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Abstract: Timely and accurate information about spatial distribution of tree species in urban areas
provides crucial data for sustainable urban development, management and planning. Very high
spatial resolution data collected by sensors onboard Unmanned Aerial Vehicles (UAV) systems provide
rich data sources for mapping tree species. This paper proposes a method of tree species mapping
from UAV images over urban areas using similarity in tree-crown object histograms and a simple
thresholding method. Tree-crown objects are first extracted and used as processing units in subsequent
steps. Tree-crown object histograms of multiple features, i.e., spectral and height related features,
are generated to quantify within-object variability. A specific tree species is extracted by comparing
similarity in histogram between a target tree-crown object and reference objects. The proposed
method is evaluated in mapping four different tree species using UAV multispectral ortho-images
and derived Digital Surface Model (DSM) data collected in Shanghai urban area, by comparing with
an existing method. The results demonstrate that the proposed method outperforms the comparative
method for all four tree species, with improvements of 0.61–5.81% in overall accuracy. The proposed
method provides a simple and effective way of mapping tree species over urban area.
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1. Introduction

Urban tree cover plays an important role in sustainable urban development and planning by
providing a range of environmental and ecological services, and social and economic benefits [1].
For example, urban trees absorb carbon dioxide, improve air quality, mitigate urban heat island
effect, reduce urban flood risk, embellish urban environments and provide recreational spaces [2–5].
The diversity, structure and spatial distribution of tree species are closely related to the quality of
these services and benefits. For example, some tree species are suitable for wildlife, or tolerate water
logging, or have ornamental characters [6,7]. Therefore, accurate and timely information about urban
tree species and their spatial distributions is critical for supporting strategies of urban development
and for planting and maintaining city greening.

Remote sensing data and derived data provide useful data sources for mapping tree species [8].
In particular, high spatial resolution data with fine spatial details are more suitable for identification
at species level [9]. Many existing studies used different image data, such as satellite and aerial
multispectral images [10,11], airborne hyperspectral images [12,13] of very high spatial resolution
(VHR), and three-dimensional data from airborne LiDAR (Light Detection and Ranging) data [14–17].
VHR multispectral images, such as IKONOS, QuickBird and WordView-2, and hyperspectral images
have been widely used in distinguishing different tree species [10–13,18,19]. However, due to spectral
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similarity of tree species, additional features are often used, such as texture and shape features
derived from multispectral images [10] and red edge bands and vegetation indices from hyperspectral
images [13,19]. In addition, hyperspectral data and LiDAR data were jointly used to extract different
tree species [14–17], providing promising results.

Recently, Unmanned Aerial Vehicles (UAV), as a low-altitude airborne platform, have been widely
used to collect VHR images [20]. Three-dimensional (3D) data are generated from the overlapped UAV
images collected, i.e., photogrammetric point clouds and Digital Surface Model (DSM). These 3D data
generated, in turn, are also used to produce UAV ortho-images [21]. The acquisition of VHR UAV
images also provides an opportunity for mapping individual tree species.

For identification of tree species from UAV images, different image features were used to quantify
characteristics of different tree species. Franklin et al. identified four tree species from UAV images
acquired by a Mini-MCA6 multispectral camera using visible and near-infrared bands, texture features
from Gray-Level Co-occurrence Matrix (GLCM), and object shape features [22]. Lisein et al. used
phenological differences between species from multi-temporal UAV images collected by visible and
color infrared cameras to improve accuracy of tree species mapping [23]. Similarly, in other studies,
spectral features, vegetation indices and textures from UAV imagery were used to identify invasive
plant species [24–26].

In some studies of tree species mapping from UAV images, photogrammetric point clouds and
DSM generated from overlapped UAV images were used to delineate the structure of tree crowns
and the height related information of tree species. For example, Saarinen et al. used height related
features, such as maximum value, standard deviation, coefficient of variation and percentiles of
heights, from 3D point clouds acquired by a UAV-based visible camera, and spectral features from a
hyperspectral frame camera to monitor biodiversity of various tree species [27]. Cao et al. separated
different mangrove species using a combination of UAV hyperspectral image collected by a UHD 185
hyperspectral sensor and height data from UAV-derived DSM [28]. Liu et al. used UAV multispectral
ortho-image and topographical features from DSM, such as slope and aspect, to detect an endangered
tree species, Firmiana danxiaensis [29]. It is found from these studies that spectral and height data
provide supplementary information in tree species mapping.

From the literature survey, an object-based method has been widely used in mapping tree species
in most existing studies [22,23,28,29]. The commonly used features of image objects are the mean and
standard deviation of pixel values within an image object. However, due to significant heterogeneity
of image objects in VHR UAV images, these features may not well quantify characteristics of image
objects [30–33]. Therefore, different ways of expressing the characteristics of image objects are needed
to exploit for tree species identification.

