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Abstract: Rapid 21st century urbanization combined with anthropogenic climate warming are
significantly increasing heat-related health threats in cities worldwide. In Los Angeles (LA), increasing
trends in extreme heat are expected to intensify and exacerbate the urban heat island effect, leading
to greater health risks for vulnerable populations. Partnerships between city policymakers and
scientists are becoming more important as the need to provide data-driven recommendations for
sustainability and mitigation efforts becomes critical. Here we present a model to produce heat
vulnerability index (HVI) maps driven by surface temperature data from National Aeronautics and
Space Administration’s (NASA) new Ecosystem Spaceborne Thermal Radiometer Experiment on
Space Station (ECOSTRESS) thermal infrared sensor. ECOSTRESS was launched in June 2018 with
the capability to image fine-scale urban temperatures at a 70 m resolution throughout different times
of the day and night. The HVI model further includes information on socio-demographic data, green
vegetation abundance, and historical heatwave temperatures from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor onboard the Aqua spacecraft since 2002. During a period of high
heat in July 2018, we identified the five most vulnerable communities at a sub-city block scale in
the LA region. The persistence of high HVI throughout the day and night in these areas indicates
a clear and urgent need for implementing cooling technologies and green infrastructure to curb
future warming.

Keywords: urban; LST; temperature; ECOSTRESS; heat; vulnerability; urbanization; MODIS

1. Introduction

With a warming climate and an increasing concentration of the global population living in cities,
the negative impacts of urban heat islands (UHIs) and heatwaves are intensifying [1–3]. Currently,
55% of the world’s population live in urban areas, and that number is expected to increase to 68% by
2050 [4]. Accompanying this rural-to-urban demographic shift is a warming climate that is projected
to increase the average global temperature by ≈0.2 ◦C per decade [5]. The UHI effect, common to
city landscapes due to the thermal energy characteristics of urban surface materials, has been shown
to reduce air quality, increase levels of energy and water use, and cause heat-related illness and
death [2,6–8]. Mitigation of urban heat has been estimated to save over $10 billion per year in energy
use and improved air quality [6]. In terms of mortality, heatwaves are the most common cause of
weather-related deaths in the United States, contributing to or directly causing over 8000 deaths from
1999 to 2010 [9]. Research has shown that heatwaves on a global scale are becoming more frequent,
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longer, and deadlier [1,3], while in southern California, night-time heatwaves in the 21st century
are becoming hotter and more humid, a trend linked to anthropogenic sea surface warming and a
persistent moisture anomaly source off the coast of Baja California [10,11]. This makes it increasingly
important for scientists to better understand the spatially disproportionate effect that heat has on cities
and better communicate this data to local city planners in order to identify high-risk areas and mitigate
future effects through better planning and proper design.

Past studies have attempted to quantify urban areas over the globe presenting a high risk using a
heat vulnerability index (HVI) model [12] derived from either socio-demographic variables [13–17],
or more commonly, a combination of both socio-demographic and temperature variables to account for
the influence of a UHI. Temperature (exposure) variables are usually derived from either satellite-derived
land surface temperature (LST) retrieved from thermal infrared (TIR) sensors, such as Landsat Thematic
Mapper (TM) and Enhanced Thematic Mapper Plus (EMT+) [18–23] or MODIS [24–27], ground station
air temperature observations [28–32], modeled air temperatures [33,34], or a combination of both
satellite and ground temperatures [35]. Including temperature information is critical since we need to
understand how high social vulnerability coincides with areas of high heat exposure. For example,
an area of high social vulnerability may or may not correspond with an area of high temperature
and vice versa. This is especially important in a city like Los Angeles (LA) that includes a mix of
diverse cultural and socio-economic sectors in addition to microclimates driven by local topography
and oceanic influences that are impacted disproportionally by heat [10,36].

Our best tool for studying fine-scale urban temperatures is through remote sensing because it
can quantify the magnitude of the UHI effect across all permutations of urban surface temperature
gradients and complexity [37]. Relying on air temperatures from ground stations alone is inadequate
for representing fine scale temperature gradients due to their sparsity, and will usually lead to an
underestimation of temperature effects [27]. The availability of TIR data at spatial resolutions of 100 m
or less is generally required for distinguishing temperatures of urban materials that can be made useful
for urban planning [38]. In this study we utilize retrieved the LST from remotely sensed TIR data
to represent the surface UHI (SUHI) effect, and as the main driver for heat exposure. Ideally, the air
temperature (Tair) should also be included to fully describe the effects of urban heat since health
impacts are tied to both Tair (through convective processes) and the LST (through radiative emission),
which means LST alone is not adequate to fully describe the socio-economic impacts of excessive heat.
For example, during the daytime and especially in urban environments, the surface and air temperatures
can be markedly different due to various complex factors including solar insolation intensity, wind,
clouds, shading, sky-view factor, and sensor view angle [39–41]. Using the LST alone can also be a
limiting factor when taking into account the effects of shading from trees and buildings since the TIR
measurement is only sensitive to the “skin” layer of the surface, or for trees, this would represent the
“top of canopy” temperature, and would not reflect the temperature of the shaded understory or the
vertical surfaces from buildings. These shortcomings have been demonstrated using in situ radiative
thermometry to highlight the true anisotropy of temperatures in the urban environment [42–44].
However at night, the LST and Tair will display similar spatial and temporal patterns due to reduced
advection, solar shading, and greater atmospheric boundary layer stability [39,40,45]. Numerous
studies have derived regression functions for estimating Tair from the LST [40,46–49] or Tair from air
temperature profiles [50] on continental to global scales at coarse kilometer-scale resolution, but far
fewer have developed robust relationships in urban environments due to the increased complexity of
surface–air relationships in the built up urban environment [51–53]. Complicating the problem further
are the sparsity of station air temperature measurements and the kilometer-scale spatial resolution of
typical model derived urban air temperatures, e.g., the Weathe Research and Forecasting (WRF)-urban
canopy model [54], that do not correspond to the LST data at finer scales. Due to these issues and until
more robust LST–Tair statistical models are developed, we have chosen to use the LST (primarily at
night) as the driver for heat exposure over the LA study region.
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LST products derived from TIR imager data are currently available from National Aeronautics
and Space Administration (NASA) sensors, for example, the Moderate Resolution Imaging
Spectroradiometer (MODIS) on the Terra/Aqua platforms (since 1999/2002 respectively) [55,56], and the
Visible Infrared Imager Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi
NPP) (since 2011) [57] are both in Sun-synchronous orbits and provide data at a≈1 km spatial resolution
on daily time-steps. Higher spatial resolution LST data from the Advanced Spaceborne Thermal
Emission and Reflection radiometer (ASTER) at 90 m [58] and Landsat 5–8 at 60–120 m [59] are also
available but are not as frequent and have overpass frequencies only every 16 days. New LST products
released by NASA in 2018 for MODIS in Collection 6/6.1 (MOD21/MYD21) and for VIIRS Version 1
(VNP21) use a consistent approach to physically retrieve both the LST and spectral emissivity in three
thermal bands using the temperature emissivity separation (TES) algorithm [57,60,61]. This algorithm
results in a more stable accuracy in LST retrieval over all land surfaces, particularly over urban
areas [62]. While MODIS and VIIRS provide daily data at the same time every day (e.g., 1:30 am/pm) at
city block scales, imaging of urban areas down to the roof or building level typically requires 50–100 m
spatial resolution data in order to discriminate fine-scale urban features, such as green spaces, large
roofs, and playgrounds [63,64], especially during summertime heatwaves [65]. To address the spatial
scale issue in urban environments, a number of downscaling or “thermal sharpening” methods have
been proposed to produce LST data at similar spatial scales as visible shortwave infrared (VSWIR)
data (≈30 m), with most models assuming that robust relationships exist between the LST and VSWIR
derived products such as the Normalized Difference Vegetation Index (NDVI) and albedo [66–71].
While a number of these methods have been quantitatively assessed and compared with each other [72],
it is difficult to generalize an approach that is valid for representative conditions over different seasons,
climates, times of day, and for intrinsic urban material characteristics of different cities around the
world. For this reason, and depending on the training data used, a model that may work for a
particular city during a certain time of year and particular time of day, may not be suitable elsewhere
for different conditions.

