6.9, 7.3, 8.4, 9.6, 10.3, 11.2 1.178 0.359 −0.086 0.706 0.681 0.278

PERSIANN-CCS

MSE (mm h−1)2 COR BIAS POD FAR CSI
10.8 µm 2.174 0.220 −0.046 0.284 0.622 0.193

Figure 4. (a) Channels 10 and (b) 13 from ABI GOES-16 imagery; (c) cGAN model half hourly output;
(d) PERSIANN-CCS half hourly precipitation values; and (e) The MRMS data for 31 July 2018 at 22:00
UTC over the CONUS.Black circles on GOES-16 satellite imagery represent regions with warm clouds
and the red circles are the corresponding regions with the rainfall associated with the warm clouds.

Daily and monthly values for all the models are also provided in Figure 5. As shown in the red
circled regions for the precipitation values with daily scale in the left panel, the proposed cGAN model
output is capturing more of the precipitation as compared to PERSIANN-CCS output. Although both
models are showing overestimation compared to MRMS in monthly scale, precipitation values from
the proposed model are closer to the ground truth extreme values than PERSIANN-CCS.
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Figure 5. Daily (left panel) and monthly (right panel) precipitation values for (a,d) PERSIANN-CCS;
(c,f) cGAN model output compared to the (b,e) Reference data—MRMS. Red circles are highlighting
regions with most of the differences.

Figure 6 presents R/NR identification results for the proposed cGAN model and the
PERSIANN-CCS models for the 20th of July 2018. It is obvious that only small sections of rainfall are
correctly identified by PERSIANN-CCS while cGAN model is able to reduce the missing rainy pixels
and shows a significant improvement in delineating the precipitation area, represented by green pixels.
More pixels with false detection of rainfall are observed in cGAN model output than PERSIANN-CCS
which are insignificant compared to much higher detection and lower miss of rainy pixels.

Figure 6. Visualization of precipitation identification performance of PERSIANN-CCS vs cGAN model
output over the United States for 20 July 2018.

Figure 7 presents the maps of POD, FAR and CSI values for the cGAN model compared
to PERSIANN-CCS and the baseline model with MSE as the loss function. As explained in the
methodology section, the cGAN model’s loss term consists of an additional part other than MSE that
has to be optimized as a min-max problem in order to better capture complex precipitation distribution.
Figure 7 indicates the common verification measurements in Table 3 for regression performance of all
three models during the verification period. High measurement values are represented by warm colors
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and low measurement values are indicated by cold colors. Note that high values are desirable for POD
and CSI, while lower values are desirable for FAR. Figure 7 shows that the cGAN model outperforms
the PERSIANN-CCS almost all over the CONUS and is showing better performance over the baseline
model as well. For FAR, higher values observed for cGAN model are negligible considering the
significant improvement of POD over the baseline model and PERSIANN-CCS. An ascending order
can be observed in the maps of CSI of PERSIANN-CCS, the baseline model and the cGAN model.

Figure 7. POD (top row), FAR (middle row) and CSI (bottom row) of PERSIANN-CCS (left column),
the baseline model (middle column) and the cGAN model (right column) over the United States for
July 2018.

Correlation and MSE values are also visualized to help to better explain the performance
improvement of the cGAN model over PERSIANN-CCS over the verification period in Figure 8.

Figure 8. The Correlation and mean square error (MSE) values (mm h−1)2 for the cGAN and
PERSIANN-CCS model over the CONUS and during the validation period (month of July 2018).
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5. Conclusions

This paper takes advantage of advanced deep learning techniques, to investigate their capability of
effectively and automatically learning the relation between multiple sources of inputs and observation.
A two-stage framework using a more complex objective function for training a CNN from multiple
channels of latest generation of geostationary satellites is introduced to better capture the complex
properties of precipitation. The effectiveness of the proposed model is investigated by comparing it
with an operational satellite-based precipitation product (PERSIANN-CCS) and a baseline model with
a conventional type of objective function. The first stage is based on a classification model to delineate
precipitation regions and the second stage is a precipitation amount estimation model. The model is
calibrated and evaluated over the continental United States.

The evaluation metrics are compared for different scenarios defined to investigate the benefit
that each channel provides for the model individually or in combination with other spectral bands.
The experimental results demonstrated the general effectiveness of the cGAN two-stage deep learning
framework over the PERSIANN-CCS and the baseline model. The proposed model shows the best
performance with the application of most of the emissive channels from GOES-16, listed in scenario 9
in Table 6 over the verification period which is July 2018 in this study.

The overall performance is improved compared to the baseline model and operational product
of PERSIANN-CCS even with the application of IR channel solely as the input of cGAN model to
make the comparison fair. The model is capable of capturing the relationship between the satellite
information and the precipitation even at locations covered with warm clouds, which is an important
drawback associated with satellite-based precipitation estimation products with global coverage.
Moreover, the application of elevation data combined with low number of spectral bands used as input
showed performance improvement. We conclude that the model’s performance will be improved
using the elevation data as an ancillary information to each channel of the satellite and helps the
precipitation estimation task to be more accurate and generalized on a larger scale.

The current investigation is a preliminary step as a proof of concept for global application and
toward supporting NASA’s GPM mission to develop effective multi-satellite precipitation retrieval
algorithms for the fusion of precipitation information from multi-satellite platforms. Future works
include organizing a data-driven software package capable of exploiting NASA data sets, usable in
different study regions and for other geoscience applications. Further experiments are required for the
preparation of the model to serve as an operational product.
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