In addition, in most existing studies of tree species mapping, the multi-class classification methods
have been widely used, such as Nearest Neighbor (NN) [26], Support Vector Machine (SVM) [29],
and Random Forest (RF) [22–25] classifiers, to identify tree species. Although these multi-class
classifiers provide promising results, there are two problems with multi-class classifiers. One is that
several training samples are required by these multi-class classifiers. The other is that samples of
non-target classes (other tree species and vegetation) should be selected in classification training.
Therefore, other methods to overcome these problems are worth exploiting to extract tree species.

It should be mentioned that most existing studies of tree species mapping using VHR images
focus on forest or rural areas [18,19,22,23]. There are few studies using VHR images in mapping tree
species in urban areas [10,11]. It is difficult to identify tree species in urban areas using VHR images,
since the trees are generally scattered and different tree species are mixed in urban areas.

Considering the aforementioned problems, in this paper, we propose a novel method of tree
species mapping from UAV multispectral images and derived height data over urban area using
tree-crown object histogram and a simple thresholding method.



Remote Sens. 2019, 11, 1982 3 of 19

2. Study Area and Data

2.1. Study Area and Tree Species

In this study, a small area of Tongji University campus in Shanghai urban area (31◦19′N, 121◦30′E),
China (Figure 1a) was selected as study area, which is very flat. The main land cover types in the area
include building, road, water, tree and grass. Different types of trees species disperse in this dense
urban area and several different tree species are generally mixed.
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Figure 1. The location (red point) (a), the true color composite of Unmanned Aerial Vehicles (UAV)
multispectral ortho-image (b), and the derived Digital Surface Model (DSM) image (c) of the study area.

Three major types of tree species were identified in the area, i.e., Metasequoia, Platanus and Camphora.
Metasequoia is a unique plant in China and has a certain resistance to sulfur dioxide. It is also an important
tree species of timber forest, shelter forest, urban greening and landscape forest [34]. This tree species
has tall, straight trunks and crown forms of circular cone. The crown diameters of Metasequoia are much
smaller than those of other species in the study area. Platanus is one of the world-famous roadside trees
with dense branches and leaves. The trunk diameters of Platanus vary greatly and large amounts of fruit
balls are produced when the trunk diameter reaches about 30 cm. The seminal hair and pollen from fruit
balls floating in the air from April to June may cause air pollution problems and allergic reactions to
some people [35]. Given that Platanus trees have significant difference in trunk diameter, crown width
and crown form, Platanus is divided into two sub-types in this study, i.e., Platanus I and Platanus II.
The tree crowns of Platanus II are wide and thick, whereas Platanus I has sparse tree crowns and is of
relatively low height. Camphora is an evergreen ornamental tree species sending out fragrance, which can
drive mosquitoes away. It also has a strong resistance to carbon dioxide, chlorine gas and some other
toxic gases [36]. The crown forms of Platanus and Camphora are usually of similar shapes as egg or ball.
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Tree crowns of these two species are mostly wide, providing shade for people. Therefore, crowns of trees
planted in rows are generally connected to each other.

These four tree species mentioned above are planted regularly, and are all distributed in rows
along the northwest or northeast directions. The tree species of Metasequoia and Camphora are mainly
planted around the buildings. The tree species of Platanus I and Platanus II are mainly planted on
roadsides. Except for these four tree species mentioned above, there are a few other tree species,
which are scattered in the area and are not target tree species of this study.

2.2. Data

UAV multispectral images and derived DSM data were used in this study. The UAV images were
collected using a customized multispectral imaging system [29], in September, 2016, when the weather
was fine and the trees flourished in the study area. The spatial resolution of the UAV multispectral
images is about 4 cm. Red, Green, Blue and near-infrared bands were used in this study.

The UAV multispectral images collected were processed to generate ortho-image and DSM image.
First, optical and radiometric calibrations were carried out on the UAV images using the methods
presented in Reference [29]. The optical calibration corrected the geometric distortion and removed
the vignetting effect, while the radiometric calibration transformed the digital numbers to radiance.
Point clouds were computed from these calibrated stereo UAV images. Then ortho-images were
produced and were mosaicked to a stacked image over study area. DSM was generated from the
derived point clouds using the inverse distance weighted interpolation [37]. These processing steps
were implemented using Pix4D mapper software. The multispectral ortho-images and the DSM images
generated were from the same source with geometric consistency.

The image size of UAV multispectral ortho-image and the derived DSM image used in this study
is 6000 × 11,000 pixels (Figure 1b,c). It should be noted that the DSM is used to represent the relative
height in this study, since the terrain of the study area is very flat.