The remote sensing of urban temperatures at high spatiotemporal scales took a big leap forward
with the launch of the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station
(ECOSTRESS) to the International Space Station (ISS) on 29 June 2018. ECOSTRESS has a native spatial
scale of 38 m × 68 m with a large swath width of 402 km (53◦) and a temporal repeat of ≈3–5 days at
different times of day depending on the latitude. The instrument consists of a multispectral whiskbroom
scanner with five spectral bands in the TIR between 8 and 12.5 µm and an average Noise Equivalent
Differential Temperature (NEDT) of ≈0.1 K at 300 K. The LST data and other higher level products
are aggregated to 70 m × 70 m pixels. The primary science objective of ECOSTRESS is to answer
critical science questions pertaining to plant water use and stress, with applications to agricultural
water consumptive use, but the data are applicable to a wide range of applications from urban heat to
volcanology studies [41]. For example, a number of key imaging characteristics makes ECOSTRESS
uniquely suited for observing the urban environment: (1) a high spatial resolution of 70 m × 70 m
(≈1.2 acres, or the size of a football field); (2) the inclined, precessing ISS orbit enables ECOSTRESS
to sample the diurnal cycle of temperatures and heat stress at different times of day; and (3) the five
thermal bands on ECOSTRESS allow for implementation of multispectral temperature/emissivity
separation approaches, such as the TES algorithm [60,73], for retrieving the most accurate LST over
urban areas [62].

The impacts of heat events are shaped by more than meteorological characteristics alone (e.g.,
wind speed, cloud cover, atmospheric stability), but are also a factor of the socio-demographics of
populations living within the city itself. Certain populations are more susceptible to heat than others,
due to factors, such as age and health, that can make people physically more vulnerable to heat, or due
to social or economic factors, such as wealth and social capacity, that make adapting to heat events less
challenging, for example, by being able to afford homes in cooler parts of a city. Persons above the age
of 65 who live alone and younger children are both especially vulnerable to heat given their physical
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inability to regulate heat as well as healthy adults [74]. Moreover, marginalized populations, including
the poor, elderly, and minorities, are particularly at risk of heat-related impacts and experience the
highest rates of heat-related mortality and morbidity due to social isolation and the lack of access to
relieving factors such as air conditioning or pertinent information through media access [29,74]. Other
factors, such as the cooling effects of vegetation, vegetation health, and the composition and structure
of the built urban environment, also have significant effects on heat exposure and vulnerability [8,75].
Non-stressed vegetation can act as “nature’s air-conditioners” by cooling the air and surrounding
environment through latent heat exchange (transpiration), in addition to providing shading, which can
dramatically lower surface temperatures by several degrees. For example, Wetherley et al. [37] found
that trees and turf grass in LA had significantly cooler temperatures than non-vegetated materials,
with the greatest difference between mean LST observed between turf grass (41.4 ◦C) and commercial
roofs (56.9 ◦C). However, the cooling effect of vegetation is subject to additional considerations, such
as irrigation frequency, droughts, and green space type and size, which can all vary greatly throughout
a city [76]. In some cases, the effects are contradictory, for example, asphalt and buildings have been
shown to both increase and decrease the evapotranspiration of local vegetation depending on whether
their dominant effect is channeling wind, advection of dry air, or shading [75,77]. Understanding these
differences at the city scale is necessary to optimize the use of vegetation as a cooling mechanism and
is of specific interest in arid or drought-stricken cities where water resources necessary for maintaining
vegetation can be limited.

The built urban environment, including materials and structure, also affects the way in which
radiation is captured and released by the surface. Urban materials, such as asphalt, absorb radiation in
the day and release it into the atmosphere at night, increasing urban night-time temperatures. These
effects can be mitigated through initiatives, such as cool roofs and cool roads, that replace the standard
low albedo materials with a surface coating of higher albedo, such as different types of paint, that reflect
more energy away from the surface, thereby lowering temperatures [78,79]. For example, the City of
LA implemented an ordinance in October 2014 requiring that all new residential houses use cool roof
technologies, and the LA Bureau of Street Services is similarly in the process of converting portions of
pavement to cool roads using a water-based asphalt emulsion sealcoat, a change that is estimated to
result in a temperature difference of as much as 10 ◦F on hot days. Additionally, the vertical structure
of a city, such as building height, orientation, and placement, will control shading and the ability of
heat to escape an urban area. For example, the geometry of buildings or “urban canyons” have a strong
influence on the amount of longwave radiation that is lost to the sky, a cooling effect that is determined
by the sky view factor, which is a measure of the proportion of a point to the area of the overlying
hemisphere open to the sky [80,81]. All of these structural and material influences on heat will affect
the vulnerability of different neighborhoods to extreme heat events.

In this study, we combined socio-economic and environmental variables overlaid with LST data as
a proxy for heat exposure to generate easily interpretable HVI maps for regions of LA county, California.
The HVI incorporates spatially explicit measures of sensitivity, adaptability, and exposure for a robust
and realistic analysis of vulnerability patterns in the city. The HVI is based on the assumption that
the effects of heat are not only a factor of the heat event itself, but of the population demographics
and urban structure that make some areas more susceptible to heat than others. By identifying
these most vulnerable areas, HVIs can act as powerful tools for informing policy, mitigation efforts,
and targeting resources.

2. Materials and Methods

2.1. Study Region

The study area we selected includes the urbanized LA basin in California, covering portions
of Los Angeles County, Orange County, Ventura County, Riverside County, and San Bernardino
County, as shown in Figure 1. The LA metropolitan area, referred to as the Los Angeles-Long
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Beach-Anaheim Metropolitan Statistical Area, is the second largest metropolitan area in the United
States with a population of over 13 million people (U.S. Census Bureau [82]). The LA metropolitan area
is characterized by a high degree of urbanization and low-density population due to the prevalence
of single-family detached houses, and is served by decentralized retail areas that rely on complex
road networks. The LA basin consists of an area with complex topography, and combined with the
coastal influence of a net diurnal onshore flow, results in distinctive microclimates and ecological
zones, in which the effects of heat propagate in different ways and result in disproportionate effects.
For example, stalled high pressure systems can be exacerbated by a weak offshore flow that adiabatically
draws in warm, dry air from the desert region into the coastal basin (e.g., Santa Ana events), resulting in
coastal heatwaves, while the marine layer and cooler ocean breezes may moderate coastal temperatures
during more intense inland heatwaves [83,84].
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2.2. Heat Vulnerability Index (HVI) Framework

In order to quantify heat vulnerability, we use a normalized heat vulnerability index (HVI)
model derived from a principal component (PC) analysis of exposure (E), sensitivity (S), and adaptive
capacity (A) variables [85]. A number of past studies have estimated HVI using a combination
of E, S, and A variables in either multiplicatory or summatory models to estimate societal heat
vulnerability [85–88], but all are based on a similar and more generalized human–environmental
framework of vulnerability [89]. Using this framework, vulnerability can be defined as a function of
three independent components as described in Wilhelmi and Hayden [85]: exposure (e.g., from heat,
humidity, and other climate and synoptic weather conditions), sensitivity (i.e., the extent to which a
system or population can absorb impacts without suffering long-term harm), and adaptive capacity
(the potential of a system or population to modify its features and behavior so as to better cope with
existing and anticipated stresses and natural hazards, e.g., in cities by planting more trees and using
cool roof technologies, air conditioning, etc.). After Wilhelmi and Hayden [85], we adopt a summatory
model where E, S, and A are defined for each pixel, i, within the city represented by the input data:

HVIi = Ei + Si −Ai (1)

In terms of adaptive capacity, research has shown that including adaptive capacity in societal
vulnerability models to better characterize society’s short term responses to extreme heat (e.g., cooling
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centers), and long term adaptation strategies (e.g., planting more trees), is critical to a more complete
understanding of vulnerability, since both are closely related to social inequalities [90–93]. Outcomes
from this research [92] suggest the need to go beyond examining demographic data exclusively to
assess vulnerability to extreme heat, but to incorporate additional adaptation factors relating to social
and behavioral factors at the household level into vulnerability research. The HVI model defined in
Equation (1) combines socio-demographic data, remotely sensed environmental variables produced
from Landsat and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery, and the LST
from ECOSTRESS and MODIS thermal infrared data.

Since the demographic variables may not necessarily be independent, correlation tests in addition
to a PC analysis using principal components is necessary to statistically compare different variables for
the region of interest. This is an important step since a PC analysis using demographic variables for
one urban region may yield very different results from another region due to differences in regional
climate, urban structures, and local climate zones. The input data into the HVI are first collocated and
interpolated onto a common geographic equal angle grid of ≈100 m × 100 m pixels over the LA county
region, as shown in Figure 1, and the final HVI is normalized between [0, 1], where higher values are
indicative of a higher heat vulnerability. The following subsections describe the derivation of the HVI
and variables used for the E, S, and A variable inputs.

2.2.1. Heat Exposure (E) Variables

For heat exposure (E) variables, we used three different types based on remotely sensed LST data:
(1) present day exposure from high spatial resolution ECOSTRESS LST data throughout the diurnal cycle,
(2) historical exposure from a climatology of MODIS LST heatwave data from 2002–2018, and (3) exposure
from MODIS trends in extreme temperatures using LST data from 2002–2018. All three exposure
variables will produce a different vulnerability map depending on the desired application. For example,
ECOSTRESS exposure will provide information on present day vulnerability at different times of the day
at fine spatial scales the size of a football field or a large industrial roof, while MODIS LST climatology
data will tell us more about what neighborhoods have been historically affected by extreme heat events,
such as heatwaves, and potentially where future communities will be at most risk from the derived
trends in extreme heat [94]. As discussed in the Introduction, both Tair and the LST are required to fully
represent the effects of heat vulnerability in urban environments. However, until more robust statistical
models can be developed to estimate Tair from remotely sensed LST data at fine spatial scales (<100 m),
we continue to use the LST as the main driver for heat exposure in this study. Furthermore, three of the
four ECOSTRESS scenes chosen in this study were during the night when LST and Tair temperatures
were much more closely related due to reduced insolation and advection [39].

ECOSTRESS Land Surface Temperature

ECOSTRESS LST data are available in the Level-2 product (ECO2LSTE Version 1), which can be
downloaded from the NASA Land Processes Distributed Active Archive Center (NASA-LPDAAC [95]).
The ECO2LSTE product provides the LST and emissivity in five thermal bands between 8–12 µm at a
70 m × 70 m resolution, including estimated uncertainties for each retrieved quantity in addition to a
quality control (QC) bit field. The ECO2LSTE product data are not cloud-screened, but a cloud bit
mask is available in the ECO2CLD product. Users should note that since ECOSTRESS started acquiring
data in August 2018, issues with the onboard data recorders resulted in no data being acquired in
two windows from 29 October 2018–10 January 2019, and 15 March–15 May 2019. However, since 15
March 2019, this issue was fixed using a direct file streaming option, and data acquisitions have
been proceeding as normal since then. The combined high spatiotemporal resolution of ECOSTRESS
provides unprecedented information on the UHI effect and heatwaves over urban environments since
temperatures can be monitored at different times of the day over the diurnal cycle. Currently only
geostationary sensors, such as the Geostationary Operational Environmental Satellite (GOES) series,
are able to provide temperatures over the diurnal cycle, but are not effective over urban areas due to
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coarse resolution pixel sizes of 2.5–4 km, depending on the sensor. During an extended period of high
heat over LA from mid-July to the first week of August 2018, ECOSTRESS acquired images over LA
at five different times during the day: 04:07 am, 02:10 pm, 05:01 pm, 09:26 pm, and 11:43 pm Pacific
Standard Time (PST). By comparison, Landsat 8 only had two acquisitions over the same area during
the same time period (14 July and 30 July at 11:27 am PST).

Figure 2 shows ECOSTRESS-retrieved LST images over the LA study area for four of the selected
times geolocated onto the fixed study grid. The LST’s during the daytime image in Figure 2a are
hottest in the San Fernando and San Gabriel Valley areas (>55 ◦C), and coolest along the coastal
regions of Westside, South Bay, and beach cities due to cooling effect of the ocean (<25 ◦C). The coolest
temperatures along coastal areas in the southeast beach cities is due to the marine layer moving in
over land at that time. As temperatures decrease throughout the night-time and early morning hours
(Figure 2b–d), materials with high heat capacity (e.g., concrete, asphalt, waterbodies) remain warm
and continue to radiate heat stored during the daytime hours. By 11:43 pm PST, areas of downtown LA
have cooled off, while areas in San Gabriel Valley (e.g., Chatsworth), San Gabriel Valley (e.g., El Monte),
North County (e.g., Anaheim), Long Beach, and airports (e.g., Bob Hope, Ontario) remain warm at
>25 ◦C. The road networks and freeways start to become clearly visible in Figure 2c,d during the night,
with some roads being warmer than others, likely due to their orientation, asphalt depth, shading,
and weathering [96]. The hottest surfaces during the early morning hours were identified as large
asphalt parking lots and airport runways/tarmac, for example, the Santa Anita race-track in the San
Gabriel Valley, Angels baseball stadium parking lot in Santa Ana, and Bob Hope airport were still as
warm as ≈23 ◦C at 4:07 am PST.
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MODIS Land Surface Temperature

We included additional exposure variables based on historical heatwave climatologies over the
LA basin from 2002–2018 using a new MODIS LST product (MYD21) [94]. The MODIS sensors
are polar-orbiting multispectral instruments on NASA’s Terra (since 1999) and Aqua (since 2002)
satellites that provide global coverage at ≈1 km resolution at nadir [97]. The LST climatologies were
derived from the new MYD21 LST product available in Collection 6 (overpass at ≈2:15 am/pm PST
over LA). The MYD21 LST’s are retrieved using the TES algorithm and provide more consistent
accuracy regarding the LST [60,61], particularly over urban surfaces, since the LST and emissivity
are dynamically retrieved as opposed to using split-window approaches (e.g., MOD11/MYD11) that
assumed a fixed and constant emissivity of 0.97 over all urban surfaces [98].

From MODIS MYD21 LST data we calculated two climatological exposure variables over the
LA study area from 2002–2018: (1) heatwave average daily temperature, and (2) trend in number of
days per year with daily average temperature >35◦C (95th percentile). Based on recommendations
from a summary paper on the measurement of heatwaves by Perkins and Alexander [99], we used the
excess heat factor (EHF) [100] as the definition of a heatwave in our study. The EHF compares average
minimum and maximum daytime temperatures to climatological reference temperatures from ground
station data (97.5th percentile) over a 3-day period, combined with an acclimatization index that
represents the anomaly of the present-day temperatures with respect to the previous 30 days. A detailed
methodology of the approach used for detecting heatwaves over LA using the EHF is available in
Hulley et al. [11], while an example of this methodology applied to MYD21 LST data to investigate
trends in extreme temperatures over LA is detailed in Hulley and Dousset [94]. The heatwave day/night
climatologies provide information on historical values of extreme heat throughout the LA region
during the 21st century, while the trends provide information on regions potentially vulnerable to
future extreme heat.