3. Methods

In this study, a novel method of tree species mapping from UAV images over urban areas using
object-level histogram of multiple features was proposed. Image objects were first generated from
image segmentation. Tree-crown objects were then generated from the initial image objects obtained
and used as processing units in subsequent steps. Instead of using mean or standard deviation of pixel
features in image object as in the conventional object-based method, object histograms were used to
quantify distributions of different features in tree-crown object. Multiple features, i.e., the spectral
features and height related features derived from UAV images, were used to quantify histograms of
tree-crown objects. A specific tree species was extracted by quantitatively comparing similarity in
histograms between a target tree-crown object and reference objects, measured using the Variable Bin
Size Distance (VBSD) [38], a recently proposed histogram similarity measure. Specifically, four main
steps are included, namely, extraction of tree-crown objects, generation of object histogram, comparison
of histogram similarity and urban tree species mapping (Figure 2). These steps are described in detail
in the following sub-sections.
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3.1. Tree-Crown Object Extraction

For mapping tree species from UAV images over urban area, tree-crown objects were first extracted
in this study. Five steps were implemented to generate tree-crown objects (Figure 3). In each step,
different features were used, which were selected for different purposes.

Image segmentation was first done using UAV multispectral ortho-image and DSM image to
produce initial image objects. Image segmentation is a common method of generating homogeneous
and disjoint image objects [39,40]. A widely used multiresolution segmentation method, implemented
in eCognition Developer software (Trimble) [41,42], was used for image segmentation. The method
is a region-based segmentation method. It starts with each pixel forming one image object. At each
step, neighboring image objects are merged into one larger object. The merging decision is based on
local homogeneity criteria, describing the similarity of adjacent image objects. As scale parameter
increases, different levels of segmentation are generated. According to both spectral and height
homogeneity criteria, the image was segmented into lots of image objects, under the premise of
avoiding under-segmentation.

After initial segmentation, potential tree-crown objects were generated from these image objects
obtained. Vegetation index (e.g., Normalized Difference Vegetation Index, NDVI) and height features
of image objects were used in this step. Specifically, if the mean NDVI value of an image object was
higher than the specified NDVI threshold and its mean height value was also higher than the height
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threshold value determined, the image object was identified as potential tree-crown object. Otherwise,
the image object was identified as non-tree-crown object and was masked out.

To make the shape of potential tree-crown objects generated in previous step more complete, in the
third step, adjacent and homogeneous potential tree-crown objects were merged into one tree-crown
object. Specifically, if both spectral and height homogeneity values for two neighboring tree-crown
objects were greater than the specified threshold values, these two neighboring tree-crown objects were
merged into a larger and more complete tree-crown object, by using a larger scale of segmentation.

It is found that these relatively complete tree-crown objects extracted may still contain some
non-tree-crown objects. For example, bright patches on roofs or shadow objects around the trees
were wrongly included. Therefore, these misidentified objects should be removed. In the fourth step,
Brightness, which is the mean value of all the spectral bands [43], was used as an object feature to
remove these misidentified objects. Given that Brightness of bright patches on roofs was very high
and Brightness of shadow objects around the trees was very low, while Brightness of tree crowns
were between them, two threshold values were determined, i.e., a high threshold value and a low
threshold value. Those objects with Brightness values greater than the high threshold or less than the
low threshold were labeled as misidentified objects and were eliminated.

Although non-tree-crown objects were masked out, the shapes of tree-crown objects were not
complete enough. A merging step was further implemented with a larger scale of segmentation
than that used in third step. Spectral features were not used as homogeneity criteria, because of the
existence of illumination variation in UAV images. Instead, height was used as homogeneity criterion.
Neighboring tree-crown objects were merged into more complete ones when their height homogeneity
value was greater than the threshold value.
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3.2. Generation of Tree-Crown Object Histogram

The tree-crown objects extracted from UAV images in the previous step show significant internal
heterogeneity. Object histogram, which represents frequency distribution of pixel features within a
tree-crown object, was used to quantify the within-object heterogeneity [32,33]. The object histogram
is generated by grouping all the feature values within an object into different intervals and counting
occurrence of different intervals.

Different features were exploited to quantify object histograms. To select appropriate features
used for object histogram, various features, including spectral features, texture, vegetation index,
height, slope and aspect, were compared and analyzed for different tree species. After comparison,
it was found that spectral feature, height and slope of tree-crown objects are more discriminative
features. Therefore, these three features were selected to constitute multiple features for quantifying
characteristics of tree-crown objects in this study.
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To make different features have similar value ranges of occurrence, the percentage frequency of
occurrence of each bin size was generated. The bin sizes of object histograms were selected according
to the overall ranges of spectral features or height related features. Fine bin size was selected to better
reflect object features. After that, object histograms of multiple different features were combined to
represent the characteristics of different tree species.

Considering that object histograms generally show noise or undulation, which impedes feature
combination, histogram smoothing was adopted. Specifically, Savitzky–Golay filter (S–G filter) [44]
was adopted to smooth object histograms. The filter is based on local polynomial least square fitting,
by which the noise is removed while the shape and width of the signal are preserved [45]. It should be
noted that other filters could also be used for smoothing.