2.2.2. Sensitivity Variables

To assess the sensitivity of regions/individuals to total vulnerability, we used seven variables:
(1) elderly population, (2) population density, (3) poverty level, (4) disabled population, (5) unemployment,
and (6) building height. The population density and elderly population data were acquired from NASA’s
Socioeconomic Data and Applications Center (SEDAC [101]) Metropolitan Statistical Areas (MSA)
v1 [102]. MSA v1 data are provided for 50 metropolitan statistical areas with at least one million
in population with a grid resolution of 7.5 arc-seconds (0.002075 decimal degrees), or approximately
250 square meters. The gridded variables are based on census block geography from Census 2000
Topologically Integrated Geographic Encoding and Referencing (TIGER)/Line Files and census variables
(population, households, and housing variables). Education level, income, disability status, poverty level,
and employment status data were acquired from the American Community Survey (ACS) using 5-year
estimates from data collected from 2011 through 2015. ACS variables for education, disability, poverty
and unemployment were calculated as population percentages, as opposed to actual population numbers
from SEDAC. Percentages were used because the ACS survey does not include as many participants
as the census, and therefore a percentage of surveyed participants was thought to be a more accurate
representation of the data than raw numbers. See Table A1 for more information on data sources and
data characteristics. A brief justification for picking each sensitivity variable follows.

Elderly Population

Elderly population data were calculated as the percentage of the population aged 65 years and
older. The elderly are particularly vulnerable to heat given their physical inability and are unable
to regulate heat as well as healthy adults [74]. The elderly can also be considered a marginalized
population group, which puts them at risk of heat-related impacts due to social isolation and lack of
access to relieving factors such as air conditioning or pertinent information through media access [29,74].
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In fact many studies have shown that the elderly have both higher mortality rates [103–105] and
hospital admission rates [106,107] during heatwaves, exacerbated by underlying health conditions
such as cardiovascular diseases, diabetes, and pulmonary disease [108].

Population Density

The UHI effect has been found to be correlated with high population and building density
(“urbanicity”) [29,109], which is a major contributing factor to heat vulnerability, particularly for
populations with lower socioeconomic status [110,111]. Inner city housing usually consists of a mix of
multi-unit buildings and apartment complexes associated with greater population density, both of
which are thought to increase the risk of heat-related mortality during hot weather, particularly for
occupants on upper levels of multi-unit buildings [111–114]. Koreatown, just west of downtown LA,
is the most-densely populated district in LA County with 120,000 residents in 7.0 km2.

Poverty Level

Poverty levels in the ACS include the number of people who answered that they were living
in poverty divided by the total population for whom poverty status is determined. Several studies
have shown that residents living in poverty may be more vulnerable to the effects of excessive
heat [114–116], largely because of their inability to afford transportation, air conditioning, hospital
trips, information resources, or other preventive measures to diminish heat-related mortality and
morbidity [29,74,117,118]. Poverty also contributes to a growing number of individuals living
in isolation, which has been recognized by several studies as a major risk factor in heat-related
mortality [90,108,114,119].

Disabled Population

The disabled population was computed as the percentage of people who responded that they
had a hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty,
and/or independent living difficulty divided by the total civilian noninstitutionalized population.
Similar to the elderly population, disabled members of the community and those with other chronic
conditions are at a high risk of heat-related impacts due to social isolation and lack of access to relieving
factors [29,74]. They are also often overlooked in the design of response plans to heatwaves [120], and in
addition, have limited access to assistance and transpiration from cooling centers during excessive
heat events [120].

Unemployment

Unemployment was calculated as the number of unemployed persons divided by the total population
in the civilian labor force. Similar to the poverty level and population density variables, unemployment
is a socioeconomic status indicator that is linked to a higher risk of heat vulnerability [110,111].
Unemployment also heightens the risk of poverty and social isolation [121], further increasing risk factors
of heat-related mortality [90,108,114,119].

Building Height

Building height can be associated with higher building density, greater population density, and higher
levels of the UHI effect, all of which are considered contributing factors to heat vulnerability [110,111].
Building height also provides a proxy for the sky-view factor, i.e., the portion of sky viewable from
ground level that is correlated with the formation of the UHI effect [75,122]. Street canyons surrounded
by higher buildings, while providing shading depending on time of day, will predominately experience
more heating effects, particularly at night, since longwave radiation is not able to escape efficiently to the
atmosphere and gets trapped in urban canyons [75,80].
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An average building height map for the LA study scene was provided by the University of
Maryland (UMD) at a 30 m resolution using two Landsat 8 images from 2018. The new method uses
an object-based machine learning approach by fusing Landsat and elevation data to estimate building
height and volume at a 30 m resolution [123].

2.2.3. Adaptive Capacity Variables

Four variables were used to quantify adaptive capacity to heat: (1) education, (2) income, (3) green
vegetation fraction, and (4) distance to cooling centers. These variables aim to capture information that
is correlated to both individual and city-based strategies for heat resilience: education and awareness,
access to air conditioning, increased vegetation fraction and vegetation greenness, and access to cool
roof and solar technologies.

Education

Education level was computed in ACS by dividing the number of people with higher education
degrees (summation of those who had received a Bachelor’s Degree, Master’s Degree, Professional
Degree, or PhD) by the total population over the age of 25. Member of the community with higher
education can be considered to have higher adaptive capacity because it helps with critical thinking
and problem solving, both of which are important when identifying and reacting to extreme heat
circumstances [15]. For example, a number of studies have shown that those with lower levels of
education (high school and less) were at a greater risk of heat-related mortality than those with higher
levels of education, which seemed to provide a preserving effect [112,113,115,124].

Income

Similar to education, households with higher incomes are more likely to have newer homes
with better insulation, access to air-conditioning, larger properties with more trees, and live in cooler
neighborhoods. These factors decrease their vulnerability and increase their adaptive capacity to
excessive heat [125,126]. Income can also be considered a type of socioeconomic status that has been
found to have an inverse relationship with the risk of heat-related mortality [112,114,115].

Green Vegetation Fraction

Variations in the distribution and density of vegetation in cities can create microclimates that have
a significant effect on reducing heat-related vulnerability [6,29]. Conversely a lack of green space is also
associated with an increase in heat stress and the resulting morbidity [20,127]. Vegetation shifts the
energy partitioning in cities from higher latent heat release (cooling) to lower sensible heat (warming
the air), thereby reducing the UHI effect and associated heat vulnerability. However, the effectiveness
of cooling through vegetation is dependent on a number of factors, including irrigation frequency,
type and size, and placement (vegetation along west-facing walls will have a greater cooling effect),
which can all vary greatly throughout a city [76].

Green vegetation fraction was computed using the multiple endmember spectral mixture model
(MESMA) [128] on AVIRIS imagery during 2014 to estimate fractional green vegetation (GV) cover
throughout the study site at a 36 m resolution [37]. Since the AVIRIS GV data are static and only
available from 2014 flights, we also had the option to include normalized difference vegetation
index (NDVI) data from Landsat 8 data within 16 days of the exposure variable acquisitions from
ECOSTRESS. NDVI was derived from Landsat 8 surface reflectance analysis ready data (ARD) [129] for
a clear-sky Landsat scene over LA on 15 August 2018. NDVI uses a ratio between light reflectance in
the near infrared (NIR) and red bands [130]. ARD data are currently available from the United States
Geological Survey (USGS) over the conterminous United States (CONUS), and are tiled, georegistered,
and atmospherically corrected on a common equal area projection for ease of use. The NDVI data is
indicative of plant greenness and photosynthetic efficiency and is used extensively to monitor seasonal
and annual land cover changes in green biomass [130–133]. Higher NDVI values are associated with
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greener, healthier vegetation, while lower values are indicative of more senesced, drier vegetation
and bare soils. In general, we expect plants and trees with a higher NDVI to be cooler since they will
transpire more and release latent heat, resulting in cooling.

Distance to Cooling Centers

A number of large cities (e.g., New York City, Boston, Chicago, Los Angeles, Toronto) have begun
using air-conditioned public buildings, such as schools, senior centers, and libraries, as cooling centers
where nearby residents can seek relief from extreme heat, especially during heatwaves. While cooling
centers provide shade, water, restrooms, and other social services to help the public escape the heat,
their strategic placement is often not optimal. For example, keeping facilities open for extended hours
in areas where they are not fully needed will end up unnecessarily costing the city and taxpayer.
Their location requires information and an understanding of the spatial variability of temperature and
related vulnerability in any given city, which is what the HVI maps aim to provide. Therefore, while
cooling centers can serve as effective adaptation strategies, studies have found that they will have
limited use if outreach and transportation assistance to vulnerable individuals is not practiced [120,134].
We extracted cooling center locations from the LA location management system [135]. In order to
represent cooling centers as an adaptive capacity variable we computed a distance map from the
cooling center location points to every pixel in the raster-gridded map of LA. That is, any given
pixel was assigned the minimum radial distance from any of the cooling centers. Values were then
normalized between zero and one. Figure A1 shows the distance to a cooling center map with the
darkest red spots representing the cooling centers and values start decreasing in space as the pixels get
further from the respective cooling center, representing a lower adaptive capacity.

2.2.4. Principal Component Analysis

A principal component analysis (PCA) extracts the most important information from a dataset and
removes assumptions as to the relative importance of the variables considered while retaining as much
of the variance of the original data as possible [136]. The resultant principal components (PCs) are new
orthogonal variables ordered by the amount of variance they represent in the data. Variables within
the E, S, and A categories described above may not necessarily be independent; for example, there may
be strong correlations between different demographic variables (e.g., low income and education levels),
but at the same time, a priori assumptions regarding the relative importance of different variables may
result in biases. Therefore, correlations tests in addition to a PCA approach is necessary to statistically
compare different variables for the region of interest and reduce the original set of variables to a small
number of PCs that account for the most variance. All variables were normalized to have a mean of zero
and a standard deviation of one (z-score). In accordance with Kaisers rule [137], only those PCs that
had an eigenvalue greater than one were retained for analysis. The PCs that had eigenvalues greater
than one were then rotated using a varimax rotation to improve their interpretation and maximize the
dispersion of loadings across PCs. These rotated PC scores were weighted by variance and then used to
reconstruct the original observations. From the reconstructed data, the variables within each category
shown in Table A1 were averaged and used to compute the exposure, sensitivity, and adaptability
scores used in the final HVI (Equation (1)). All partial results for sensitivity, exposure, and adaptive
capacity were normalized from zero to one, in addition to the final HVI.

3. Results and Discussion

3.1. Statistical Analyses of Sensitivity and Adaptive Capacity Variables

The results of the PCA for sensitivity and adaptive capacity variables yielded four PCs based on
the Kaiser rule (eigenvalues greater than 1). The first four components accounted for a total of 70% of
the variance in the data. The loadings of the components signify the correlation between the respective
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variable and the associated PC. Table 1 shows the results of the PCA with loadings (after varimax
rotation) for the first four PCs with eigenvalues greater than one.

The variables in PC1 with the highest loadings were green vegetation fraction (0.42), income (0.50),
and education (0.47), and can be interpreted as a measure of adaptability through socioeconomic status
(wealth, education, green space availability). The resultant adaptive capacity image in Figure 3 shows
the highest loadings along cooler coastal areas (e.g., Westside, beach cities), but also inland in wealthy
neighborhoods with a higher percentage of green spaces such as in San Marino, Silverlake, Thousands
Oaks, La Crescenta, and Calabasas.

The dominant components in PC2 were elderly (0.62), population density (0.57), and building
height (0.42), which reflects sensitivity primarily through urban congestion. The highest loadings
in PC3 were poverty (0.21), disabled (0.67), and unemployment (0.48), which can be interpreted
as sensitivity through social isolation. The resultant sensitivity map in Figure 3 shows the highest
loadings in and around downtown LA, Koreatown, and other densely populated areas of Glendale,
and Century City on the Westside. Small pockets of distinctively high sensitivity values occurred
in census blocks with a primarily disabled population data, but in general, had higher loadings in
the poorer neighborhoods in LA county (e.g., south and southeast LA in the cities of Ingleside and
Torrance), and other areas within the San Fernando valley. In PC4, the only dominant component
was cooling center proximity (0.82), which is independent of all other variables. This indicates that
the locations of cooling centers in LA were most likely not in optimal areas that correlated with the
sensitivity variables in PC2 and PC3.

Table 1. Principal component (PC) coefficients (loadings) after varimax rotation for four principal
components.

PC1 PC2 PC3 PC4
Green vegetation fraction 0.42 −0.05 0.13 −0.02

Income 0.50 −0.06 −0.05 −0.01
Education 0.47 0.09 −0.11 −0.07

Adaptability 1
“Socioeconomic

status”
Elderly 0.11 0.62 0.03 −0.15

Population density −0.11 0.57 −0.08 −0.03Sensitivity 1
“Congestion”

Building height −0.12 0.42 −0.04 0.24
Poverty −0.36 0.12 0.21 −0.04
Disabled 0.01 −0.08 0.67 −0.07Sensitivity 2

“Isolation” Unemployment −0.23 −0.07 0.48 −0.05
Adaptability 2 Cooling center proximity −0.11 −0.11 −0.16 0.82

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 31 

 

The variables in PC1 with the highest loadings were green vegetation fraction (0.42), income 

(0.50), and education (0.47), and can be interpreted as a measure of adaptability through 

socioeconomic status (wealth, education, green space availability). The resultant adaptive capacity 

image in Figure 3 shows the highest loadings along cooler coastal areas (e.g., Westside, beach cities), 

but also inland in wealthy neighborhoods with a higher percentage of green spaces such as in San 

Marino, Silverlake, Thousand Oaks, La Crescenta, and Calabasas.  

The dominant components in PC2 were elderly (0.62), population density (0.57), and building 

height (0.42), which reflects sensitivity primarily through urban congestion. The highest loadings in 

PC3 were poverty (0.21), disabled (0.67), and unemployment (0.48), which can be interpreted as 

sensitivity through social isolation. The resultant sensitivity map in Figure 3 shows the highest 

loadings in and around downtown LA, Koreatown, and other densely populated areas of Glendale, 

and Century City on the Westside. Small pockets of distinctively high sensitivity values occurred in 

census blocks with a primarily disabled population data, but in general, had higher loadings in the  

poorer neighborhoods in LA county (e.g., south and southeast LA in the cities of Ingleside and 

Torrance), and other areas within the San Fernando valley. In PC4, the only dominant component 

was cooling center proximity (0.82), which is independent of all other variables. This indicates that 

the locations of cooling centers in LA were most likely not in optimal areas that correlated with the 

sensitivity variables in PC2 and PC3. 

Table 1. Principal component (PC) coefficients (loadings) after varimax rotation for four principal 

components. 

  PC1 PC2 PC3 PC4 

Adaptability 1 

“Socioeconomic status” 

Green vegetation fraction 0.42 −0.05 0.13 −0.02 

Income 0.50 −0.06 −0.05 −0.01 

Education 0.47 0.09 −0.11 −0.07 

Sensitivity 1 

“Congestion” 

Elderly  0.11 0.62 0.03 −0.15 

Population density −0.11 0.57 −0.08 −0.03 

Building height −0.12 0.42 −0.04 0.24 

Sensitivity 2 

“Isolation” 

Poverty −0.36 0.12 0.21 −0.04 

Disabled 0.01 −0.08 0.67 −0.07 

Unemployment −0.23 −0.07 0.48 −0.05 

Adaptability 2 Cooling center proximity −0.11 −0.11 −0.16 0.82 

 

 

Figure 3. (a) Sensitivity and (b) adaptive capacity images derived from socio-demographic and 

environmental variables and their principal component coefficients from Table 2. 