3.3. Histogram Similarity Comparison

After multiple feature histograms of tree-crown objects were generated, the histogram of a
tree-crown object was compared with those of reference tree-crown objects to extract a specific tree
species. Therefore, an appropriate histogram similarity measure should be selected. In this study,
VBSD [38], was used to measure the similarity between tree-crown object histograms.

VBSD is based on bin-by-bin distances and achieves the effect of cross-bin distances by varying the
bin size from fine scale to coarse scale [38]. Therefore, it could be considered as a cross-bin extension of
corresponding bin-by-bin distances, e.g., the VBSD for L1 distance.

The basic principle of VBSD can be summarized as follows [38]. First, bin-by-bin distance for
the most refined bin size is computed as the first sub-distance d1. After that, the intersection part
of two histograms is subtracted from each histogram. Second, the remained two histograms are
changed into coarser histograms with an increased bin size. The bin-by-bin distance is computed
again for current bin size to generate the second sub-distance d2, and so does the intersection part
subtracted. This process continues until the bin size is large enough. Finally, the fine-to-coarse
bin-by-bin sub-distances D = {d1, d2, . . . , dtmax}, where tmax denotes the largest bin size, are obtained
and a weighting function is used for all these sub-distances to obtain a summation. This summation,
i.e., VBSD, is used to represent the similarity between these two histograms. The VBSD is expressed as

VBSD = f (D) =
∑tmax

1
(wt · dt), (1)

where wt is the weight of dt. In this study, wt = 1/tmax, the mean value of all these distances, is
used to calculate VBSD. The smaller VBSD represents that the target histogram is more similar with
the reference histogram. The major advantage of VBSD is that it is insensitive to both the histogram
translation and the variation of histogram bin size [38].

In this study, three bin-by-bin distances were used, L1 distance, L2 distance and χ2 statistic distance.
Suppose that R denotes the reference object histogram and T is the histogram of a target tree-crown
object with n bins. These three distances are expressed as

DL1(R, T) =
∑n

1
|ri − ti|, (2)

DL2(R, T) =

√∑n

1
|ri − ti|

2
, (3)

Dχ2(R, T) =
∑n

1

|ri − ti|
2

2(ri + ti)
. (4)

3.4. Tree Species Mapping

As mentioned previously, VBSD was used as a histogram similarity measure in mapping tree
species. Specifically, to determine if a target tree-crown object is a specific tree species, VBSD between the
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target tree-crown object and reference object is computed and compared with a specified threshold value.
If the VBSD obtained is less than the selected threshold, the tree-crown object is identified as target class.
Otherwise, the target object is identified as non-target class. Tree-crown objects with smaller VBSDs with
the reference object (i.e., higher similarity) have greater probability of being the same tree.

For histogram similarity comparison, it is important to obtain representative reference object
histograms. Reference samples (tree-crown objects) were selected by visual interpretation and field
investigation in this study. Since most tree species usually show significant variability in multiple
features, such as the spectral and height differences in tree crowns and different planting patterns
of trees (i.e., tree crowns alone or in clusters), multiple reference samples reflecting the intra-class
variability of tree species were selected. A reference object histogram used in this study was expressed
by the average histogram of two similar samples. After that, all the reference object histograms were
used to compute VBSDs with a target object histogram. Therefore, multiple VBSDs each for a reference
object histogram were obtained for the target tree-crown object. The minimum of these VBSDs was
considered as the final VBSD for the target object.

To determine an appropriate VBSD threshold for extracting a specific tree species, a threshold range
was first determined by analyzing the distribution (histogram) of VBSDs image obtained. A bimodal
model of VBSDs histogram [46] was assumed in this study. A VBSD threshold was then selected from
the threshold range obtained. Specifically, according to VBSD threshold range, the optimal threshold
was determined near to the intersection of two peaks of VBSDs histogram by trial and error. After that,
tree-crown objects with VBSDs smaller than the threshold for a specific tree species were labeled as
this species.

3.5. Accuracy Assessment

The confusion matrix was used to assess accuracy of the proposed method. The producer’s
accuracy (PA), user’s accuracy (UA), overall accuracy (OA), Kappa Coefficient (Kappa) and F1 score,
computed from confusion matrix, were used as the accuracy measures. The PA, UA, OA and Kappa
are commonly used measures in remote sensing [47]. The F1 score is the harmonic mean of precision
and sensitivity and is usually used as an accuracy measure of a dichotomous model [48], which is
suitable for one-class classification method.

For a complete comparative analysis, VBSDs for three different bin-by-bin distances were adopted in
the proposed method and accuracies using these three VBSDs were compared. Moreover, a conventional
object-based method for tree species mapping was used for comparison. In this comparative method,
tree-crown objects were first generated using the method proposed in this study. Spectral and height
related features for each tree-crown objects were used, i.e., four spectral features, height and slope features
were used. The mean values of all six features within each tree-crown object were used in extraction
process. A recently developed one-class classifier, One-class Support Vector Machine (OCSVM) [49],
was used in object-based classification. It should be noted that more training samples of the target class
are needed in training of OCSVM than the reference samples of the proposed method.

To fully evaluate the proposed method, five repeated tests were implemented with different
validation samples on the premise of the same quantity and proportion of the training samples and
the validation samples. In each test, the same validation samples were used for different methods.
The validation samples include both samples of the target tree species and samples of other non-target
tree species. Because the target tree species were a small portion of all trees, the non-target class samples
were randomly selected as twice of the target class samples. The average and standard deviation for
five tests were computed for each mapping method.



Remote Sens. 2019, 11, 1982 9 of 19

4. Results

4.1. Generation of Tree-Crown Objects

As described in Section 3.1, tree-crown objects were first generated. The threshold values used in
each step are shown in Table 1. A total of 888 tree-crown objects were generated and the other objects
were masked out.

Table 1. The threshold values used in each step for generation of tree-crown object.

Steps Parameters and Threshold Values

1 Initial segmentation scale: 50
2 NDVI: −0.4; Height: −24
3 Merging scale: 120
4 Brightness: 57 (low) and 180 (high)
5 Merging scale: 140

Figure 4 shows the tree-crown objects extraction results at each step. From the figure, the
initial image segmentation shows significant over-segmentation (Figure 4a), because small scale of
segmentation is selected to avoid under-segmentation. After second step, most of potential tree-crown
objects are extracted, while non-tree areas, such as buildings, roads and grasses, are masked out
(Figure 4b). After merging was done (third step), the potential tree-crown objects obtained became
relatively complete. However, it is worth noting that some non-tree objects are wrongly identified as
tree-crown objects (Figure 4c). After fourth step, most of these misidentified objects are eliminated
and tree-crown objects are more accurately extracted, but these tree-crown objects extracted are not
complete enough (Figure 4d). After merging in final step, complete tree-crown objects are generated
and the boundaries between tree-crown objects obtained are more accurate (Figure 4e).
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The final result of tree-crown object extraction is shown in Figure 4f. In general, all tree-crown
objects are accurately and completely extracted. It is also found from the figure that the isolated trees
extracted are more complete than the trees in clusters. A part of a tree or a combination of several trees
are extracted as one tree-crown object when the boundaries between these trees in clusters are not
clearly discernable.

4.2. Object Histogram Analysis

Object histograms of multiple features were generated to quantify characteristics of different
tree species. In this study, six features were used, namely four spectral features (blue, green, red and
near-infrared) and two height related features (height and slope). The spectral and height features were
directly derived from four multispectral bands and DSM from UAV images, respectively. The slope
feature was obtained by a moving window of 25 by 25 (i.e., 1 m by 1 m) acting on DSM to compute the
slope value at each pixel position. The kernel sizes of S–G filter for smoothing were 5 for the spectral
and slope features and 10 for the height feature.

Figure 5 shows multiple feature histograms of selected reference objects of four tree species.
There are different variations in peaks and shapes of these reference object histograms. Generally,
four target tree species show different object histograms. From Figure 5, the object histograms of
Metasequoia are the most different from other tree species in most features, i.e., the height, slope, green,
red and near-infrared features (Figure 5a). The object histograms of Platanus II also show different
characteristics, in particular in height, slope, green and red features (Figure 5c). The object histograms
of Platanus I (Figure 5b) and Camphora (Figure 5d) are generally similar, but with subtle differences in
green, red and height features.

It is also found from Figure 5 that histograms of four tree species in green and red bands are more
different. For example, histograms of Metasequoia have one or two peaks, while the histograms of
Camphora only have one obvious peak and the right sides of the histograms become flat gradually.
The histograms of Platanus I in green and red bands rapidly increase to peak and gradually decline
to the end, but the changing rates of histograms of Platanus II are different. As for histograms in
near-infrared band, differences between tree species are evident in shapes and trends of the histograms.
The value range of height for Metasequoia is the widest and the value range of height for Platanus I is
the narrowest. A narrow value range reflects a relatively uniform height distribution. The value range
of slope for Metasequoia, which mainly concentrates on large values, is obviously different from that of
other tree species.

It is also worth noting that there are similarities in different features among four tree species.
For example, histograms in blue band of Metasequoia and Platanus II are slightly similar and the
histograms in blue band of Platanus I and Camphora are also slightly similar. The histograms of slope
for Platanus I, Platanus II and Camphora only have some subtle differences, since they have similar
crown shapes of egg or ball. In summary, four types of tree species show generally different tree-crown
object histogram characteristics.
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Figure 5. The reference histograms of tree-crown objects for four tree species colored in different colors.
Multiple features are labeled from left to right: spectral features, i.e., blue, green, red and near-infrared
features, height feature and slope feature. The numbers of reference object histograms are 5, 6, 7, 5,
respectively, for Metasequoia (a), Platanus I (b), Platanus II (c) and Camphora (d). Their corresponding
UAV images are circled in red on the right.