 

Figure 3. (a) Sensitivity and (b) adaptive capacity images derived from socio-demographic and
environmental variables and their principal component coefficients from Table 2.



Remote Sens. 2019, 11, 2136 13 of 27

3.2. HVI from ECOSTRESS over the Diurnal Cycle

Figure 4 shows the resultant HVI displayed from [0, 1] with the exposure index derived from
four ECOSTRESS LST acquisitions in Figure 2 at different times of day over a 3-week period from
July–August 2018 (17:01, 21:26, 00:43, and 04:06 PST). From the four images, we calculated the average
HVI by region, and the resulting statistics and vulnerability rankings are shown in Table 2 and
histograms are plotted in Figure 5. The late afternoon acquisition at 17:01 had the highest HVIs
with an average (standard deviation) of 0.63 (0.2) when LSTs were still high and exceeded 50 ◦C
over large portions of the urban environment (reds, dark red colors in Figure 2a). While the hottest
areas at this time of day occurred in the San Gabriel and Pomona Valley areas (Figure 2), these two
regions only ranked 5 and 8 respectively in terms of mean HVI (Table 2). This was most likely due to
other compensating socio-demographic factors represented in the sensitivity and adaptive capacity
variables. The highest HVIs greater than 0.8 occurred in areas around downtown LA and also in
the Pomona and San Fernando Valley. These are both regions with large proportions of impervious
surfaces, few green spaces, combined with densely populated and poorer communities. The top four
most vulnerable regions in terms of average HVI with values >0.6 all occurred in neighborhoods
surrounding downtown LA (east, south, central, and southeast in Figure 1). The most vulnerable region
was eastside LA with an average HVI value of 0.74. Eastside LA includes the wholesale district with a
high proportion of industrial and warehouse facilities that enhanced the UHI effect, in combination
with a historically low-income community and low percentage of education. Table 2 also shows that
eastside LA had no cooling centers, and also the lowest percentage of green space in LA. These factors
combined with having the second highest average daily temperature (29 ◦C) over the ECOSTRESS
acquisition period to result in high vulnerability scores.
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Correlation results in Table A2 for selected variables show that HVI had the highest correlation with
poverty level (0.83) and income (−0.85), followed by LST (0.69) and impervious fraction (0.55), and was
negatively correlated with vegetation fraction (−0.49), as expected. LST and vegetation fraction both
played a strong role in determining the HVI; however, their correlation was relatively low over the urban
environment (−0.23). LST-NDVI relationships usually have a strong negative correlation over natural
landscapes with the exception being over waterbodies and soil moisture [138]; however, over urban
areas, the relationship is more complex and depends on a number of factors including subpixel
contamination from impervious surfaces [37], plant species type and green vegetation fraction [68],
shading, and proximity to asphalt and buildings that increase/decrease evapotranspiration depending
on whether their dominant effect is channeling wind, advection of dry air, or shading [75,77].

The coastal regions had the lowest HVIs on average with values <0.4 in the South Bay, Westside,
beach cities, and South County. This was due to a combination of ocean cooling effects and areas with
high adaptive capacity in affluent communities with a high income that live in highly sought after areas
such as Venice, Brentwood, Santa Monica, Newport, and Laguna Beach. All four coastal regions ranked
in the bottom four spots on the most vulnerable list (Table 2 and Figure 5), and all had unsurprisingly
low average temperatures (<25 ◦C) and high green space fractions (25–39%). These areas had few
cooling center locations, as expected, since they likely would have lower demand for them. The HVI
decreased during the night-time with values of 0.50 at 21:26, 0.48 at 00:43, and 0.42 for the early morning
acquisition at 04:06 (in Figure 4b–d, respectively). However, small pockets of high vulnerability (HVI
between 0.6–0.9) were still present at night and were concentrated mostly in areas around downtown
LA that ranked the highest in vulnerability. Parts of San Fernando valley and North County also
remained vulnerable during the night, primarily due to higher sensitivity values from elderly and
disabled census blocks (e.g., red areas in Figure 3a). We should expect heat vulnerability to remain
high at night for the most vulnerable populations to heat since studies have shown that high night-time
temperatures are strongly correlated with the highest morbidity and mortality rates [2,139]. In Southern
California, this is compounded by the fact that humid night-time heatwave events are becoming
more common due to anthropogenic warming feedbacks [10,11]. The increase in night-time heatwave
temperatures and corresponding HVI is a serious concern for the elderly and disabled populations
because they need more time to recover from daytime heat stress and cannot sustain consecutive warm
nights, all exacerbated by sleep deprivation [2]. Sustained night-time air temperatures over 20 ◦C can
lead to a higher risk of heat related illness and death [139–141].
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Table 2. The most vulnerable regions in Los Angeles county ranked by mean HVI for the four
ECOSTRESS acquisitions from July–August 2018. Also shown are the number of cooling centers,
percentage of green space, and average surface temperatures from ECOSTRESS.

Vulnerability
Ranking

HVI (%)
(mean ± SD)

Number of
Cooling Centers Green Space (%) Temperature (◦C)

(mean ± SD)

1. East LA 76 ± 8 0 14 29.0 ± 0.8

2. South LA 72 ± 10 3 15 26.8 ± 1.0

3. Central LA 64 ± 19 1 18 27.4 ± 1.5

4. Southeast LA 61 ± 10 13 18 27.5 ± 1.2

5. Pomona Valley 59 ± 14 9 24 28.8 ± 1.7

6. Northeast LA 58 ± 10 3 25 28.6 ± 1.1

7. San Fernando 58 ± 15 5 26 29.6 ± 1.5

8. San Gabriel 56 ± 12 13 26 29.4 ± 2.0

9. Harbor 53 ± 14 11 18 25.2 ± 1.5

10. Verdugos 50 ± 19 4 32 29.0 ± 1.4

11. North County 47 ± 12 1 25 25.5 ± 2.1

12. South Bay 37 ± 18 3 23 23.9 ± 1.5

13. Westside 36 ± 17 2 30 24.6 ± 1.3

14. Beach cities 30 ± 12 0 25 17.6 ± 3.5

15. Santa Monica 30 ± 6 0 39 25.1 ± 1.6

16. South County 27 ± 9 0 27 20.5 ± 2.9

3.3. Historical HVI from MODIS Heatwave Climatology

While ECOSTRESS data provides temperature information at a fine scale in urban areas over
the diurnal cycle, knowledge of the spatiotemporal variability of historical temperatures and trends
over urban areas is also important for better understanding long-term change and to develop future
sustainability plans. NASA’s MODIS imager on the Aqua spacecraft has been providing twice-daily
LST data since 2002 that can be used to accurately quantify the spatiotemporal variability of temperature
changes over the LA region [60,94]. A recent study looked at all heatwaves between 2002–2018 detected
from ground measurements [11], and used that data to find all corresponding clear-sky MODIS LSTs
from a new product (MYD21) that is able to more accurately account for changes in temperature and
emissivity over the urban environment [94]. The resultant MYD21 LSTs were extracted during the
heatwave events to build up a clear-sky climatology of extreme temperatures over LA from 2002–2018
at a ≈1 km spatial resolution.