4.3. Tree Species Mapping Results

Following the method mentioned in the previous section, the threshold ranges were all determined
by reference to VBSDs histograms (Figure 6). To better understand their distributions, the VBSDs
histograms are smoothed and shown by solid lines in Figure 6. It is found from the figure that most
VBSDs histograms have obvious separations between two peaks of histogram, i.e., showing bi-mode
patterns, except those shown in Figure 6f,h,k,i. For example, the threshold range of VBSDs for χ2

distance for Metasequoia is roughly near 1.0, which is located between two peaks (Figure 6c). However,
when the VBSDs histogram is hard to separate as two obvious peaks, more uncertain and wider range
of threshold is selected (Figure 6f). In addition, the histograms and ranges of VBSDs for three distances
are different. It is found that the distributions of VBSDs for L1 distance (Figure 6a,d,g,j) are similar to
those of VBSDs for χ2 distance (Figure 6c,f,i,l). The threshold range obtained provides a guidance for
VBSD threshold selection. The finial thresholds for four tree species used are shown in Table 2.
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Figure 6. The distributions of VBSDs images for three distances and four tree species: Metasequoia (a–c);
Platanus I (d–f); Platanus II (h–i); Camphora (j–l). The smoothed histograms are shown by solid lines.
The ranges of the threshold are labeled in red.

Table 2. The VBSD thresholds for four tree species in the proposed method.

Tree Species Threshold Values

VBSD for L1 VBSD for L2 VBSD for χ2

Metasequoia 2.23 0.40 1.02
Platanus I 1.73 0.35 0.77
Platanus II 1.81 0.37 0.82
Camphora 1.78 0.31 0.78

The validation samples included 42, 82, 89 and 77 tree-crown objects for four tree species all over
the study area, respectively. The samples of non-target class were twice as these target class samples to
guarantee a consistent sample proportion.

The accuracies of mapping results of the proposed method using VBSDs for three distances are
listed in Table 3. From the table, the OA, Kappa and F1 score mostly have a consistent trend. Specifically,
the proposed method preforms differently in mapping different tree species (OAs are from 95.75–82.65%),
but is mostly similar when using VBSDs for three different distances in each species mapping. The VBSD
for χ2 distance preforms the best for tree species of Metasequoia, Platanus I and Platanus II. The OAs
from VBSD for χ2 distance for these three tree species are 0.34%, 1.86% and 3.77% higher than those
from VBSD for L2 distance, respectively. The VBSD for L2 distance preforms the best for tree species of
Camphora, with OA higher than that from VBSD for χ2 distance (1.55%). The accuracies using VBSD for
L1 distance are between the other two distances for all the four tree species.
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Table 3. Mapping accuracies of four tree species using the proposed method with VBSDs for
three distances.

Tree Species VBSDs for
Three Distances

Accuracy Measures

PA(%) UA(%) OA(%) Kappa F1

Metasequoia
L1 90.11 ± 2.196 96.35 ± 0.083 95.57 ± 0.731 0.899 ± 0.017 0.931 ± 0.012
L2 89.87 ± 1.340 96.10 ± 0.057 95.41 ± 0.446 0.895 ± 0.011 0.929 ± 0.007
χ2 90.91 ± 1.743 96.14 ± 0.068 95.75 ± 0.581 0.903 ± 0.014 0.934 ± 0.009

Platanus I
L1 93.39 ± 0.409 82.59 ± 0.055 91.23 ± 0.131 0.809 ± 0.003 0.877 ± 0.002
L2 93.09 ± 0.599 79.09 ± 0.100 89.49 ± 0.196 0.774 ± 0.005 0.855 ± 0.003
χ2 93.39 ± 0.409 82.84 ± 0.056 91.35 ± 0.135 0.811 ± 0.003 0.878 ± 0.002

Platanus II
L1 80.70 ± 2.274 87.21 ± 0.312 89.63 ± 0.762 0.762 ± 0.019 0.838 ± 0.014
L2 82.39 ± 1.729 77.51 ± 0.370 86.17 ± 0.579 0.694 ± 0.014 0.799 ± 0.010
χ2 82.15 ± 1.829 86.94 ± 0.263 89.94 ± 0.615 0.770 ± 0.015 0.845 ± 0.011

Camphora
L1 73.43 ± 0.981 74.83 ± 0.239 82.91 ± 0.320 0.614 ± 0.008 0.741 ± 0.006
L2 66.93 ± 2.034 82.36 ± 0.424 84.20 ± 0.673 0.627 ± 0.018 0.738 ± 0.014
χ2 70.64 ± 1.816 75.68 ± 0.467 82.65 ± 0.601 0.603 ± 0.016 0.731 ± 0.012

1 The results after five tests; 2 The bold texts represent the best accuracy results; 3 a ± b stands for average ±
standard deviation.