The spatial variability of heatwaves over the LA area will vary depending on the intensity of the
heatwave and other factors, such as the influence of ocean breezes and the inversion layer, but we do
expect to see persistent hotspots. In fact, when looking at the average daily heatwave LST from the
MYD21 product (Figure 6a), we see just that, i.e., persistent hotspots of high average daily heatwave
temperatures (>35 ◦C) over similar areas as the ECOSTRESS LST data in Figure 2. For example, distinct
hotspot areas can be seen in areas of southeast LA and North County, including the cities of Norwalk,
Whittier, Anaheim, and Irvine, while Chino, Ontario, and La Puente were the hottest regions in the San
Gabriel and Pomona Valleys. In the San Fernando valley, cities of Chatsworth, Van Nuys, and Sun
Valley were the hottest areas. A significant temperature gradient and cooling from inland to coastal
regions is also evident; for example, downtown LA was on average almost 10 ◦C warmer than the
westside coastal areas of Venice and Santa Monica during heatwave events.



Remote Sens. 2019, 11, 2136 16 of 27
Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 31 

 

 

Figure 6. (a) MODIS daily heatwave climatology derived from the MYD21 land surface temperature 

(LST) product from 2002–2018 at ~1 km resolution; (b) trends (in days/yr) of number of days per year 

exceeding an average daily LST of 35 °C (only data with significance at < 5% level shown); (c) 

corresponding HVI map using data from (a), and; (d) corresponding HVI map using data from trends 

in (b). 

Fernando, and Ontario. The histogram ranking of LA regions by HVI for MODIS data in Figure 5 are 

very similar to that from the ECOSTRESS data, with both agreeing on the top five most vulnerable 

regions (Eastside, South LA, Southeast LA, Pomona Valley, and Central LA). The persistence of high 

HVI over these regions using both current daily ECOSTRESS and historical MODIS data indicate that 

surface temperature variability during hot conditions was remarkably similar from a regional 

perspective, and likely tied to the unique “local climate zone (LCZ)” comprising a combination of 

surface structure, land cover, and human activity within each region [142]. These results also indicate 

a clear and urgent need for implementing cooling innovations and green infrastructure initiatives in 

these persistently hot regions.  

In terms of trends, Figure 6b shows the MODIS trend in the number of days per year with 

average daily LST exceeding an extreme temperature threshold of 35 °C (95th percentile of historical 

temperatures) [94]. The image shows that regions of high temperature do not necessarily correspond 

with high trends in temperature extremes, and that inland and valley areas had the highest trends. 

For example, while the San Fernando valley experiences some of the hottest temperatures historically 

(and a resulting high HVI), the trends over this area (<0.5 days/year) were on average lower than 

other hotspots zones including southeast LA, North County (e.g., Anaheim), and the San Gabriel 

Valley, where trends in number of days per year in extreme temperatures are close to 1 days/year. 

These results largely agree with a modeling study by Sun et al. [36] who showed that by mid-century 

(2041–2060), air temperatures would increase more in inland and valley locations in LA by on average 

2.4°C, in addition to experiencing 60–90 extremely hot days (>35 °C) per year. The corresponding HVI 

for the MODIS trend map in Figure 6d have areas of high vulnerability that are different to the 

Figure 6. (a) MODIS daily heatwave climatology derived from the MYD21 land surface temperature (LST)
product from 2002–2018 at ~1 km resolution; (b) trends (in days/yr) of number of days per year exceeding
an average daily LST of 35 ◦C (only data with significance at < 5% level shown); (c) corresponding HVI
map using data from (a), and; (d) corresponding HVI map using data from trends in (b).

The corresponding HVI from the MODIS daily heatwave LSTs is shown in Figure 6c using the same
sensitivity and adaptive capacity data used to derive the ECOSTRESS HVI maps. The MODIS HVI map
reveals communities that were historically the most vulnerable to the effects of extreme heat and are
concentrated in areas in and around downtown LA, Long beach, Anaheim, San Fernando, and Ontario.
The histogram ranking of LA regions by HVI for MODIS data in Figure 5 are very similar to that from
the ECOSTRESS data, with both agreeing on the top five most vulnerable regions (Eastside, South LA,
Southeast LA, Pomona Valley, and Central LA). The persistence of high HVI over these regions using
both current daily ECOSTRESS and historical MODIS data indicate that surface temperature variability
during hot conditions was remarkably similar from a regional perspective, and likely tied to the unique
“local climate zone (LCZ)” comprising a combination of surface structure, land cover, and human activity
within each region [142]. These results also indicate a clear and urgent need for implementing cooling
innovations and green infrastructure initiatives in these persistently hot regions.

In terms of trends, Figure 6b shows the MODIS trend in the number of days per year with
average daily LST exceeding an extreme temperature threshold of 35 ◦C (95th percentile of historical
temperatures) [94]. The image shows that regions of high temperature do not necessarily correspond
with high trends in temperature extremes, and that inland and valley areas had the highest trends.
For example, while the San Fernando valley experiences some of the hottest temperatures historically
(and a resulting high HVI), the trends over this area (<0.5 days/year) were on average lower than
other hotspots zones including southeast LA, North County (e.g., Anaheim), and the San Gabriel
Valley, where trends in number of days per year in extreme temperatures are close to 1 days/year.
These results largely agree with a modeling study by Sun et al. [36] who showed that by mid-century
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(2041–2060), air temperatures would increase more in inland and valley locations in LA by on average
2.4◦C, in addition to experiencing 60–90 extremely hot days (>35 ◦C) per year. The corresponding
HVI for the MODIS trend map in Figure 6d have areas of high vulnerability that are different to the
heatwave climatology map in Figure 6c. For example, San Fernando has lower HVIs, while San Gabriel
Valley and North County regions have higher HVIs on average in terms of trends in extreme heat.
While causes for the disproportionate increasing trends in extreme heat over the LA region is not fully
understood and warrants more research, accurately monitoring these trends over time is important for
building future sustainability plans in those vulnerable areas.

4. Future Outlook and Validation Plans

An inherent shortcoming in models that estimate vulnerability is their lack of testing and validation
with actual observation statistics [12]. Validation of the HVI for the LA region is essential prior to the
adoption of the index by public sector institutions such as departments of public health, sustainability,
and various planning agencies. Measurement of a particular HVI’s ability to predict heat-related injury
and death requires thorough and careful treatment of health outcome data and of other environmental
hazards associated with high heat [14,24,143,144].

Validation of an HVI is complicated most especially by the relationship between high heat and
various pathologies that result from sustained exposure. In addition to being the proximal cause of death
and injury, heat also exacerbates a wide variety of chronic health conditions, such as cardiovascular
disease or impaired renal function. The multifarious effects of heat on human health complicate the
task of establishing relationships between high heat events and elevated rates of hospitalization and
death [145]. Thus, it is essential to obtain the most detailed record of injury and mortality possible in
order to evaluate an HVI’s ability to predict the occurrence of specific heat-related injuries. In order to
validate the LA region’s HVI, patient-level hospitalization and emergency room visit data will need
to be obtained from California’s Office of Statewide Health Planning and Development (OSHPD),
along with vital statistics from the California Department of Public Health. OSHPD patient-level data
contain diagnoses codes and demographic information, affording the opportunity to learn how well
the HVI predicts specific heat-related hospital visits in addition to total visits [146,147]. Validation of a
fine-scale heat vulnerability index also necessitates that health outcome data be spatially disaggregated.
OSHPD data is disaggregated to the zip code level and include the patient’s zip code of origin and the
zip code of the hospital where they received treatment. This will allow for comparison of mortality
and hospitalization rates in high- and low-vulnerability zip codes in the LA region.

Ideally, the validation of LA’s HVI should also control for the effects of air pollution [148]. Many
of the same pathologies exacerbated by high heat are also worsened by exposure to air pollution.
Given the significant impacts of air pollution on public health in the LA region [6,149], validation
efforts should, to the extent possible, control for spatiotemporal trends in ozone and particulate matter
pollution, or potentially include them as part of the HVI. Joint effects of air pollution and high heat
have been documented both in the LA region and other cities with Mediterranean, semi-arid climates,
such as Perth, Australia [150,151].