For comparative method using object-based method and OCSVM, 30 tree-crown objects were
selected as training samples for each tree species. The mapping results from the comparative method
are shown in Table 4. By comparing Tables 3 and 4, the proposed method using VBSDs for three
different distances produces higher accuracies with smaller standard deviations than those from the
comparative method for all four tree species. For example, OAs of mapping results using the proposed
method are 0.61%, 2.57%, 4.01% and 5.81% higher than the results using the comparative method for
tree species of Metasequoia, Platanus I, Platanus II and Camphora, respectively. In addition, it is worth
noting that the OAs of mapping results for Camphora from the proposed method are significantly
higher than that from the comparative method (4–6%). This demonstrates that the proposed method
significantly outperforms the comparative method for the target class with lower mapping accuracy.
In addition, the PAs and UAs using the proposed method are also higher or comparable with smaller
standard deviations than those from the comparative method.

Table 4. Mapping accuracies of four tree species using the comparative method.

Tree Species Accuracy Measures

PA(%) UA(%) OA(%) Kappa F1

Metasequoia 86.80 ± 5.480 98.45 ± 0.355 95.14 ± 1.775 0.887 ± 0.043 0.922 ± 0.031
Platanus I 83.39 ± 6.857 83.04 ± 1.432 88.78 ± 1.860 0.747 ± 0.047 0.831 ± 0.035
Platanus II 71.34 ± 5.912 84.16 ± 3.218 85.93 ± 2.033 0.671 ± 0.050 0.771 ± 0.038
Camphora 67.20 ± 13.014 67.71 ± 5.089 78.39 ± 4.235 0.510 ± 0.109 0.669 ± 0.088

1 The results after five tests; 2 a ± b stands for average ± standard deviation.

Figure 7 shows portions of mapping results using different methods for four tree species. Most
areas of target tree species shown in the reference maps are correctly recognized. From Figure 7,
there is a significant reduction of the under-estimated areas and the over-estimated areas when
using the proposed method than the comparative method. However, the under-estimated areas and
over-estimated areas for Metasequoia are comparably few using both methods (Figure 7a). By comparing
with reference tree-crown objects, it is found that many under-estimated areas are distributed on
the edges of trees (in red circle of Figure 7), which are the boundaries of continuous trees. Many
over-estimated areas are around the target tree species (in blue circle of Figure 7). These different tree
species are planted too close and their tree crowns tend to obscure each other.
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Figure 7. Portions of mapping results for four tree species using the proposed method (using VBSD
for χ2 distance) and the comparative method according to the reference maps labeling tree-crown
objects for a specific tree species: Metasequoia (a); Platanus I (b); Platanus II (c); Camphora (d). Some
under-estimated areas on the edges of trees are circled in red and some over-estimated areas around
the target tree species are circled in blue.

The best mapping results over study area using the proposed method are shown in Figure 8. Most
target tree species in reference map are correctly extracted in these four mapping results (shown in
different colors for each tree species). The spatial distributions of each tree species are also confirmed.
There are fewer over-estimated and under-estimated areas for Metasequoia, because this species has
more distinct characteristics than the others (Figure 8a). From Figure 8b, most of the tree crowns of
Platanus I are accurately mapped. Similarly, major tree crowns of Platanus II are accurately extracted,
although some of these continuous tree crowns are under-estimated (Figure 8c). The mapping result
for Camphora is not as accurate as the other species. However, the target tree crowns distributed in the
northeast of this study area are mainly extracted (Figure 8d). From Figure 8b,d, it is found that the
tree species of Platanus I shows a confusion with the tree species of Camphora, which appears in their
over-estimated areas. This is consistent with the previous object histograms shown in Figure 5 that
Platanus I and Camphora are more similar.
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of Metasequoia using VBSD for χ2 distance. (b) Mapping result of Platanus I using VBSD for χ2 distance.
(c) Mapping result of Platanus II using VBSD for χ2 distance. (d) Mapping result of Camphora using
VBSD for L2 distance. (e) Reference map of four tree species.

5. Discussion

In this study, we proposed a new method of tree species mapping from UAV images. Tree-crown
object histograms of spectral and height related features were used to quantify characteristics of
different tree species. VBSD [38], a recently proposed histogram similarity measure, was used to
quantitatively compare target object histograms with reference object histograms. A state-of-the-art
method using conventional object-based method and OCSVM, was used for comparison. The proposed
method was evaluated in mapping four different tree species over an urban area. The results showed
that the proposed method outperformed the comparative method for all the four tree species.

The proposed method shows the following advantages. First, instead of using image objects,
tree-crown objects are extracted and used as processing units. The use of tree-crown objects in the
proposed method reduces confusion with other irrelevant objects in study area, such as grass and
other non-vegetation, and also avoids merging different tree species into one image object. Moreover,
the histograms of tree-crown objects are more representative of a specific tree species.