5. Summary and Conclusions

With an overall increase in urbanization worldwide combined with a warming planet,
climate-related health threats in cities are becoming increasingly more significant and will
disproportionately affect the most vulnerable communities, including the poor, younger children,
the elderly and disabled, and those with chronic diseases. With increasing trends toward heatwave
night-time intensification in Southern California linked to feedbacks of anthropogenic climate change
and mean warming, the urban heat island (UHI) effect is expected to intensify and lead to a greater
risk of heat-related mortality and morbidity, particularly for communities most vulnerable to the ill
effects of extreme heat and humidity. Partnerships between policy makers and scientists in cities are
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becoming more important as the need to provide evidence-based and data-driven recommendations
for planning and future mitigation efforts becomes more critical.

In this study we developed a remote sensing driven heat vulnerability index (HVI) model
driven primarily by high spatial resolution land surface temperature (LST) data from NASA’s new
ECOSTRESS thermal infrared sensor that was launched to the International Space Station (ISS) in
June 2018. ECOSTRESS is able to image fine scale temperatures in cities at a 70 m × 70 m resolution
throughout different times of the day an every 3–5 days on average over most parts of the globe.
The HVI model also depends on socio-demographic data (e.g., age, income, poverty levels) and other
factors influencing heat vulnerability such as distance to cooling centers, green vegetation fraction,
and building height. The final HVI is produced at 100 m × 100 m resolution and ranges from values of
[0, 1] with values close to 1 indicative of highest vulnerability. The model can be applied to any city
with similar types of socio-demographic information used in this study, but for cities with limited data,
a single variable out of each of the PC groups in Table 1 could be selected to represent information
within that group. However, correlations between variables are also likely unique to each city, so users
would have to experiment with the socio-demographic variables at their disposal. In this study we
focus on the densely population region of Los Angeles (LA) county in California (≈13 million people),
a culturally and ethnically diverse region with distinct microclimates and ecological zones that are
impacted differently during extreme heat events.

ECOSTRESS imaged the city of Los Angeles at different times of day over a 3-week period of
extended heat from mid-July to the first week of August 2018 (17:01, 21:26, 00:43, and 04:06 PST).
Results showed that the late afternoon acquisition at 17:01 resulted in the highest temperatures in the
San Gabriel and Pomona Valley areas (>55 ◦C), while the highest HVIs greater than 0.8 occurred in areas
around downtown LA (Eastside, South, Central, and Southeast LA) and also in the Pomona and San
Fernando Valley. These areas have a number of common factors including high average temperatures:
they are densely populated areas with large proportions of industrial and warehouse complexes and
few green spaces, and consisted mostly of low income and elderly communities. The most vulnerable
region was Eastside LA with an average HVI value of 0.74. Eastside LA includes the wholesale district
consisting of mostly industrial facilities that enhanced the UHI effect in combination with a historically
low-income community with a low percentage of education. Although the HVI decreased over large
portions of the city at night, small pockets of high vulnerability persisted and were concentrated mostly
in areas around downtown LA that ranked highest in the daytime vulnerability rating. Increasing
trends in more humid night-time heatwave temperatures and corresponding HVI is a serious concern
for the elderly and disabled populations because they need more time to recover from daytime heat
stress and cannot sustain consecutive warm nights in combination with sleep deprivation.

In addition to ECOSTRESS, we used historical LST data from a new MODIS product (MYD21)
optimized for urban environments to map out a climatology of heatwave temperatures across the LA
region from 2002–2018. The corresponding MODIS HVI maps using the heatwave temperatures as the
exposure variable revealed persistent hotspots corresponding to communities that were historically
the most vulnerable to the effects of long-term extreme heat. These areas included regions around
downtown LA, and cities of Long Beach, Anaheim, San Fernando, and Ontario. In terms of regions
defined in this study, the MODIS results matched very closely with those from ECOSTRESS data for
2018, with HVI results from both data agreeing on the top five most vulnerable regions (Eastside,
South LA, Southeast LA, Central LA, and Pomona Valley). The persistence of high HVI over these
areas from both current ECOSTRESS and historical MODIS data show a clear and urgent need to focus
cooling efforts in these regions in order to increase resiliency during extreme heat events. In terms of
future trends in extreme temperatures (number of days per year with a daily average LST > 35 ◦C),
MODIS data revealed the highest trends primarily in inland areas of Southeast LA, North County (e.g.,
Anaheim), and the San Gabriel Valley where trends in number of days per year in extreme temperatures
are close to 1 day/year. The hottest regions, for example in San Fernando valley, did not correspond
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necessarily with highest trends in extreme temperatures, which is why future trends are also critical
for addressing and planning for future vulnerability in cities.

With thermal infrared spaceborne measurements, such as ECOSTRESS, providing a pathway
forward for the future sustainability of high spatial resolution thermal measurements, such as the
Surface Biology and Geology (SBG) designated observable in the second Decadal Survey: Earth science
and applications from space (ESAS 2017), the TIRS-2 thermal instrument on Landsat 9 (launch Dec.
2020), and the European Space Agency (ESA) Land Surface Temperature Monitoring (LSTM) mission
as part of the Copernicus program, the future of remote sensing of urban temperatures and heat
vulnerability at <100 m scales on 3–5-day timescales will continue and ensure that city planners
and health department officials around the globe have the critical information necessary to monitor
spatiotemporal variations in extreme heat from space. Future plans include developing a robust
statistical regression model to estimate air temperatures from LST data over LA using a combination of
ECOSTRESS diurnal LST and air temperatures derived from a WRF-urban canopy model optimized
for the LA region [54]. Further work will involve integrating air-conditioning use information into
the HVI model derived from electricity consumption data for LA county, continue to update the HVI
model with the most recent socio-economic data, and to produce HVI maps from ECOSTRESS and
other thermal sensors in a consistent fashion and available for public use in easily readable formats.
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Appendix A

Table A1. Variables used as inputs to compute the HVI with information showing the source of data,
time and spatial scales, and the assigned HVI index variable (exposure, sensitivity, adaptive capacity).

Variable Source Temporal Scale Spatial Scale Index

Land Surface Temperature ECOSTRESS Diurnal cycle 70 m Exposure

Extreme Heat Trends MODIS 2002–2019 1 km Exposure

Heatwave Average Daily
Climatology MODIS 2002–2019 1 km Exposure

Age of Housing ACS 2010 200 m Sensitivity

Elderly Population SEDAC 2010 200 m Sensitivity

Total Population SEDAC 2010 200 m Sensitivity

Poverty ACS 2010 200 m Sensitivity

Disabled Population ACS 2010 200 m Sensitivity

Unemployment ACS 2010 200 m Sensitivity

Building Height University of Maryland Static 30 m Sensitivity

Education ACS 2010 200 m Adaptive Capacity

Income ACS 2010 200 m Adaptive Capacity

Green Vegetation Fraction AVIRIS 2014 36 m Adaptive Capacity

Normalized Difference
Vegetation Index (NDVI) Landsat 16 days 30 m Adaptive Capacity
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Table A2. Correlation coefficients of selected variables used in the HVI analysis.

Variables HVI LST Veg
Fraction

Impervious
Fraction

Building
Height

Population
Density Poverty

HVI 1

LST 0.69 1

Vegetation Fraction −0.49 −0.23 1

Impervious Fraction 0.55 0.51 −0.80 1

Building Height 0.51 0.17 −0.64 0.74 1

Population Density 0.45 0.08 −0.05 0.28 0.66 1

Poverty 0.83 0.23 −0.51 0.52 0.49 0.49 1

Income −0.85 −0.30 0.61 −0.61 −0.56 −0.45 −0.96
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Figure A1. Cooling center locations represented as an adaptive capacity variable by calculating radial
distances from each pixel on the LA study region grid to the nearest cooling center. Higher values represent
areas nearest to a cooling center, corresponding to a higher adaptive capacity, i.e., a lower vulnerability.
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