Second, joint use of spectral and height related features of tree-crown objects is effective in tree
species mapping. Although spectral features are helpful in mapping tree species (e.g., Figure 5), the
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sole use of spectral features in mapping tree species may produce limited accuracy due to spectral
similarity between different tree species and illumination variation of UAV images. The height
related features provide useful structural information of tree-crown objects. However, using height
related features alone could not distinguish between tree species with similar heights and structures.
Therefore, the combination of spectral features and height related features will provide complementary
information for mapping tree species in urban area. In particular, object-level histogram of spectral
and height related features is found to well quantify characteristics of tree-crown objects.

Third, VBSD used in this study is a feasible histogram similarity measure when mapping tree
species. The VBSDs for three different distances all performed well. Because the bin size of the
histogram is variable, the cross-bin distance considers the correlations between neighboring bins and
reduces the sensitivity to bin size [38]. Generally, relatively refined bin size of object histogram is
selected as initial bin size in practical applications.

Fourth, the proposed method based on a simple threshold on VBSD only needs a small amount
of reference samples of a specific tree species and does not need to select non-target samples.
The representativeness of reference samples is important in the proposed method, but not the quantity
of samples. However, in the conventional object-based mapping method, OCSVM classifier is affected
by quantity of training samples.

It should be noted that there are several thresholds to be determined in the proposed method.
In this study, we selected a threshold range by analyzing the distribution of VBSD values. The threshold
range provides a guidance to determine the optimal threshold. The threshold values for other variables
were determined by trial and error [22,25,26,28]. The reference for determining threshold and more
automatic threshold selection method would be further explored.

Although the proposed method shows very promising results in tree species mapping using
UAV images over urban area, there are still some problems to be further addressed in the future.
For example, illumination variation of the UAV images is an important concern. Because ground
targets are densely distributed over urban area, some trees are in shadow of tall buildings. There are
spectral differences between the side of tree crowns towards the sun and the side away from the sun.
This may affect the shape of tree-crown objects, the similarity of object histograms and the selection of
reference samples.

Given that the evaluation was only done in a study area with limited coverage, the proposed
method will be further evaluated by applying more UAV images in other areas with different tree
species. VHR spectral and height data obtained in other ways, such as airborne LiDAR data, and other
features will be explored in the future.

6. Conclusions

In this paper, a tree species mapping method using UAV images was proposed. In the proposed
method, multiple feature histograms of tree-crown objects were used to quantify different tree species,
where spectral features and height related features were selected as object features. The VBSD was used
to measure the histogram similarity in each tree-crown object. A specific tree species was extracted by
thresholding the VBSDs obtained. The experimental results demonstrated that the proposed method
produced higher accuracies for all the four tree species than the existing method in the study area.
The proposed method provides a simple and effective way for tree species mapping in urban area.
More studies are needed to further validate the performance of the proposed method in other areas.

Author Contributions: P.L. and X.F. conceived and designed the paper. X.F. performed the experiments, analyzed
the data, and wrote the paper. P.L. analyzed the data and revised the paper.

Funding: This research was funded by the National Science Foundation of China (Grant Number 41371329).

Acknowledgments: The authors thank Chun Liu from Tongji University for providing the data used in this
study. We also thank Tongfan Surveying Engineering and Technology Co. Ltd for their technical support in
data generation.

Conflicts of Interest: The authors declare no conflicts of interest.



Remote Sens. 2019, 11, 1982 17 of 19

References

1. Dwyer, J.F.; McPherson, E.G.; Schroeder, H.W.; Rowntree, R.A. Assessing the benefits and costs of the urban
forest. J. Arboric. 1992, 18, 227.

2. Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service:
Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [CrossRef]

3. Armson, D.; Stringer, P.; Ennos, A. The effect of tree shade and grass on surface and globe temperatures in an
urban area. Urban For. Urban Green. 2012, 11, 245–255. [CrossRef]

4. Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E.
The role of trees in urban stormwater management. Landsc. Urban Plan. 2017, 162, 167–177. [CrossRef]
[PubMed]

5. Dallimer, M.; Irvine, K.N.; Skinner, A.M.J.; Davies, Z.G.; Rouquette, J.R.; Maltby, L.L.; Warren, P.H.;
Armsworth, P.R.; Gaston, K.J. Biodiversity and the Feel-Good Factor: Understanding Associations between
Self-Reported Human Well-being and Species Richness. Bioscience 2012, 62, 47–55. [CrossRef]

6. Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban forests and pollution mitigation: Analyzing ecosystem services
and disservices. Environ. Pollut. 2011, 159, 2078–2087. [CrossRef] [PubMed]

7. Yan, P.; Yang, J. Performances of Urban Tree Species under Disturbances in 120 Cities in China. Forest 2018, 9,
50. [CrossRef]
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